A Lower Bound for the Coherence Block Length in Mobile Radio Channels
Abstract
:1. Introduction
2. Summary of Theoretical Aspects
2.1. Rigorous Definition of BC and TC
2.2. Time Duration and Bandwidth of a Pair of Signals
2.3. Uncertainty Relations
3. Lower Bound for the Coherence Block Length
4. Results and Application Example
4.1. Experimental Verification of Fleury’s Inequalities
4.2. Application Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marzetta, T.L. How Much Training is Required for Multiuser Mimo? In Proceedings of the 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 29 October–1 November 2006; pp. 359–363. [Google Scholar]
- Marzetta, T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Björnson, E.; Larsson, E.G.; Marzetta, T.L. Massive MIMO: Ten myths and one critical question. IEEE Commun. Mag. 2016, 54, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Bjornson, E.; Larsson, E.G.; Debbah, M. Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated? IEEE Trans. Wirel. Commun. 2016, 15, 1293–1308. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks. In Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency; Now Publisher: Delft, The Netherlands, 2019; Chapter 2; pp. 219–220. [Google Scholar]
- Fleury, B. An uncertainty relation for WSS processes and its application to WSSUS systems. IEEE Trans. Commun. 1996, 44, 1632–1634. [Google Scholar] [CrossRef]
- Bello, P. Characterization of Randomly Time-Variant Linear Channels. IEEE Trans. Commun. 1963, 11, 360–393. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.D. Wideband channel characterization. In The Mobile Radio Propagation Channel, 2nd ed.; John Wiley & Sons: Chichester, UK, 2000; Chapter 6; pp. 164–189. [Google Scholar]
- Gans, M. A power-spectral theory of propagation in the mobile-radio environment. IEEE Trans. Veh. Technol. 1972, 21, 27–38. [Google Scholar] [CrossRef]
- Varela, M.; Sánchez, M.G. RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band. IEEE Trans. Veh. Technol. 2001, 50, 515–525. [Google Scholar] [CrossRef]
- Howard, S.; Pahlavan, K. Measurement and analysis of the indoor radio channel in the frequency domain. IEEE Trans. Instrum. Meas. 1990, 39, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Steele, R.; Hanzo, L. Mobile radio channels. In Mobile Radio Communications, 2nd ed.; Wiley: Chichester, UK, 1999; Chapter 2; pp. 91–118. [Google Scholar]
- Bracewell, R. The Fourier Transform and Its Applications. Am. J. Phys. 1966, 34, 712. [Google Scholar] [CrossRef]
- Zollinger, E. Measured inhouse radio wave propagation characteristics for wideband communication systems. In Proceedings of the 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication, Stockholm, Sweden, 13–17 June 1988; pp. 314–317. [Google Scholar]
- Moraitis, N.; Kanatas, A.; Pantos, G.; Constantinou, P. Delay spread measurements and characterization in a special propa-gation environment for PCS microcells. In Proceedings of the IEEE 2002 International Symposium on Personal, Indoor and Mobile Radio Communications, Lisboa, Portugal, 5–18 September 2002; pp. 1190–1194. [Google Scholar]
- Perez, J.R.; Torres, R.P.; Rubio, L.; Basterrechea, J.; Domingo, M.; Penarrocha, V.M.R.; Reig, J.; Perez, J.R.; Basterrechea, J.; Rodrigo, V.M. Empirical Characterization of the Indoor Radio Channel for Array Antenna Systems in the 3 to 4 GHz Frequency Band. IEEE Access 2019, 7, 94725–94736. [Google Scholar] [CrossRef]
- Rubio-Arjona, L.; Torres, R.P.; Rodrigo-Peñarrocha, V.M.; Pérez, J.R.; González, H.A.F.; Molina-Garcia-Pardo, J.-M.; Reig, J. Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz. Electronics 2019, 8, 1261. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, P.; Li, W.; Xiong, H. Wideband Channel Measurements and Characterization of the Urban Environment. In Proceedings of the 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 16–17 August 2007; pp. 826–829. [Google Scholar]
- Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Pérez, J.R.; Torres, R.P.; Domingo, M.; Valle, L.; Basterrechea, J. Analysis of Massive MIMO Performance in an Indoor Picocell With High Number of Users. IEEE Access 2020, 8, 107025–107034. [Google Scholar] [CrossRef]
Band | 3.6 GHz | 26 GHz | |||
---|---|---|---|---|---|
v (m/s) | τmax (ns) | v (m/s) | τmax (ns) | ||
Pedestrian | Indoor | 0.75 | 40 | 0.75 | 30 |
Outdoor | 0.75 | 250 | 0.75 | 100 | |
In car | Outdoor | 33.3 | 250 | 33.3 | 100 |
Band | 3.6 GHz | 26 GHz | ||||
---|---|---|---|---|---|---|
Correlation Level (cf) | 0.5 | 0.7 | 0.9 | 0.5 | 0.7 | 0.9 |
Pedestrian Indoor | 58,610 | 44,515 | 25,240 | 10,820 | 8220 | 4660 |
Pedestrian Outdoor | 9380 | 7120 | 4040 | 3245 | 2465 | 1400 |
In Car | 210 | 160 | 91 | 73 | 55 | 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, R.P.; Pérez, J.R. A Lower Bound for the Coherence Block Length in Mobile Radio Channels. Electronics 2021, 10, 398. https://doi.org/10.3390/electronics10040398
Torres RP, Pérez JR. A Lower Bound for the Coherence Block Length in Mobile Radio Channels. Electronics. 2021; 10(4):398. https://doi.org/10.3390/electronics10040398
Chicago/Turabian StyleTorres, Rafael P., and Jesús R. Pérez. 2021. "A Lower Bound for the Coherence Block Length in Mobile Radio Channels" Electronics 10, no. 4: 398. https://doi.org/10.3390/electronics10040398
APA StyleTorres, R. P., & Pérez, J. R. (2021). A Lower Bound for the Coherence Block Length in Mobile Radio Channels. Electronics, 10(4), 398. https://doi.org/10.3390/electronics10040398