V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic Equation Approach
Abstract
:1. Introduction
2. Problem Statement
3. 3D Parabolic Equation Method
3.1. Derivation
3.2. Split-Step Fourier Numerical Method
3.3. Two-Way PE
4. Numerical Results and Discussion
4.1. Propagation without Obstacles
4.2. Diffraction on a Single Building
4.3. Propagation in a Street Canyon
4.4. Diffraction on a Crossroad
4.5. Impact of Car Traffic
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PE | Parabolic equation |
RT | Ray-tracing |
PEC | Perfectly electric conducting |
SSF | Split-step Fourier |
FD | Finite-difference |
VANET | Vehicular ad hoc network |
V2I | Vehicle-to-Infrastructure |
References
- Liang, L.; Peng, H.; Li, G.Y.; Shen, X. Vehicular communications: A physical layer perspective. IEEE Trans. Veh. Technol. 2017, 66, 10647–10659. [Google Scholar] [CrossRef]
- Vladyko, A.; Khakimov, A.; Muthanna, A.; Ateya, A.A.; Koucheryavy, A. Distributed edge computing to assist ultra-low-latency VANET applications. Future Internet 2019, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Elagin, V.; Spirkina, A.; Buinevich, M.; Vladyko, A. Technological Aspects of Blockchain Application for Vehicle-to-Network. Information 2020, 11, 465. [Google Scholar] [CrossRef]
- Viriyasitavat, W.; Boban, M.; Tsai, H.M.; Vasilakos, A. Vehicular communications: Survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 2015, 10, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Lytaev, M.S.; Vladyko, A.G. Comparative Analysis of Parabolic Equation Method and Longley–Rice Propagation Model. In Proceedings of the IEEE 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–5. [Google Scholar]
- Urquiza-Aguiar, L.; Tripp-Barba, C.; Estrada-Jiménez, J.; Igartua, M.A. On the impact of building attenuation models in vanet simulations of urban scenarios. Electronics 2015, 4, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.G.; Gustafson, C.; Abbas, T.; Tufvesson, F. A path loss and shadowing model for multilink vehicle-to-vehicle channels in urban intersections. Sensors 2018, 18, 4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Ai, B.; He, R.; Wang, G.; Chen, L.; Li, X.; Huang, C.; Ma, Z.; Zhong, Z.; Wang, J.; et al. Measurements and Cluster-Based Modeling of Vehicle-to-Vehicle Channels With Large Vehicle Obstructions. IEEE Trans. Wirel. Commun. 2020, 19, 5860–5874. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Gao, J.; Zhao, L.; Jiang, T. Measurements and Analysis of Propagation Channels in Vehicle-to-Infrastructure Scenarios. IEEE Trans. Veh. Technol. 2020, 69, 3550–3561. [Google Scholar] [CrossRef]
- ITU-R. Recommendation P.1411. Propagation Data and Prediction Methods for the Planning of Short-Range Outdoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz. 2019. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1411-10-201908-I!!PDF-E.pdf (accessed on 26 November 2020).
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Yun, Z.; Iskander, M.F. Ray tracing for radio propagation modeling: Principles and applications. IEEE Access 2015, 3, 1089–1100. [Google Scholar] [CrossRef]
- Valle, L.; Pérez, J.R.; Torres, R.P. Characterisation of Indoor Massive MIMO Channels Using Ray-Tracing: A Case Study in the 3.2–4.0 GHz 5G Band. Electronics 2020, 9, 1250. [Google Scholar] [CrossRef]
- Green, D.; Yun, Z.; Iskander, M.F. Path loss characteristics in urban environments using ray-tracing methods. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3063–3066. [Google Scholar] [CrossRef]
- Saito, K.; Fan, Q.; Keerativoranan, N.; Takada, J.i. Site-Specific Propagation Loss Prediction in 4.9 GHz Band Outdoor-to-Indoor Scenario. Electronics 2019, 8, 1398. [Google Scholar] [CrossRef] [Green Version]
- Granda, F.; Azpilicueta, L.; Vargas-Rosales, C.; Lopez-Iturri, P.; Aguirre, E.; Astrain, J.J.; Villandangos, J.; Falcone, F. Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNS deployment. Sensors 2017, 17, 1313. [Google Scholar] [CrossRef] [Green Version]
- Granda, F.; Azpilicueta, L.; Vargas-Rosales, C.; Celaya-Echarri, M.; Lopez-Iturri, P.; Aguirre, E.; Astrain, J.J.; Medrano, P.; Villandangos, J.; Falcone, F. Deterministic propagation modeling for intelligent vehicle communication in smart cities. Sensors 2018, 18, 2133. [Google Scholar] [CrossRef] [Green Version]
- Granda, F.; Azpilicueta, L.; Celaya-Echarri, M.; Lopez-Iturri, P.; Vargas-Rosales, C.; Falcone, F. Spatial V2X Traffic Density Channel Characterization for Urban Environments. IEEE Trans. Intell. Transp. Syst. 2020. early access. [Google Scholar] [CrossRef]
- MacKie-Mason, B.; Shao, Y.; Greenwood, A.; Peng, Z. Supercomputing-enabled first-principles analysis of radio wave propagation in urban environments. IEEE Trans. Antennas Propag. 2018, 66, 6606–6617. [Google Scholar] [CrossRef]
- Levy, M.F. Parabolic Equation Methods for Electromagnetic Wave Propagation; The Institution of Electrical Engineers: London, UK, 2000. [Google Scholar]
- Lytaev, M.S. Numerov-Pade scheme for the one-way Helmholtz equation in tropospheric radio-wave propagation. IEEE Antennas Wirel. Propag. Lett. 2020. early access. [Google Scholar] [CrossRef]
- Lytaev, M.S.; Vladyko, A.G. Split-step Pade Approximations of the Helmholtz Equation for Radio Coverage Prediction over Irregular Terrain. In Proceedings of the IEEE 2018 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 15–16 November 2018; pp. 179–184. [Google Scholar]
- Janaswamy, R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach. IEEE Trans. Antennas Propag. 2003, 51, 1716–1728. [Google Scholar] [CrossRef]
- Zaporozhets, A. Application of vector parabolic equation method to urban radiowave propagation problems. IEE Proc. Microw. Antennas Propag. 1999, 146, 253–256. [Google Scholar] [CrossRef]
- He, Z.; Zeng, H.; Chen, R. Two-way propagation modeling of expressway with vehicles by using the 3-D ADI-PE method. IEEE Trans. Antennas Propag. 2018, 66, 2156–2160. [Google Scholar] [CrossRef]
- Li, Y.S.; Bian, Y.Q.; He, Z.; Chen, R.S. EM Pulse Propagation Modeling for Tunnels by Three-Dimensional ADI-TDPE Method. IEEE Access 2020, 8, 85027–85037. [Google Scholar] [CrossRef]
- ITU-R. Recommendation ITU-R P.2040-1: Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz. 2015. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-I!!PDF-E.pdf (accessed on 26 November 2020).
- Fock, V. Electromagnetic Diffraction and Propagation Problems; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Lytaev, M.S. Automated Selection of the Computational Parameters for the Higher-Order Parabolic Equation Numerical Methods. Lect. Notes Comput. Sci. 2020, 12249, 296–311. [Google Scholar]
- Mikhailov, M.; Komarov, A. Extension of the parabolic equation method in the time domain. In Proceedings of the IEEE 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 357–361. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Kuttler, J.R.; Dockery, G.D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Sci. 1991, 26, 381–393. [Google Scholar] [CrossRef]
- Ahdab, Z.E.; Akleman, F. Radiowave Propagation Analysis with a Bidirectional 3-D Vector Parabolic Equation Method. IEEE Trans. Antennas Propag. 2017, 65, 1958–1966. [Google Scholar] [CrossRef]
- He, Z.; Chen, R.S. Frequency-domain and time-domain solvers of parabolic equation for rotationally symmetric geometries. Comput. Phys. Commun. 2017, 220, 181–187. [Google Scholar] [CrossRef]
- Lytaev, M.S.; Vladyko, A.G. On Application of Parabolic Equation Method to Propagation Modeling in Millimeter-Wave Bands. In Proceedings of the IEEE 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 332–337. [Google Scholar]
- Apaydin, G.; Sevgi, L. The Split-Step-Fourier and Finite-Element-Based Parabolic-Equation Propagation- Prediction Tools: Canonical Tests, Systematic Comparisons, and Calibration. IEEE Trans. Antennas Propag. 2010, 52, 66–79. [Google Scholar] [CrossRef]
- Taylor, M. Pseudodifferential Operators and Nonlinear PDE; Springer Science & Business Media: New York, NY, USA, 2012; Volume 100. [Google Scholar]
- Bailey, D.H.; Swarztrauber, P.N. A fast method for the numerical evaluation of continuous Fourier and Laplace transforms. SIAM J. Sci. Comput. 1994, 15, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Davidson, D.B. Computational Electromagnetics for RF and Microwave Engineering; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Collins, M.D.; Evans, R.B. A two-way parabolic equation for acoustic backscattering in the ocean. J. Acoust. Soc. Am. 1992, 91, 1357–1368. [Google Scholar] [CrossRef]
- Mills, M.J.; Collins, M.D.; Lingevitch, J.F. Two-way parabolic equation techniques for diffraction and scattering problems. Wave Motion 2000, 31, 173–180. [Google Scholar] [CrossRef]
- Oraizi, H.; Hosseinzadeh, S. Radio-wave-propagation modeling in the presence of multiple knife edges by the bidirectional parabolic-equation method. IEEE Trans. Veh. Technol. 2007, 56, 1033–1040. [Google Scholar] [CrossRef]
- Apaydin, G.; Ozgun, O.; Kuzuoglu, M.; Sevgi, L. A novel two-way finite-element parabolic equation groundwave propagation tool: Tests with canonical structures and calibration. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2887–2899. [Google Scholar] [CrossRef]
- Ozgun, O. Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation. IEEE Trans. Antennas Propag. 2009, 57, 2706–2714. [Google Scholar] [CrossRef]
- Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Comput. Phys. Commun. 2011, 182, 2638–2654. [Google Scholar] [CrossRef]
- Vavilov, S.A.; Lytaev, M.S. Modeling equation for multiple knife-edge diffraction. IEEE Trans. Antennas Propag. 2020, 68, 3869–3877. [Google Scholar] [CrossRef]
- Lytaev, M.S. 3D 2-Way SSF Matlab Code. 2020. Available online: https://github.com/mikelytaev/3d-ssf (accessed on 26 November 2020).
- Zhang, D.; Liao, C.; Feng, J.; Deng, X. Pulse-compression signal propagation and parameter estimation in the troposphere with parabolic equation. IEEE Access 2019, 7, 99917–99927. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lytaev, M.; Borisov, E.; Vladyko, A. V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic Equation Approach. Electronics 2020, 9, 2011. https://doi.org/10.3390/electronics9122011
Lytaev M, Borisov E, Vladyko A. V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic Equation Approach. Electronics. 2020; 9(12):2011. https://doi.org/10.3390/electronics9122011
Chicago/Turabian StyleLytaev, Mikhail, Eugene Borisov, and Andrei Vladyko. 2020. "V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic Equation Approach" Electronics 9, no. 12: 2011. https://doi.org/10.3390/electronics9122011
APA StyleLytaev, M., Borisov, E., & Vladyko, A. (2020). V2I Propagation Loss Predictions in Simplified Urban Environment: A Two-Way Parabolic Equation Approach. Electronics, 9(12), 2011. https://doi.org/10.3390/electronics9122011