A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method
Abstract
1. Introduction
2. Formulations
3. Numerical Experiments and Discussions
3.1. Description of Thorax Model
3.2. Training Set
3.3. Numerical Experiments
3.3.1. Iterative SDM
3.3.2. One-Step SDM
3.4. Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
CNN | Convolutional Neural Network |
DoI | Domain of Interest |
FE-BI | Finite Element-Boundary Integral |
ISM | Industrial, Scientific and Medical |
MATLAB | Matrix Laboratory |
MRI | Magnetic Resonance Imaging |
SDM | Supervised Descent Method |
TM | Transverse Magnetic |
References
- Fear, E.C.; Li, X.; Hagness, S.C.; Stuchly, M.A. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fanning, M.W.; Dun, L.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar] [CrossRef]
- Scapaticci, R.; Bucci, O.M.; Catapano, I.; Crocco, L. Robust microwave imaging for brain stroke monitoring. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 75–78. [Google Scholar]
- Bisio, I.; Fedeli, A.; Lavagetto, F.; Luzzati, G.; Pastorino, M.; Randazzo, A.; Tavanti, E. Brain stroke detection by microwave imaging systems: Preliminary two-dimensional numerical simulations. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 330–334. [Google Scholar] [CrossRef]
- Merunka, I.; Fiser, O.; Vrba, D.; Vrba, J. Numerical analysis of microwave tomography system for brain stroke detection. In Proceedings of the 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA), Prague, Czech Republic, 19–20 April 2018. [Google Scholar] [CrossRef]
- Semenov, S.; Seiser, B.; Stoegmann, E.; Auff, E. Electromagnetic tomography for brain imaging: From virtual to human brain. In Proceedings of the 2014 IEEE Conference on Antenna Measurements Applications (CAMA), Antibes Juan-les-Pins, France, 16–19 November 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Ireland, D.; Bialkowski, K.; Abbosh, A. Microwave imaging for brain stroke detection using Born iterative method. IET Microw. Antennas Propag. 2013, 7, 909–915. [Google Scholar] [CrossRef]
- Celik, N.; Gagarin, R.; Youn, H.; Iskander, M.F. A Noninvasive Microwave Sensor and Signal Processing Technique for Continuous Monitoring of Vital Signs. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 286–289. [Google Scholar] [CrossRef]
- Celik, N.; Gagarin, R.; Huang, G.C.; Iskander, M.F.; Berg, B.W. Microwave Stethoscope: Development and Benchmarking of a Vital Signs Sensor Using Computer-Controlled Phantoms and Human Studies. IEEE Trans. Biomed. Eng. 2014, 61, 2341–2349. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Bialkowski, K.S.; Abbosh, A.M. Microwave System for the Early Stage Detection of Congestive Heart Failure. IEEE Access 2014, 2, 921–929. [Google Scholar] [CrossRef]
- Rezaeieh, S.; Zamani, A.; Bialkowski, K.; Mahmoud, A.; Abbosh, A. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema. Sci. Rep. 2015, 5, 14047. [Google Scholar] [CrossRef]
- Iskander, M.F.; Durney, C.H. Electromagnetic techniques for medical diagnosis: A review. Proc. IEEE 1980, 68, 126–132. [Google Scholar] [CrossRef]
- Pedersen, P.C.; Johnson, C.C.; Durney, C.H.; Bragg, D.G. Microwave Reflection and Transmission Measurements for Pulmonary Diagnosis and Monitoring. IEEE Trans. Biomed. Eng. 1978, BME-25, 40–48. [Google Scholar] [CrossRef]
- Salman, S.; Wang, Z.; Colebeck, E.; Kiourti, A.; Topsakal, E.; Volakis, J.L. Pulmonary Edema Monitoring Sensor With Integrated Body-Area Network for Remote Medical Sensing. IEEE Trans. Antennas Propag. 2014, 62, 2787–2794. [Google Scholar] [CrossRef]
- Zamani, A.; Rezaeieh, S.A.; Abbosh, A.M. Lung cancer detection using frequency-domain microwave imaging. Electron. Lett. 2015, 51, 740–741. [Google Scholar] [CrossRef]
- Abdelhamid, M.M.; Allam, A.M. Detection of lung cancer using ultra wide band antenna. In Proceedings of the 2016 Loughborough Antennas Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Camacho, L.M.; Tjuatja, S. FDTD simulation of microwave scattering from a lung tumor. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 3A, pp. 815–818. [Google Scholar] [CrossRef]
- Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave System for Head Imaging. IEEE Trans. Instrum. Meas. 2014, 63, 117–123. [Google Scholar] [CrossRef]
- Ahdi Rezaeieh, S. Wideband Microwave Imaging Systems for the Diagnosis of Fluid Accumulation in the Human Torso. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2016. [Google Scholar]
- Trefna, H.; Persson, M. Antenna array design for brain monitoring. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Abbosh, A.M. Wideband and Unidirectional Folded Antenna for Heart Failure Detection System. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 844–847. [Google Scholar] [CrossRef]
- Nilavalan, R.; Craddock, I.J.; Preece, A.; Leendertz, J.; Benjamin, R. Wideband microstrip patch antenna design for breast cancer tumour detection. IET Microwaves, Antennas Propag. 2007, 1, 277–281. [Google Scholar] [CrossRef]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popović, M.; Rusch, L.A. Flexible 16 Antenna Array for Microwave Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef]
- Sugitani, T.; Kubota, S.; Toya, A.; Xiao, X.; Kikkawa, T. A Compact 4 × 4 Planar UWB Antenna Array for 3-D Breast Cancer Detection. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 733–736. [Google Scholar] [CrossRef]
- Yun, X.; Fear, E.C.; Johnston, R.H. Compact antenna for Radar-based breast cancer detection. IEEE Trans. Antennas Propag. 2005, 53, 2374–2380. [Google Scholar] [CrossRef]
- Hagness, S.C.; Taflove, A.; Bridges, J.E. Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 1997, 33, 1594–1595. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Yang, F.; Xu, S. A feasibility study of microwave respiration monitoring. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Li, M.; Yang, F.; Xu, S. A Compact Dual-Band Folded-Cavity Antenna for Microwave Biomedical Imaging Applications. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Yang, F.; Xu, S.; Zhou, H.; Yang, Y.; Chen, L. A Low-Profile Compact Dual-Band L-Shape Monopole Antenna for Microwave Thorax Monitoring. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 448–452. [Google Scholar] [CrossRef]
- Zamani, A.; Mobashsher, A.T.; Mohammed, B.J.; Abbosh, A.M. Microwave imaging using frequency domain method for brain stroke detection. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. Microwave Biomedical Imaging Using the Multiplicative Regularized Gauss–Newton Inversion. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 645–648. [Google Scholar] [CrossRef]
- Shao, W.; Du, Y. Microwave Imaging by Deep Learning Network: Feasibility and Training Method. IEEE Trans. Antennas Propag. 2020, 68, 5626–5635. [Google Scholar] [CrossRef]
- Shah, P.; Chen, G.; Moghaddam, M. Learning Nonlinearity of Microwave Imaging Through Deep Learning. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 699–700. [Google Scholar] [CrossRef]
- Shah, P.; Moghaddam, M. Super resolution for microwave imaging: A deep learning approach. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–15 July 2017; pp. 849–850. [Google Scholar] [CrossRef]
- Gerazov, B.; Conceicao, R.C. Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 564–569. [Google Scholar] [CrossRef]
- Salucci, M.; Marcantonio, D.; Li, M.; Oliveri, G.; Rocca, P.; Massa, A. Innovative Machine Learning Techniques for Biomedical Imaging. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Xiong, X.; De la Torre, F. Supervised Descent Method and Its Applications to Face Alignment. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 532–539. [Google Scholar] [CrossRef]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Full-wave Microwave Imaging. In Proceedings of the 2019 Photonics Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 624–631. [Google Scholar] [CrossRef]
- Guo, R.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Learning Technique for 2-D Microwave Imaging. IEEE Trans. Antennas Propag. 2019, 67, 3550–3554. [Google Scholar] [CrossRef]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Pixel-and Model-based Microwave Inversion with Supervised Descent Method for Dielectric Targets. IEEE Trans. Antennas Propag. 2020, 68, 8114–8126. [Google Scholar] [CrossRef]
- Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of Supervised Descent Method to Parametric Level-set Approach. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for 2D Magnetotelluric Inversion using Adam Optimization. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China (ACES), Nanjing, China, 8–11 August 2019; Volume 1, pp. 1–2. [Google Scholar] [CrossRef]
- Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method method for 2D magnetotelluric data inversion. Geophysics 2020, 85, WA53–WA65. [Google Scholar] [CrossRef]
- Guo, R.; Li, M.; Fang, G.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method to transient electromagnetic data inversion. Geophysics 2019, 84, E225–E237. [Google Scholar] [CrossRef]
- Li, M.; Zhang, K.; Guo, R.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Electrical Impedance Tomography. In Proceedings of the 2019 Photonics Electromagnetics Research Symposium—Fall (PIERS—Fall), Xiamen, China, 17–20 December 2019; pp. 2342–2348. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; Technical Report; King’s Coll London (United Kingdom) Department of Physics: London, UK, 1996. [Google Scholar]
Tissue | 433 MHz | 915 MHz | ||
---|---|---|---|---|
(S/m) | (S/m) | |||
Muscle | 56.9 | 0.80 | 55.0 | 0.95 |
Inflated Lung | 23.6 | 0.38 | 22.0 | 0.46 |
Heart | 65.3 | 0.98 | 59.8 | 1.24 |
433 MHz | ||||||
Center Position (m) | Major Axis (m) | Minor Axis (m) | Relative Permittivity | Conductivity (S/m) | Rotation Angle (°) | |
Left Ellipse | (0.140, 0.279) | (0.140, 0.274) | (10, 55) | (0.2, 0.8) | (−60, 60) | |
Right Ellipse | (0.140, 0.277) | (0.111, 0.207) | (10,55) | (0.2, 0.8) | (−60, 60) | |
Circle | Diameter (0.080, 0.196) | (57, 87) | (0.8, 1.2) | 0 | ||
915 MHz | ||||||
Center Position (m) | Major Axis (m) | Minor Axis (m) | Relative Permittivity | Conductivity (S/m) | Rotation Angle (°) | |
Left Ellipse | (0.140, 0.278) | (0.140, 0.274) | (10, 55) | (0.35, 0.95) | (−60, 60) | |
Right Ellipse | (0.140, 0.279) | (0.111, 0.208) | (10, 55) | (0.35, 0.95) | (−60, 60) | |
Circle | Diameter (0.080, 0.199) | (55, 85) | (0.95, 1.35) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, M.; Yang, F.; Xu, S.; Yin, Y.; Zhou, H.; Yang, Y.; Zeng, S.; Shao, J. A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics 2021, 10, 352. https://doi.org/10.3390/electronics10030352
Zhang H, Li M, Yang F, Xu S, Yin Y, Zhou H, Yang Y, Zeng S, Shao J. A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics. 2021; 10(3):352. https://doi.org/10.3390/electronics10030352
Chicago/Turabian StyleZhang, Haolin, Maokun Li, Fan Yang, Shenheng Xu, Yan Yin, Hongyu Zhou, Yubo Yang, Sihang Zeng, and Jianchong Shao. 2021. "A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method" Electronics 10, no. 3: 352. https://doi.org/10.3390/electronics10030352
APA StyleZhang, H., Li, M., Yang, F., Xu, S., Yin, Y., Zhou, H., Yang, Y., Zeng, S., & Shao, J. (2021). A Feasibility Study of 2-D Microwave Thorax Imaging Based on the Supervised Descent Method. Electronics, 10(3), 352. https://doi.org/10.3390/electronics10030352