Air and Metal Vias Combined Metamaterial-Based Lens for Radiation Performance Enhancement of Short-Pulse Tapered Slot Antenna
Abstract
:1. Introduction
2. Principle and Design of Metallic Delay Lens
2.1. Tapered Slot Antenna Loaded with Lens
2.2. Metallic Delay Lens
2.3. Time-Domain Performance of Metallic Delay Lens
3. Design of PWTSA with Metamaterial-Based Lens
3.1. Tapered Slot Antenna Loaded with Lens
3.2. PWTSA Loaded with Metallic Delay Lens
3.3. PWTSA Loaded with Metamaterial-Based Lens
4. Design of PWTSA with Metamaterial-Based Lens
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibson, P.J. The vivaldi aerial. In Proceedings of the 9th European Microwave Conference, Brighton, UK, 17–20 September 1979; pp. 101–105. [Google Scholar]
- Janaswamy, R.; Schaubert, D.H. Analysis of the tapered slot antenna. IEEE Trans. Antennas Propag. 1987, 35, 1058–1065. [Google Scholar] [CrossRef]
- Yin, X.; Su, Z.; Hong, W.; Cui, T.J. An ultra wideband tapered slot antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; pp. 516–519. [Google Scholar]
- Yin, X.; Wang, Q.; Wang, C.; Shen, G.; Zhang, J.; Hong, W. A resistive loaded tapered slot antenna for ground penetrating radar. Mod. Radar 2006, 28, 58–68. [Google Scholar]
- Li, S.; Yin, X.; Zhao, H.; Qi, H. Postwall slotline and its application in design of short-pulse tapered slot antennas. IEEE Trans. Antennas Propag. 2015, 63, 3400–3409. [Google Scholar] [CrossRef]
- Yang, M.; Yin, X.; Li, Y.; Liu, L. Ultra-wideband planar Gaussian tapered rhombic antenna for short pulse applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 48–51. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, H.; Chen, Z.; Wen, P. A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 776–779. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Gao, J.; Li, S.; Zhao, H.; Yin, X. Ultra-wideband reflectionless tapered slotline antenna with resistive absorption structure. In Proceedings of the 2019 International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019; pp. 1–3. [Google Scholar]
- Yang, G.; Ye, S.; Zhang, F.; Ji, Y.; Zhang, X.; Fang, G. Dual-Polarized Dual-Loop Double-Slot Antipodal Tapered Slot Antenna for Ultra-Wideband Radar Applications. Electronics 2021, 10, 1377. [Google Scholar] [CrossRef]
- Kota, K.; Shafai, L. Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna. Electron. Lett. 2011, 47, 303–304. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Zong, B. Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1380–1383. [Google Scholar] [CrossRef]
- Molaei, A.; Kaboli, M.; Mirtaheri, S.A.; Abrishamian, M.S. Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw. Antennas Propag. 2014, 8, 1137–1142. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Kharkovsky, S. A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 552–555. [Google Scholar] [CrossRef]
- Kim, S.; Yu, H.; Choi, K.; Choi, D. Analysis of tapered slot antenna with high gain for 2D indoor wireless positioning. IEEE Access 2019, 7, 54312–54320. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, L.; Yao, C.; Zhang, Q.; Xu, Z.; Guo, M.; Wang, Z. Ultrawideband antipodal tapered slot antenna with gradient refractive index metamaterial lens. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2741–2745. [Google Scholar] [CrossRef]
- Briqech, Z.; Sebak, A.; Denidni, T.A. Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications. IEEE Trans. Antennas Propag. 2016, 64, 2971–2980. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Ghafoorzadeh-Yazdi, A.; Abolhasan, M. Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1792–1795. [Google Scholar] [CrossRef]
- Nashuha, S.H.; Lee, G.H.; Kumar, S.; Choi, H.C.; Kim, K.W. Ultra-Wideband Trapezoidal Log-Periodic Antenna Integrated with an Elliptical Lens. Electronics 2020, 9, 2169. [Google Scholar] [CrossRef]
- Erfani, E.; Niroo-Jazi, M.; Tatu, S. A high-gain broadband gradient refractive index metasurface lens antenna. IEEE Trans. Antennas Propag. 2016, 64, 1968–1973. [Google Scholar] [CrossRef]
- Palmeri, R.; Isernia, T. Inverse Design of Artificial Materials Based Lens Antennas through the Scattering Matrix Method. Electronics 2020, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cui, W.; Zhou, Y.; Liu, R.; Wang, M.; Fan, C.; Zheng, H.; Li, E. Design of Wideband Antenna Array with Dielectric Lens and Defected Ground Structure. Electronics 2021, 10, 2066. [Google Scholar] [CrossRef]
- Wang, N.; Fang, M.; Chou, H.; Qi, J.; Xiao, L. Balanced antipodal Vivaldi antenna with asymmetric substrate cutout and dual-scale slotted edges for ultrawideband operation at millimeter-wave frequencies. IEEE Trans. Antennas Propag. 2018, 66, 3724–3729. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, X.; Jiang, Z.H.; Zhang, Y.; Tang, H.; Hong, W. A compact single-layer Q-band tapered slot antenna array with phase-shifting inductive windows for endfire patterns. IEEE Trans. Antennas Propag. 2019, 67, 169–178. [Google Scholar] [CrossRef]
- Teni, G.; Zhang, N.; Qiu, J.; Zhang, P. Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 417–420. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Kharkovsky, S.; Case, J.T.; Samali, B. Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications. IET Microw. Antennas Propag. 2017, 11, 796–803. [Google Scholar] [CrossRef]
- Zhou, B.; Cui, T.J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 2021, 10, 326–329. [Google Scholar] [CrossRef]
- Sun, M.; Chen, Z.N.; Qing, X. Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial. IEEE Trans. Antennas. Propag. 2013, 61, 1741–1746. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, H.; Wen, P. A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic metasurface. IEEE Trans. Antennas Propag. 2019, 67, 1952–1956. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, H.; Li, Y.; Chen, Y. A compact Vivaldi antenna with artificial material lens and sidelobe suppressor for GPR applications. IEEE Access 2020, 8, 64056–64063. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Chen, J. Millimeter-wave ATS antenna with wideband-enhanced endfire gain based on coplanar plasmonic structures. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 826–830. [Google Scholar] [CrossRef]
- Eichenberger, J.; Yetisir, E.; Ghalichechian, N. High-gain antipodal Vivaldi antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz. IEEE Trans. Antennas Propag. 2019, 67, 4357–4366. [Google Scholar] [CrossRef]
- El-Hameed, A.S.A.; Barakat, A.; Abdel-Rahman, A.B.; Allam, A.; Pokharel, R.K. A 60-GHz double-Y balun-fed on-chip Vivaldi antenna with improved gain. In Proceedings of the 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, 20–23 December 2015; pp. 307–310. [Google Scholar]
- Umar, S.M.; Khan, W.; Ullah, S.; Ahmad, F. Gain enhancement technique in Vivaldi antenna for 5G communication. In Proceedings of the 2nd International Conference of Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–4. [Google Scholar]
- Zhang, J.; Lan, H.; Liu, M.; Yang, Y. A handheld nano through-wall radar locating with the gain-enhanced Vivaldi antenna. IEEE Sens. J. 2020, 20, 4420–4429. [Google Scholar] [CrossRef]
- Chen, L.; Lei, Z.Y.; Yang, R.; Fan, J.; Shi, X.W. A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Trans. Antennas Propag. 2015, 63, 395–400. [Google Scholar] [CrossRef]
- Yesilyurt, O.; Turhan-Sayan, G. Metasurface lens for ultra-wideband planar antenna. IEEE Trans. Antennas Propag. 2020, 68, 719–726. [Google Scholar] [CrossRef]
- Sang, L.; Wu, S.; Liu, G.; Wang, J.; Huang, W. High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 322–326. [Google Scholar] [CrossRef]
- Guo, L.; Yang, H.; Zhang, Q.; Deng, M. A compact antipodal tapered slot antenna with artificial material lens and reflector for GPR applications. IEEE Access 2018, 6, 44244–44251. [Google Scholar] [CrossRef]
- Schelkunoff, S.A.; Friis, H.T. Antennas: Theory and Practice; John Wiley & Sons: New York, NY, USA, 1952. [Google Scholar]
- Jasik, H. Antenna Engineering Handbook; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Collin, R.E. Field Theory of Guided Waves; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Kock, W.E. Metallic delay lenses. Bell Syst. Tech. J. 1948, 27, 58–82. [Google Scholar] [CrossRef]
- Chen, Z.N.; Wu, X.H.; Li, H.F.; Yang, N.; Chia, M.Y.W. Considerations for source pulses and antennas in UWB radio systems. IEEE Trans. Antennas Propag. 2004, 52, 1739–1748. [Google Scholar] [CrossRef]
- Li, S.; Yin, X.; Wang, L.; Zhao, H.; Liu, L.; Zhang, M. Time-domain characterization of short-pulse networks and antennas using signal space method. IEEE Trans. Antennas Propag. 2014, 62, 1862–1871. [Google Scholar] [CrossRef]
- Ebnabbasi, K.; Busuioc, D.; Birken, R.; Wang, M. Taper design of Vivaldi and co-planar tapered slot antenna (TSA) by Chebyshev transformer. IEEE Trans. Antennas Propag. 2012, 60, 2252–2259. [Google Scholar] [CrossRef]
Freq. (GHz) | Loaded PWTSA | Unloaded PWTSA | ||||
---|---|---|---|---|---|---|
Offset (Deg.) | MLW (Deg.) | SLL (dB) | Offset (Deg.) | MLW (deg.) | SLL (dB) | |
10 | 1 | 26.7 | −6 | 1 | 26.5 | −4.6 |
15 | 2 | 18.3 | −6.1 | 3 | 20.6 | −2.3 |
21 | 1 | 14.1 | −7.2 | 14 | 31.6 | −2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Zhang, Q.; Li, S. Air and Metal Vias Combined Metamaterial-Based Lens for Radiation Performance Enhancement of Short-Pulse Tapered Slot Antenna. Electronics 2021, 10, 2845. https://doi.org/10.3390/electronics10222845
Yin Y, Zhang Q, Li S. Air and Metal Vias Combined Metamaterial-Based Lens for Radiation Performance Enhancement of Short-Pulse Tapered Slot Antenna. Electronics. 2021; 10(22):2845. https://doi.org/10.3390/electronics10222845
Chicago/Turabian StyleYin, Yifan, Qiuyi Zhang, and Shunli Li. 2021. "Air and Metal Vias Combined Metamaterial-Based Lens for Radiation Performance Enhancement of Short-Pulse Tapered Slot Antenna" Electronics 10, no. 22: 2845. https://doi.org/10.3390/electronics10222845