# A Phase Generation Shifting Algorithm for Prosumer Surplus Management in Microgrids Using Inverter Automated Control

^{*}

## Abstract

**:**

## 1. Introduction

- The local generation is lower than the total consumption in the network. In this case, power flows are reduced in the microgrid, the local demand being satisfied by the closest proximity. However, losses can still increase in areas with an important surplus due to supplemental power flows.
- The local generation exceeds the consumption. In this case, the power flows are reversed, with high changes in the operation conditions of the network, affecting both power losses and quality of supply. In this case, the network is operated in conditions for which it was not designed for.

- the design of the PSO-based optimization algorithm for prosumer surplus management in LV microgrids;
- the use of PV prosumer inverters to regulate three-phase power flows to improve the operation state of the microgrid;
- a comparative case study, using two real distribution networks in Romania, with distinctive geographical layout, size, and consumption characteristics.

## 2. The Formulation of the PSM Problem

- Unbalanced one-phase, on the connection phase where the demand is located, in which case the overlapping power injection can contribute to the accentuation of the load imbalance on phases (Figure 1a);
- Symmetrical three-phase, in which case the influence of the prosumer on the phase load balance is negligible (Figure 1b).

_{h,br}indicates the power losses on branch br at hour h, computed with:

_{ac,br}is the phase resistance of the branch br, while K

_{br}is the coefficient used in Romanian standards to account for the losses on the neutral wire [32], as in Equation (3), and I

_{h},

_{br}is the branch current flow, computed with Equation (4):

_{n,br}—resistance of the neutral wire of branch br, A—branch–node connectivity matrix, [I

_{h},

_{br}], [I

_{h,bus}]— branch and bus currents vector for hour h; I

_{br,a}, I

_{br,b}, I

_{br,c}, I

_{br,abc}

^{avg}—phase and average currents on branch br. The algorithm formulated in Equations (2)–(5) is applied on each phase, with the currents I

_{h,bus}determined using the phase consumptions originating from the network, updated with the contribution of the unbalanced prosumer generation.

## 3. Adaptation of the PSO Algorithm for Prosumer Surplus Phase Shifting

## 4. Case Study

#### 4.1. Results for Network R28

#### 4.2. Results for Network R121

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Botelho, D.F.; Dias, B.H.; de Oliveira, L.W.; Soares, T.A.; Rezende, I.; Sousa, T. Innovative business models as drivers for prosumers integration—Enablers and barriers. Renew. Sustain. Energy Rev.
**2021**, 144, 111057. [Google Scholar] [CrossRef] - Kazacos Winter, D.; Khatri, R.; Schmidt, M. Decentralized prosumer-centric P2P electricity market coordination with grid security. Energies
**2021**, 14, 4665. [Google Scholar] [CrossRef] - Romanian Energy Regulatory Authority. The 228 Order for the Approval of the Technical Norm Technical Conditions for Connection to the Public Electrical Networks of the Prosumers. Available online: https://www.anre.ro/ro/legislatie/prosumatori (accessed on 2 August 2021). (In Romanian).
- Torres, I.C.; Negreiros, G.F.; Tiba, C. Theoretical and experimental study to determine voltage violation, reverse electric current and losses in prosumers connected to low-voltage power grid. Energies
**2019**, 12, 4568. [Google Scholar] [CrossRef][Green Version] - Barbosa, M.A.; Gül, K.; Bratcu, A.I.; Munteanu, I. Management of a photovoltaic-battery-based microgrid in a prosumer context. In Proceedings of the 2019 6th International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 18–20 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Griego, D.; Schopfer, S.; Henze, G.; Fleisch, E.; Tiefenbeck, F. Aggregation effects for microgrid communities at varying sizes and prosumer-consumer ratios. Energy Procedia
**2019**, 159, 346–351. [Google Scholar] [CrossRef] - Azim, M.I.; Tushar, W.; Saha, T.K. Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers. Appl. Energy
**2020**, 263, 114687. [Google Scholar] [CrossRef] - Kotur, D.; Rajaković, N. Optimal reconfiguration of distribution network with participation of distributed electricity prosumers. In Proceedings of the Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade, Serbia, 6–9 November 2016; pp. 1–7. [Google Scholar] [CrossRef]
- González-Romera, E.; Romero-Cadaval, E.; Garrido-Zafra, J.; Florencias-Oliveros, O.; Ruiz-Cortés, M.; Moreno-Munoz, A.; González-de-la-Rosa, J.-J. Demand and storage management in a prosumer nanogrid based on energy forecasting. Electronics
**2020**, 9, 363. [Google Scholar] [CrossRef][Green Version] - Oh, E. Risk-based virtual energy storage system service strategy for prosumers. Appl. Sci.
**2021**, 11, 3020. [Google Scholar] [CrossRef] - Singh, B.P.; Gore, M.M. Softmicrogrid: A software assisted microgrid for optimal prosumer satisfaction. Technol. Econ. Smart Grids Sustain. Energy
**2021**, 6, 4. [Google Scholar] [CrossRef] - González-Romera, E.; Ruiz-Cortés, M.; Milanés-Montero, M.I.; Barrero-González, F.; Romero-Cadaval, E.; Lopes, R.A.; Martins, J. Advantages of minimizing energy exchange instead of energy cost in prosumer microgrids. Energies
**2019**, 12, 719. [Google Scholar] [CrossRef][Green Version] - Daburi Farimani, F.; Rajabi Mashhadi, H. Demand dispatch on dispatchable prosumer PEVs in a smart microgrid: A comprehensive framework. Int. Trans. Electr. Energy Syst.
**2020**, 30, e12570. [Google Scholar] [CrossRef] - Albaker, A.; Khodaei, A. Elevating prosumers to provisional microgrids. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Rosen, C.; Madlener, R. Regulatory Options for Local Reserve Energy Markets: Implications for Prosumers, Utilities, and other Stakeholders. Energy J.
**2016**, 37, 39–50. [Google Scholar] [CrossRef] - Iqbal, S.; Nasir, M.; Zia, M.F.; Riaz, K.; Sajjad, H.; Khan, H.A. A novel approach for system loss minimization in a peer-to-peer energy sharing community DC microgrid. Int. J. Electr. Power Energy Syst.
**2021**, 129, 106775. [Google Scholar] [CrossRef] - Yang, J.; Paudel, A.; Gooi, H.B. Compensation for power loss by a proof-of-stake consortium blockchain microgrid. IEEE Trans. Ind. Inform.
**2021**, 17, 3253–3262. [Google Scholar] [CrossRef] - Cabrera, J.B.; Veiga, M.F.; Morales, D.X.; Medina, R. Reducing power losses in smart grids with cooperative game theory. In Advanced Communication and Control Methods for Future Smartgrids; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef][Green Version]
- Chen, J.; Guo, Y.; Wu, W. Optimal dispatch scheme for DSO and prosumers by implementing three-phase distribution locational marginal prices. IET Gener. Transm. Distrib.
**2020**, 14, 2138–2146. [Google Scholar] [CrossRef][Green Version] - Hu, J.; Wu, J.; Ai, X.; Liu, N. Coordinated Energy Management of Prosumers in a Distribution System Considering Network Congestion. IEEE Trans. Smart Grid
**2020**, 12, 468–478. [Google Scholar] [CrossRef] - Saad, I.E.; Saad, N.H.; El-Khattam, W.A.S. Optimal unbalance mitigation for three-phase distribution networks equipped with single-phase PV systems. In Proceedings of the 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 18–20 December 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Zeraati, M.; Golshan, M.E.H.; Guerrero, J.M. Voltage quality improvement in low voltage distribution networks using reactive power capability of single-phase PV inverters. IEEE Trans. Smart Grid
**2018**, 10, 5057–5065. [Google Scholar] [CrossRef] - Hassaine, L.; Olías, E.; Quintero, J.; Barrado, A. Power control for grid connected applications based on the phase shifting of the inverter output voltage with respect to the grid voltage. Int. J. Electr. Power Energy Syst.
**2014**, 57, 250–260. [Google Scholar] [CrossRef] - Chitsazan, M.A.; Trzynadlowski, A. Harmonic mitigation in three-phase power networks with photovoltaic energy sources. Am. J. Electr. Power Energy Syst.
**2017**, 6, 72–78. [Google Scholar] [CrossRef][Green Version] - Zabihinia Gerdroodbari, Y.; Razzaghi, R.; Shahnia, F. Improving voltage regulation and unbalance in distribution networks using peer-to-peer data sharing between single-phase PV inverters. IEEE Trans. Power Deliv.
**2021**. Available online: https://ieeexplore.ieee.org/abstract/document/9540241 (accessed on 18 September 2021). [CrossRef] - Tang, W.; Cai, Y.; Zhang, L.; Zhang, B.; Wang, Z.; Fu, Y.; Xiao, X. Hierarchical coordination strategy for three-phase MV and LV distribution networks with high-penetration residential PV units. IET Renew. Power Gener.
**2020**, 14, 3996–4006. [Google Scholar] [CrossRef] - Oikonomou, K.; Parvania, M.; Khatami, R. Coordinated deliverable energy flexibility and regulation capacity of distribution networks. Electr. Power Energy Syst.
**2020**, 123, 106219. [Google Scholar] [CrossRef] - Abbasi, S.; Ghadimi, A.A.; Abolmasoumi, A.H.; Reza Miveh, M.; Jurado, F. Enhanced control scheme for a three-phase grid-connected PV inverter under unbalanced fault conditions. Electronics
**2020**, 9, 1247. [Google Scholar] [CrossRef] - Aouchiche, N. Meta-heuristic optimization algorithms based direct current and DC link voltage controllers for three-phase grid connected photovoltaic inverter. Sol. Energy
**2020**, 207, 683–692. [Google Scholar] [CrossRef] - Babaie, M.; Sharifzadeh, M.; Mehrasa, M.; Chouinard, G.; Al-Haddad, K. PV panels maximum power point tracking based on ANN in three-phase packed e-cell inverter. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 854–859. [Google Scholar]
- Shin, I. Approximation algorithm-based prosumer scheduling for microgrids. Energies
**2020**, 13, 5853. [Google Scholar] [CrossRef] - The National Regulatory Authority for Energy (ANRE) Order no. 26/2016 Approving the Technical Energy Rule on Determining Own Technological Consumption in Public Electricity Networks—NTE 013/16/00. Available online: www.anre.ro (accessed on 12 September 2021). (In Romanian).
- Chopard, B.; Tomassini, M. Performance and limitations of metaheuristics. In An Introduction to Metaheuristics for Optimization. Natural Computing Series; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput.
**2018**, 22, 387–408. [Google Scholar] [CrossRef]

**Figure 1.**The approach used by the PSM algorithm for loss minimization: (

**a**) unbalanced one-phase injection, (

**b**) three-phase balanced injection, (

**c**) unbalanced three-phase injection.

Buses | 28 |
---|---|

Consumers | 27 |

Prosumers | 8 |

Total load | 835.55/464.25 kW |

Total prosumer generation | 366.00 kW |

Total prosumer surplus | 167.97 kW |

Network type | Overhead, stranded |

Total/ main feeder length | 1120/600 m |

Buses | 121 |
---|---|

Consumers | 113 |

Prosumers | 8 |

Total load | 219.85/76.01 kW |

Total prosumer generation | 122.00 kW |

Total prosumer surplus | 75.38 kW |

Network type | Overhead, classic |

Total/ main feeder length | 4840/2240 m |

Prosumer | P3 | P6 | P7 | P10 | P15 | P21 | P25 | P27 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Phase | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C |

Initial | 0 | 100 | 0 | 100 | 0 | 0 | 0 | 0 | 100 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 0 |

Opt, 1PH | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 0 |

Opt, 3PH | 31 | 43 | 26 | 40 | 5 | 55 | 4 | 19 | 77 | 69 | 0 | 31 | 73 | 1 | 27 | 28 | 0 | 71 | 1 | 37 | 61 | 41 | 52 | 7 |

Prosumer | P3 | P6 | P7 | P10 | P15 | P21 | P25 | P27 |
---|---|---|---|---|---|---|---|---|

Initial | B | A | C | A | A | A | B | B |

Opt, 1PH | C | A | C | C | A | C | B | A |

Opt, 3PH | ABC | ABC | ABC | AC | ABC | AC | ABC | ABC |

Scenario | h06 | h07 | h08 | h09 | h10 | h11 | h12 | h13 | h14 | h15 | h16 | h17 | h18 | ΔP Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Initial | 0.410 | 0.658 | 1.229 | 0.406 | 0.419 | 0.441 | 0.582 | 0.671 | 0.412 | 0.403 | 0.879 | 0.945 | 1.409 | 8.864 |

Opt, 1PH | 0.196 | 0.176 | 0.395 | 0.197 | 0.231 | 0.218 | 0.282 | 0.268 | 0.293 | 0.179 | 0.263 | 0.644 | 0.479 | 3.821 |

Opt, 3PH | 0.155 | 0.175 | 0.352 | 0.093 | 0.109 | 0.090 | 0.145 | 0.126 | 0.112 | 0.090 | 0.138 | 0.469 | 0.345 | 2.398 |

Prosumer | P18 | P27 | P37 | P39 | P56 | P63 | P119 | P85 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Phase | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C |

Initial | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 100 | 0 | 0 |

Opt, 1PH | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 0 |

Opt, 3PH | 24 | 26 | 50 | 72 | 5 | 23 | 1 | 28 | 72 | 20 | 22 | 58 | 53 | 33 | 14 | 40 | 60 | 1 | 38 | 35 | 27 | 88 | 8 | 4 |

Prosumer | P18 | P27 | P37 | P39 | P56 | P63 | P119 | P85 |
---|---|---|---|---|---|---|---|---|

Initial | C | A | C | C | A | B | B | A |

Opt, 1PH | C | A | B | C | A | C | B | A |

Opt, 3PH | ABC | ABC | ABC | ABC | ABC | ABC | ABC | ABC |

Scenario | h06 | h07 | h08 | h09 | h10 | h11 | h12 | h13 | h14 | h15 | h16 | h17 | h18 | ΔP Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Initial | 0.193 | 0.093 | 0.076 | 0.105 | 0.152 | 0.101 | 0.107 | 0.192 | 0.159 | 0.101 | 0.267 | 0.183 | 0.135 | 1.863 |

Opt, 1PH | 0.177 | 0.072 | 0.059 | 0.102 | 0.149 | 0.063 | 0.065 | 0.116 | 0.119 | 0.156 | 0.314 | 0.222 | 0.160 | 1.775 |

Opt, 3PH | 0.157 | 0.049 | 0.031 | 0.077 | 0.109 | 0.044 | 0.044 | 0.063 | 0.080 | 0.091 | 0.265 | 0.183 | 0.158 | 1.351 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ivanov, O.; Neagu, B.-C.; Gavrilas, M.; Grigoras, G. A Phase Generation Shifting Algorithm for Prosumer Surplus Management in Microgrids Using Inverter Automated Control. *Electronics* **2021**, *10*, 2740.
https://doi.org/10.3390/electronics10222740

**AMA Style**

Ivanov O, Neagu B-C, Gavrilas M, Grigoras G. A Phase Generation Shifting Algorithm for Prosumer Surplus Management in Microgrids Using Inverter Automated Control. *Electronics*. 2021; 10(22):2740.
https://doi.org/10.3390/electronics10222740

**Chicago/Turabian Style**

Ivanov, Ovidiu, Bogdan-Constantin Neagu, Mihai Gavrilas, and Gheorghe Grigoras. 2021. "A Phase Generation Shifting Algorithm for Prosumer Surplus Management in Microgrids Using Inverter Automated Control" *Electronics* 10, no. 22: 2740.
https://doi.org/10.3390/electronics10222740