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Abstract: Four-wire low-voltage microgrids supply one-phase consumers with electricity, responding
to a continuously changing demand. For addressing climate change concerns, national governments
have implemented incentive schemes for residential consumers, encouraging the installation of
home PV panels for covering self-consumption needs. In the absence of adequate storage capacities,
the surplus is sold back by these entities, called prosumers, to the grid operator or, in local markets,
to other consumers. While these initiatives encourage the proliferation of green energy resources,
and ample research is dedicated to local market designs for prosumer–consumer trading, the main
concern of distribution network operators is the influence of power flows generated by prosumers’
surplus injection on the operating states of microgrids. The change in power flow amount and
direction can greatly influence the economic and technical operating conditions of radial grids. This
paper proposes a metaheuristic algorithm for prosumer surplus management that optimizes the
power surplus injections using the automated control of three-phase inverters, with the aim of
reducing the active power losses over a typical day of operation. A case study was performed on two
real distribution networks with distinct layouts and load profiles, and the algorithm resulted efficient
in both scenarios. By optimally distributing the prosumer generation surplus on the three phases
of the network, significant loss reductions were obtained, with the best results when the generated
power was injected in an unbalanced, three-phase flow.

Keywords: electricity distribution; microgrids; prosumers; phase generation management; meta-
heuristic optimization

1. Introduction

Residential consumers that use photovoltaic (PV) panels for local generation can sell
their generation surplus back to the grid, using one of two main trading options: reselling
back to the network operator at regulated tariffs [1] or using local markets for trading
to local consumers [2]. The first method is mostly benefitting the suppliers, because the
trading prices are lower than in the deregulated wholesale electricity market. In Romania,
for instance, the reference price uses the average day-ahead market price over the last
year [3]. The local trading model mainly benefits consumers, who can buy electricity at
lower prices than those offered by traditional suppliers, but also prosumers, who can obtain
higher electricity purchase prices from consumers.

From a technical standpoint, the prosumers’ microgrids are able to gradually gain
independence from the grid and monopoly utilities. However, this advantage comes with
a cost to the utilities, because, as long as the microgrid is still connected to the distribution
network, it can influence its operating conditions. When the supply is provided exclusively
by large-scale remote generation (coal, hydro, nuclear), power flows are unidirectional,
from the source to the consumer. When distributed generation is present in the network,
the local generation sources can bring significant changes to the power flows, with new
challenges for the security and quality of the supply. Two main scenarios can occur:
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• The local generation is lower than the total consumption in the network. In this case,
power flows are reduced in the microgrid, the local demand being satisfied by the
closest proximity. However, losses can still increase in areas with an important surplus
due to supplemental power flows.

• The local generation exceeds the consumption. In this case, the power flows are
reversed, with high changes in the operation conditions of the network, affecting both
power losses and quality of supply. In this case, the network is operated in conditions
for which it was not designed for.

Even without the presence of prosumers, four-wire low-voltage (LV) networks are
already operated with unbalanced phase loads, because they supply mainly one-phase
consumers with variable hourly demand. The local generation by the prosumers has the
potential of increasing the unbalance, because of the inherent unpredictable pattern of
renewable generation [4]. These changes can lead to increased energy losses and undesired
bus voltage variations. The simplest approach for reducing losses caused by prosumers
is to minimize their interaction with the grid, by optimally using the local generation [5].
Since this is difficult to achieve in most situations, the network operator must find other
ways to manage the changes. Studies have been performed that aim to determine the
optimal prosumer-to-consumer ratio related to the size of the microgrid. The results of [6]
show that prosumer-to-consumer ratios in the range of 40–60% have the best performance,
with improved self-consumption ratios and self-sufficiency ratios for microgrids due to
aggregation effects. Other studies imply that the type of trading (centralized or peer-
to-peer) negligibly affect power losses [7]. Thus, the utilities can resort to investing in
new equipment or to using optimization techniques for managing consumption and
local generation.

Traditional methods consider the optimal reconfiguration and reactive power control,
such as in [8]. Some approaches consider the optimal use of energy storage, which can
be individual [9] or shared [10,11]. In a study [12], the presence of storage was shown to
improve the network state by using it to minimize the generation/demand unbalance,
rather than the cost of electricity. The supplemental storage resource provided by electri-
cal vehicles was proposed for optimizing the operating state of the network in another
work [13]. In [14], the prosumers were regarded as “provisional microgrids” and used to
supply electricity for sustaining the operation of microgrids in islanded operation scenarios.
Local markets for ancillary services were also proposed [15]. A more radical change was
suggested in [16], by replacing traditional LV networks with DC microgrids. To account
for the losses caused in the grid, a study [17] proposed that they should be mitigated by
energy transactions in the market, while the formation of “coalitions of microgrids” was
envisioned in [18]. A coordinated control scheme in which the network operator uses price
signals to induce prosumers’ behaviors was proposed in [19]. A similar price mechanism
was also used in another study [20].

The inverters of PV systems transform DC voltage into AC voltage, used by the
prosumers to feed the surplus in the unbalanced LV microgrid. However, they can also
be used for improving the operating conditions of the network. In [21], the output of
single-phase inverters was regulated by the means of an electronic network PQ controller
to improve voltage and current balance on the phases. In another paper [22], they were
used as reactive power compensation devices for voltage quality improvement. The phase
shifting of the inverter output voltage with respect to the grid voltage, in order to control
the power factor with a minimum number of devices, was studied [23]. The optimal
harmonic filtering in inverters was also researched [24]. In [25], the focus was on data
sharing between pieces of equipment for achieving network-wide control. In [26], the
control was extended on two voltage levels, MV and LV. A novel model to define and
co-optimize the deliverable energy flexibility and frequency regulation capacity of power
distribution systems was developed [27] by considering a queuing system, energy storage
(ES) devices, and distributed solar resources with controllable inverters.
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The inverters built in three-phase technology are becoming common in PV systems.
They are used in applications such as fault management [28], current and voltage regula-
tion [29], and maximum power point tracking [30].

From the computational standpoint, the current research shows that prosumer man-
agement is difficult to solve accurately. A study [31] concluded that prosumer scheduling
in microgrids is an NP-hard problem, to which approximate solutions can be found. Thus,
if the prosumer management problem (PSM) can be formulated as an optimization problem,
the computation-intensive classical optimization algorithms can be replaced with other
methods with a minimal tradeoff in accuracy.

Taking into consideration all of the above, this paper focuses on optimizing the power
injections of prosumers connected in three-phase low-voltage distribution networks, aiming
for the minimization of active power losses over a typical day. For each prosumer, the
algorithm needs to determine the amount of power supplied on each phase, using for this
purpose a metaheuristic optimization technique, the Particle Swarm Optimization (PSO).

The main contributions of this paper are:

• the design of the PSO-based optimization algorithm for prosumer surplus manage-
ment in LV microgrids;

• the use of PV prosumer inverters to regulate three-phase power flows to improve the
operation state of the microgrid;

• a comparative case study, using two real distribution networks in Romania, with
distinctive geographical layout, size, and consumption characteristics.

The rest of the paper presents, in Section 2, the formulation and assumptions used
to solve the prosumer surplus management. In Section 3, the adaptation of the PSO
algorithm to the PSM problem is described. Section 4 provides the results of the case study.
Conclusions and discussions can be found at the end.

2. The Formulation of the PSM Problem

Power loss minimization is pursued as a mean of reducing the cost of operation in
classic distribution networks without distributed generation. The utility applies measures
such as balancing the consumption on the phases of the network, by optimally distributing
the single-phase loads on the three phases, or voltage regulation in the MV/LV substation,
by modifying the transformer tap settings to compensate for voltage drops on the feeders.

However, the positive effects of these measures may be affected by the intermittent
presence of power injections from the prosumers, which can change the balance of power
flows on the three-phase network. This disturbance can have as consequences the increase
of the level of losses or the worsening of the phase voltages. These effects are to some
extent correlated, with high values of losses being obtained in networks with unbalanced
consumption on the three phases, which also leads to an unbalanced bus voltage profile.

The prosumers can inject their surplus power into the network in two typical scenarios:

• Unbalanced one-phase, on the connection phase where the demand is located, in
which case the overlapping power injection can contribute to the accentuation of the
load imbalance on phases (Figure 1a);

• Symmetrical three-phase, in which case the influence of the prosumer on the phase
load balance is negligible (Figure 1b).

This paper considers another assumption, in which the prosumers equipped with
controllable three-phase inverters, as part of the smart grid infrastructure, are able to inject
the excess generation in an unbalanced manner on the three phases (Figure 1c). Thus,
the prosumer can achieve its goal of selling its surplus back to the supplier or to other
consumers in the local market, contributing at the same time to the optimization of the
operating conditions in the network through the minimization of power and energy losses.
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The aim of the algorithm is to find the amount of power surplus generated by each
prosumer on each phase, so that the sum of power losses on all the branches of the radial
network is minimized:

∆P =
hmax

∑
h=1

NB

∑
br=1

∆Ph,br = min (1)

where NB is the number of branches in the microgrid; hmax is the number of time inter-
vals used in the analysis, and ∆Ph,br indicates the power losses on branch br at hour h,
computed with:

∆Ph,br = Kbr · Rac,br · I2
h,br (2)

In Equation (2), Rac,br is the phase resistance of the branch br, while Kbr is the coefficient
used in Romanian standards to account for the losses on the neutral wire [32], as in
Equation (3), and Ih,br is the branch current flow, computed with Equation (4):

Kbr = CUFbr ·
(

1 + 1.5 ·
Rn,br

Ra,br

)
− 1.5 ·

Rn,br

Ra,br
(3)

[Ih,br] = −inv(A) · [Ih,bus] (4)

Equation (3) uses the current unbalance factor CUF from [32], computed for each
branch and time interval, where the time index h is omitted for simplicity:

CUFbr =
1
3
·

( Ibr,a

Iavg
br,abc

)2

+

(
Ibr,b
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br,abc

)2

+

(
Ibr,c
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 (5)

In Equations (3)–(5), the following notations were used: Rn,br—resistance of the neutral
wire of branch br, A—branch–node connectivity matrix, [Ih,br], [Ih,bus]— branch and bus
currents vector for hour h; Ibr,a, Ibr,b, Ibr,c, Ibr,abc

avg—phase and average currents on branch br.
The algorithm formulated in Equations (2)–(5) is applied on each phase, with the currents
Ih,bus determined using the phase consumptions originating from the network, updated
with the contribution of the unbalanced prosumer generation.

3. Adaptation of the PSO Algorithm for Prosumer Surplus Phase Shifting

Population-based metaheuristic algorithms are used for optimization problems where
approximations of the optimal solutions can be obtained with simple mathematical models
and a reasonable calculation time [33]. One of the best-known metaheuristics is Particle
Swarm Optimization [34], inspired by the natural movement of large groups. The algorithm
works on the principle of changing the position of each individual in the search space by
pulling it simultaneously in two directions: towards its best known position and towards
the best position ever achieved by the swarm. The closeness to the optimal solution is
measured by a fitness function for each individual or particle, and the optimal solution is
encoded in the position of the swarm leader, in the last iteration. Figure 2 depicts the basic
diagram of the PSO algorithm.
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Figure 2. Basic flowchart of the PSO.

Its simplicity and versatility have made the PSO one of the most used metaheuristic
algorithms in optimization problems [35]. The adaptation for the PSM problem keeps
the flowchart from Figure 2, the changes being made at the level of the way in which the
initial population is generated and the fitness function is computed. The structure of a
particle encodes the percentage of each prosumer surplus generated on each phase, using
the model in Figure 3.
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Figure 3. Structure of a particle for the PSM problem.

For each prosumer with generation surplus, the particle contains three values, each for
one phase, totaling a sum of 100. In the velocity update step, each particle must be validated
to follow this rule, so that the entire surplus generation will be injected in the grid.

The fitness function computes the power losses for each particle according to the
procedure presented in Section 2. The particle with the minimal value of the losses obtained
at the end of the iterative process is considered as the optimal solution discovered for the
microgrid. A time interval of 24 h is used in the analysis, and the consumer load profiles
and prosumer generation are measured from the real network using the existing Smart
Metering equipment.

4. Case Study

The PSM algorithm was implemented on two real LV distribution networks in Ro-
mania, to which prosumers with house PV panels are connected, having local generation
profiles recorded in the 06:00–18:00 h interval. These networks were chosen to represent
two different prosumer operation scenarios. The first one, denoted in the following as R28,
has a simple structure, specific for microgrids, with two radial feeders and 28 buses. It
supplies a number of 28 residences, with one consumer for each pole. In this network, eight
prosumers are present, with hourly generation ranging from 0.429 kW to 5.825 kW. This
network is located in the center-east side of Romania, in an area with high PV generation
potential, and supplies a suburb of newly built houses. Its one-line diagram is drawn in
Figure 4, and summary data are provided in Table 1. The second distribution network used
in the study, R121, has a highly branched structure, with multiple secondary feeders and
usually more than one consumer connected at the poles, as it can be seen in Figure 5. This
network has 121 buses and supplies 113 consumers (Figure 5, Table 2). It contains eight pro-
sumers, with generation ranging from 0.083 kW to 1.942 kW, and is located in the northern
extremity of the country, a region with lower PV generation potential and lower economic
development (thus reduced household consumption). The buses where prosumers are
present are depicted in both networks with inverted colors (black fill, white text).
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Table 1. Summary data for network R28.

Buses 28

Consumers 27
Prosumers 8
Total load 835.55/464.25 kW

Total prosumer generation 366.00 kW
Total prosumer surplus 167.97 kW

Network type Overhead, stranded
Total/ main feeder length 1120/600 m

The networks have distinct demand and generation patterns, and the measured loads
and generation are typical for a summer day. Tables 1 and 2 present the aggregate demand
in the 24 h interval and in the 06:00–18:00 h interval, the prosumer generation, and the
prosumer surplus. The network R28 has higher loads and higher prosumer generation.
The consumption in the hourly interval 06:00–18:00 exceeds the PV generation. In the
network R121, the consumer demand is much lower, and, in the PV generation interval,
total generation exceeds the aggregated demand of all the consumers, a scenario that favors
the presence of reversed power flows.

The PSM algorithm was applied to minimize the power and energy losses in two
scenarios: shifting the entire surplus of a prosumer on a different phase, with a new static
connection, minimal investment, and no requirement for smart grid continuous control,
or using a three-phase inverter to distribute the surplus on the three phases.
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Table 2. Summary data for network R121.

Buses 121

Consumers 113
Prosumers 8
Total load 219.85/76.01 kW

Total prosumer generation 122.00 kW
Total prosumer surplus 75.38 kW

Network type Overhead, classic
Total/ main feeder length 4840/2240 m

4.1. Results for Network R28

This network has high consumption, high prosumer generation, and high prosumer
surplus that does not exceed the local demand. The demand, generation surplus, and
actual bus load (resulting from the aggregation of the demand and the generation profiles
using the initial prosumer phase allocation) are indicated for each phase in Figures 6–9.
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The graphs show that, while a part of the prosumer generation is used for covering
the self-consumption of the prosumers, a significant surplus exists, that contributes to the
increase the phase load unbalance in the network (Figures 6 and 9). Figure 9 shows that on
phases A and B, the existing surplus exceeds the demand. If these prosumers are connected
to the network using three-phase inverters, the smart grid communication infrastructure
could be used by the network operator to control the phase injections so to reduce the
active power and energy losses by balancing the phase load.

The new phase distribution of the prosumer surplus, in the two optimization scenarios,
is presented in Table 3. The results show that, indeed, both methods of shifting the surplus
had a positive effect on improving the reduction of power losses by phase load balancing.
Using the initial phase connection of the prosumers, given in Table 4, the total active power
loss in network R28 was 8.86 kW. By shifting the entire surplus of the prosumers on a
single phase, the losses were reduced to less than half, at 3.82 kW. However, if the proposed
method of distributing the surplus on more than one phase is used, the power losses
can reach a minimum of 2.40 kW, which represents a significant improvement and cost
reduction for the network operator over a larger time interval of months or years.
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Table 3. Surplus redistribution solutions for network R28, in percent.

Prosumer P3 P6 P7 P10 P15 P21 P25 P27

Phase A B C A B C A B C A B C A B C A B C A B C A B C

Initial 0 100 0 100 0 0 0 0 100 100 0 0 100 0 0 100 0 0 0 100 0 0 100 0
Opt, 1PH 0 0 100 100 0 0 0 0 100 0 0 100 100 0 0 0 0 100 0 100 0 100 0 0
Opt, 3PH 31 43 26 40 5 55 4 19 77 69 0 31 73 1 27 28 0 71 1 37 61 41 52 7

Table 4. Prosumer surplus shifting on the three phases in network R28.

Prosumer P3 P6 P7 P10 P15 P21 P25 P27

Initial B A C A A A B B
Opt, 1PH C A C C A C B A
Opt, 3PH ABC ABC ABC AC ABC AC ABC ABC

The detailed results regarding the power losses are shown in Table 5 and Figure 10,
corresponding to the solutions in Table 3 and the 06:00–18:00 interval, where PV generation
is present.

Table 5. Power losses in network R28, hourly and total, in the interval 06:00–18:00, kW.

Scenario h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 ∆P
Total

Initial 0.410 0.658 1.229 0.406 0.419 0.441 0.582 0.671 0.412 0.403 0.879 0.945 1.409 8.864
Opt, 1PH 0.196 0.176 0.395 0.197 0.231 0.218 0.282 0.268 0.293 0.179 0.263 0.644 0.479 3.821
Opt, 3PH 0.155 0.175 0.352 0.093 0.109 0.090 0.145 0.126 0.112 0.090 0.138 0.469 0.345 2.398

Electronics 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

prosumers on a single phase, the losses were reduced to less than half, at 3.82 kW. 
However, if the proposed method of distributing the surplus on more than one phase is 
used, the power losses can reach a minimum of 2.40 kW, which represents a significant 
improvement and cost reduction for the network operator over a larger time interval of 
months or years. 

Table 3. Surplus redistribution solutions for network R28, in percent. 

Prosumer P3 P6 P7 P10 P15 P21 P25 P27 
Phase A B C A B C A B C A B C A B C A B C A B C A B C 
Initial 0 100 0 100 0 0 0 0 100 100 0 0 100 0 0 100 0 0 0 100 0 0 100 0 

Opt, 1PH 0 0 100 100 0 0 0 0 100 0 0 100 100 0 0 0 0 100 0 100 0 100 0 0 
Opt, 3PH 31 43 26 40 5 55 4 19 77 69 0 31 73 1 27 28 0 71 1 37 61 41 52 7 

Table 4. Prosumer surplus shifting on the three phases in network R28. 

Prosumer P3 P6 P7 P10 P15 P21 P25 P27 
Initial B A C A A A B B 

Opt, 1PH C A C C A C B A 
Opt, 3PH ABC ABC ABC AC ABC AC ABC ABC 

The detailed results regarding the power losses are shown in Table 5 and Figure 10, 
corresponding to the solutions in Table 3 and the 06:00–18:00 interval, where PV 
generation is present. 

Table 5. Power losses in network R28, hourly and total, in the interval 06:00–18:00, kW. 

Scenario h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 ΔP Total 
Initial 0.410 0.658 1.229 0.406 0.419 0.441 0.582 0.671 0.412 0.403 0.879 0.945 1.409 8.864 

Opt, 1PH 0.196 0.176 0.395 0.197 0.231 0.218 0.282 0.268 0.293 0.179 0.263 0.644 0.479 3.821 
Opt, 3PH 0.155 0.175 0.352 0.093 0.109 0.090 0.145 0.126 0.112 0.090 0.138 0.469 0.345 2.398 

 
Figure 10. Hourly losses in network R28. 

The superiority of the proposed method is also visible from the modified phase load 
profiles of the network, in Figure 11 (one-phase surplus redistribution) and Figure 12 
(three-phase surplus distribution), where the balancing effect of shifting the surplus can 
be compared to the initial operation conditions in Figure 9. The effects are seen only in the 
06:00–18:00 interval. The three-phase PSM achieves the best phase load balancing through 
prosumer surplus shifting. 

Figure 10. Hourly losses in network R28.

The superiority of the proposed method is also visible from the modified phase load
profiles of the network, in Figure 11 (one-phase surplus redistribution) and Figure 12
(three-phase surplus distribution), where the balancing effect of shifting the surplus can be
compared to the initial operation conditions in Figure 9. The effects are seen only in the
06:00–18:00 interval. The three-phase PSM achieves the best phase load balancing through
prosumer surplus shifting.
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4.2. Results for Network R121

The other type of network used in the study has lower aggregated consumption
(Figure 13), lower prosumer generation (Figure 14), and lower prosumer surplus (Figure 15).
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Figure 15. Prosumer surplus in network R121.

The prosumer surplus exceeds the local demand (Figure 16), a scenario that results in
reversed power flows upwards the MV/LV substation and a lesser effect on reducing the
power losses by the PSM algorithm.
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The new phase distribution of the prosumer surplus is presented in Tables 6 and 7.
Again, both methods of shifting the surplus improved the phase load balancing and
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decreased the power losses from 1.86 kW to 1.77 kW in the one-phase optimization and to
1.35 kW in the three-phase optimization. The effect is reduced compared to network R28,
because of the complexity of the network and the lower amount of surplus available for
balancing. This is particularly visible in Figures 17 and 18, depicting the phase loading
obtained after PSM. The detailed results regarding the power losses are presented in Table 8
and Figure 19.

Table 6. Surplus redistribution solutions for network R121, in percent.

Prosumer P18 P27 P37 P39 P56 P63 P119 P85

Phase A B C A B C A B C A B C A B C A B C A B C A B C

Initial 0 0 100 100 0 0 0 0 100 0 0 100 100 0 0 0 100 0 0 100 0 100 0 0
Opt, 1PH 0 0 100 100 0 0 0 100 0 0 0 100 100 0 0 0 0 100 0 100 0 100 0 0
Opt, 3PH 24 26 50 72 5 23 1 28 72 20 22 58 53 33 14 40 60 1 38 35 27 88 8 4

Table 7. Prosumer surplus shifting on the three phases in network R121.

Prosumer P18 P27 P37 P39 P56 P63 P119 P85

Initial C A C C A B B A
Opt, 1PH C A B C A C B A
Opt, 3PH ABC ABC ABC ABC ABC ABC ABC ABC
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Table 8. Power losses in network R121, hourly and total, in the interval 06:00–18:00, kW.

Scenario h06 h07 h08 h09 h10 h11 h12 h13 h14 h15 h16 h17 h18 ∆P
Total

Initial 0.193 0.093 0.076 0.105 0.152 0.101 0.107 0.192 0.159 0.101 0.267 0.183 0.135 1.863
Opt, 1PH 0.177 0.072 0.059 0.102 0.149 0.063 0.065 0.116 0.119 0.156 0.314 0.222 0.160 1.775
Opt, 3PH 0.157 0.049 0.031 0.077 0.109 0.044 0.044 0.063 0.080 0.091 0.265 0.183 0.158 1.351
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As Figures 16–18 show, the initial phase distribution of the prosumers was close to the
optimal solution possible with one-phase shifting. By using unbalanced three-phase PSM,
the losses were reduced to a significantly lower value, with a 27% drop compared to the
initial case.

5. Conclusions

The study developed in this paper addresses a problem that is becoming frequent in
Romanian residential electricity distribution networks, with the increase in the number of
prosumers incentivized by government regulations and subsidy schemes.

The newly built residential suburbs usually have high consumption density confined
in a narrow area, with microgrid characteristics. The electricity supply infrastructure is
sized accordingly and it is able to accommodate a growing number of prosumers. On the
other hand, the older networks were designed with lower consumption requirements and
supply larger areas with scattered consumption nodes.

The proliferation of the prosumers must be managed by network operators consid-
ering the proximity of both types of supply, over which the new prosumers must be
integrated with minimal negative effects on the economic and technical operation of the
electricity distribution infrastructure.

The algorithm built by the authors focuses on minimizing the power losses in mi-
crogrids with prosumer presence. The study discusses different types of network size,
configuration, and consumption patterns. To allow a meaningful comparison regarding
the impact of the proposed optimization, the same number of prosumers was considered
in different networks, from geographical areas with different PV generation potential.

The results confirmed that by using the capabilities of smart grid, remote control, and
the envisioned advances in inverter technology to be deployed in future developments of
electricity supply infrastructure, it is possible to turn the presence of intermittent renewable
generation into a tool available to the network operator for improving the operation of
its supply infrastructure. The proposed algorithm can be scaled for multiple network
configurations, load sampling rates, or analysis intervals, according to the needs of local
utilities or microgrids.
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Future work will consider the implementation of the storage capabilities and the inter-
action between utility requirements and comfort preferences set by individual consumers
using smart home energy management systems.
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