# Evaluation of the Different Numerical Formats for HIL Models of Power Converters after the Adoption of VHDL-2008 by Xilinx

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Buck Power Converter

#### 2.2. HIL Model Equations

#### 2.3. Numerical Formats

#### 2.4. Model Evaluation

## 3. Experiments, Results and Discussion

#### 3.1. Buck Converter HIL Model Simulation

#### 3.2. Synthesis and Implementation Requirements in Terms of Word Length

#### 3.3. Synthesis and Implementation Requirements in Terms of the Rounding and Overflow Modes

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Yushkova, M.; Sanchez, A.; de Castro, A. Strategies for choosing an appropriate numerical method for FPGA-based HIL. Int. J. Electr. Power Energy Syst.
**2021**, 132, 107186. [Google Scholar] [CrossRef] - Zamiri, E.; Sanchez, A.; Yushkova, M.; Martínez-García, M.S.; de Castro, A. Comparison of Different Design Alternatives for Hardware-in-the-Loop of Power Converters. Electronics
**2021**, 10, 926. [Google Scholar] [CrossRef] - Frivaldsky, M.; Morgos, J.; Prazenica, M.; Takacs, K. System Level Simulation of Microgrid Power Electronic Systems. Electronics
**2021**, 10, 644. [Google Scholar] [CrossRef] - Saito, K.; Akagi, H. A Power Hardware-in-the-Loop (P-HIL) Test Bench Using Two Modular Multilevel DSCC Converters for a Synchronous Motor Drive. IEEE Trans. Ind. Appl.
**2018**, 54, 4563–4573. [Google Scholar] [CrossRef] - Shin, D.C.; Lee, D.M. Development of Real-Time Implementation of a Wind Power Generation System with Modular Multilevel Converters for Hardware in the Loop Simulation Using MATLAB/Simulink. Electronics
**2020**, 9, 606. [Google Scholar] [CrossRef] [Green Version] - Montaño, F.; Ould-Bachir, T.; David, J.P. A Latency-Insensitive Design Approach to Programmable FPGA-Based Real-Time Simulators. Electronics
**2020**, 9, 1838. [Google Scholar] [CrossRef] - Liu, C.; Bai, H.; Zhuo, S.; Zhang, X.; Ma, R.; Gao, F. Real-Time Simulation of Power Electronic Systems Based on Predictive Behavior. IEEE Trans. Ind. Electron.
**2020**, 67, 8044–8053. [Google Scholar] [CrossRef] - Liang, T.; Liu, Q.; Dinavahi, V.R. Real-Time Hardware-in-the-Loop Emulation of High-Speed Rail Power System With SiC-Based Energy Conversion. IEEE Access
**2020**, 8, 122348–122359. [Google Scholar] [CrossRef] - Yushkova, M.; Sanchez, A.; de Castro, A. The Necessity of Resetting Memory in Adams–Bashforth Method for Real-Time Simulation of Switching Converters. IEEE Trans. Power Electron.
**2021**, 36, 6175–6178. [Google Scholar] [CrossRef] - Lin, N.; Dinavahi, V. Detailed Device-Level Electrothermal Modeling of the Proactive Hybrid HVDC Breaker for Real-Time Hardware-in-the-Loop Simulation of DC Grids. IEEE Trans. Power Electron.
**2018**, 33, 1118–1134. [Google Scholar] [CrossRef] - Lauss, G.; Strunz, K. Multirate Partitioning Interface for Enhanced Stability of Power Hardware-in-the-Loop Real-Time Simulation. IEEE Trans. Ind. Electron.
**2019**, 66, 595–605. [Google Scholar] [CrossRef] - Dagbagi, M.; Hemdani, A.; Idkhajine, L.; Naouar, M.W.; Monmasson, E.; Slama-Belkhodja, I. ADC-Based Embedded Real-Time Simulator of a Power Converter Implemented in a Low-Cost FPGA: Application to a Fault-Tolerant Control of a Grid-Connected Voltage-Source Rectifier. IEEE Trans. Ind. Electron.
**2016**, 63, 1179–1190. [Google Scholar] [CrossRef] [Green Version] - Roshandel Tavana, N.; Dinavahi, V. A General Framework for FPGA-Based Real-Time Emulation of Electrical Machines for HIL Applications. IEEE Trans. Ind. Electron.
**2015**, 62, 2041–2053. [Google Scholar] [CrossRef] - Sanchez, A.; Todorovich, E.; de Castro, A. Impact of the hardened floating-point cores on HIL technology. Electr. Power Syst. Res.
**2018**, 165, 53–59. [Google Scholar] [CrossRef] - Iranian, M.E.; Mohseni, M.; Aghili, S.; Parizad, A.; Baghaee, H.R.; Guerrero, J.M. Real-Time FPGA-based HIL Emulator of Power Electronics Controllers using NI PXI for DFIG Studies. IEEE J. Emerg. Sel. Topics Power Electron.
**2020**. [Google Scholar] [CrossRef] - Lucia, S.; Navarro, D.; Lucia, O.; Zometa, P.; Findeisen, R. Optimized FPGA Implementation of Model Predictive Control for Embedded Systems Using High-Level Synthesis Tool. IEEE Trans. Ind. Inf.
**2018**, 14, 137–145. [Google Scholar] [CrossRef] [Green Version] - Mylonas, E.; Tzanis, N.; Birbas, M.; Birbas, A. An Automatic Design Framework for Real-Time Power System Simulators Supporting Smart Grid Applications. Electronics
**2020**, 9, 299. [Google Scholar] [CrossRef] [Green Version] - Kumar, P.; Kumar, V.; Pratap, R. FPGA implementation of an Islanding detection technique for microgrid using periodic maxima of superimposed voltage components. IET Gener. Trans. Distrib.
**2020**, 14, 1673–1683. [Google Scholar] [CrossRef] - Sanchez, A.; de Castro, A.; Garrido, J. A Comparison of Simulation and Hardware-in-the-Loop Alternatives for Digital Control of Power Converters. IEEE Trans. Ind. Inf.
**2012**, 8, 491–500. [Google Scholar] [CrossRef] - Ahmad, J.; Pervez, I.; Sarwar, A.; Tariq, M.; Fahad, M.; Chakrabortty, R.K.; Ryan, M.J. Performance Analysis and Hardware-in-the-Loop (HIL) Validation of Single Switch High Voltage Gain DC-DC Converters for MPP Tracking in Solar PV System. IEEE Access
**2021**, 9, 48811–48830. [Google Scholar] [CrossRef] - Nane, R.; Sima, V.M.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
**2016**, 35, 1591–1604. [Google Scholar] [CrossRef] [Green Version] - Oruganti, V.S.R.V.; Sarma Dhanikonda, V.S.S.S.; Godoy Simões, M. Scalable Single-Phase Multi-Functional Inverter for Integration of Rooftop Solar-PV to Low-Voltage Ideal and Weak Utility Grid. Electronics
**2019**, 8, 302. [Google Scholar] [CrossRef] [Green Version] - Markovska, M.; Taskovski, D.; Kokolanski, Z.; Dimchev, V.; Velkovski, B. Real-Time Implementation of Optimized Power Quality Events Classifier. IEEE Trans. Ind. Appl.
**2020**. [Google Scholar] [CrossRef] - Hassan, M.A.; Li, E.p.; Li, X.; Li, T.; Duan, C.; Chi, S. Adaptive Passivity-Based Control of dc–dc Buck Power Converter with Constant Power Load in DC Microgrid Systems. IEEE J. Emerg. Sel. Top. Power Electron.
**2019**, 7, 2029–2040. [Google Scholar] [CrossRef] - Cristri, A.; Iskandar, R. Analysis and Design of Dynamic Buck Converter with Change in Value of Load Impedance. Procedia Eng.
**2017**, 170, 398–403. [Google Scholar] [CrossRef] - Kowalczuk, Z. Discrete approximation of continuous-time systems: A survey. IEE Proc. F Radar Signal Process. UK
**1993**, 140, 264. [Google Scholar] [CrossRef] - Xu, F.; Dinavahi, V.; Xu, X. Hybrid analytical model of switched reluctance machine for real-time hardware-in-the-loop simulation. IET Electr. Power Appl.
**2017**, 11, 1114–1123. [Google Scholar] [CrossRef] - Xin, Z.; Wang, X.; Loh, P.C.; Blaabjerg, F. Realization of Digital Differentiator Using Generalized Integrator For Power Converters. IEEE Trans. Power Electron.
**2015**, 30, 6520–6523. [Google Scholar] [CrossRef] - Park, Y.; Chong, K.T. The numerical solution of the point kinetics equation using the matrix exponential method. Ann. Nucl. Energy
**2013**, 55, 42–48. [Google Scholar] [CrossRef] - Chen, B.; Solis, F. Discretizations of nonlinear differential equations using explicit finite order methods. J. Comput. Appl. Math.
**1998**, 90, 171–183. [Google Scholar] [CrossRef] [Green Version] - Zamiri, E.; Sanchez, A.; de Castro, A.; Martínez-García, M.S. Comparison of Power Converter Models with Losses for Hardware-in-the-Loop Using Different Numerical Formats. Electronics
**2019**, 8, 1255. [Google Scholar] [CrossRef] [Green Version] - Sanchez, A.; de Castro, A.; Martínez-García, M.S.; Garrido, J. LOCOFloat: A Low-Cost Floating-Point Format for FPGAs.: Application to HIL Simulators. Electronics
**2020**, 9, 81. [Google Scholar] [CrossRef] [Green Version] - Ashenden, P.J.; Lewis, J. VHDL-2008: Just the New Stuff; The Morgan Kaufmann Series in Systems on Silicon; Elsevier/Morgan Kaufmann: Amsterdam, The Netherlands; Boston, FL, USA, 2008. [Google Scholar]
- Martínez García, M.S.; de Castro, A.; Sanchez, A.; Garrido, J. Analysis of Resolution in Feedback Signals for Hardware-in-the-Loop Models of Power Converters. Electronics
**2019**, 8, 1527. [Google Scholar] [CrossRef] [Green Version] - Martínez García, M.S.; de Castro, A.; Sanchez, A.; Garrido, J. Word length selection method for HIL power converter models. Int. J. Electr. Power Energy Syst.
**2021**, 129, 106721. [Google Scholar] [CrossRef] - Goni, O.; Sanchez, A.; Todorovich, E.; de Castro, A. Resolution Analysis of Switching Converter Models for Hardware-in-the-Loop. IEEE Trans. Ind. Inf.
**2014**, 10, 1162–1170. [Google Scholar] [CrossRef]

**Figure 3.**(

**a**) Input current, $iIn$, (${i}_{L}$ when Q: ’ON’); and (

**b**) output voltage, ${v}_{o}$, (${v}_{C}$) for the golden HIL model of the proposed buck converter.

Signal | OPT | WL |
---|---|---|

${i}_{L}$ | Q6.18 | 25 |

${v}_{C}$ | Q5.19 | 25 |

$dtC$ | Q-13.24 | 12 |

$dtL$ | Q-10.21 | 12 |

$IncI$ | Q-4.18 | 15 |

$IncV$ | Q-6.19 | 14 |

$Iaux$ | Q6.8 | 15 |

$Vaux$ | Q5.6 | 12 |

${V}_{in}Aux$ | Q5.6 | 12 |

$iInAux$ | Q6.5 | 12 |

$voutAux$ | Q5.6 | 12 |

$IoutAux$ | Q3.8 | 12 |

$vC\_FB$ | Q5.6 | 12 |

$iL\_FB$ | Q6.8 | 15 |

**Table 2.**Mean absolute (MAE) and relative error (MRE) in the state variable ${i}_{L}$ and ${v}_{C}$ for the different numerical formats (NFs), word lengths (WLs) and rounding and overflow modes.

NF | WL | Round and Overflow Modes | MAE | MRE | ||
---|---|---|---|---|---|---|

${\mathit{v}}_{\mathit{C}}$ | ${\mathit{i}}_{\mathit{L}}$ | ${\mathit{v}}_{\mathit{C}}$ | ${\mathit{i}}_{\mathit{L}}$ | |||

Fixed | 32 | Round, Saturate | 0.0040 | 0.0039 | 0.0008 | 0.0020 |

32 | Wrap, Truncate | 0.0077 | 0.0093 | 0.0015 | 0.0047 | |

64 | Round, Saturate | 0.0040 | 0.0039 | 0.0008 | 0.0020 | |

64 | Wrap, Truncate | 0.0077 | 0.0094 | 0.0015 | 0.0047 | |

OPT | Round, Saturate | 0.0047 | 0.0042 | 0.0009 | 0.0025 | |

OPT | Wrap, Truncate | 0.0041 | 0.0049 | 0.0008 | 0.0021 | |

Float | 32 | Round nearest | 0.0002 | 0.0001 | 0.0000 | 0.0000 |

32 | Round zero | 0.0011 | 0.0014 | 0.0005 | 0.0007 | |

64 | Round nearest | 0.0002 | 0.0001 | 0.0000 | 0.0000 | |

64 | Round zero | 0.0005 | 0.0005 | 0.0001 | 0.0002 |

**Table 3.**Hardware needs in terms of speed (T${}_{CLK\_min}$) and area (LUTs and FFs) with and wihtout DSPs, when floating-point NF is considered with different WLs and default rounding modes in VHDL-2008.

Parameter | Float32 | Float64 | ||
---|---|---|---|---|

T${}_{\mathit{CLK}\_\mathit{min}}$ (ns) | 83.356 | 84.719 | 124.612 | 116.746 |

DSP | 4 | 0 | 18 | 0 |

LUT | 8683 | 9675 | 20,378 | 24,296 |

FF | 64 | 64 | 128 | 128 |

**Table 4.**Hardware needs in terms of speed (T${}_{CLK\_min}$) and area (LUTs and FFs) with and without DSPs, considering the fixed-point NF with different WLs and default rounding modes in VHDL-2008.

IEEE Libraries of VHDL-2008 | ||||||
---|---|---|---|---|---|---|

Parameter | Fixed OPT | Fixed32 | Fixed64 | |||

T${}_{CLK\_min}$ (ns) | 16.880 | 17.745 | 16.940 | 20.587 | 31.674 | 34.800 |

DSP | 2 | 0 | 6 | 0 | 32 | 0 |

LUT | 242 | 426 | 368 | 1287 | 1225 | 5925 |

FF | 50 | 50 | 64 | 64 | 128 | 128 |

IEEE_Proposed Libraries of VHDL-93 | ||||||

Parameter | Fixed OPT | Fixed32 | Fixed64 | |||

T${}_{CLK\_min}$ (ns) | 17.602 | 17.745 | 17.405 | 20.701 | 32.743 | 34.873 |

DSP | 2 | 0 | 6 | 0 | 32 | 0 |

LUT | 241 | 426 | 370 | 1293 | 1216 | 5928 |

FF | 50 | 50 | 64 | 64 | 128 | 128 |

**Table 5.**Hardware needs in terms of speed (T${}_{CLK\_min}$) and area (LUTs and FFs) with and wihtout DSPs, for different WLs and rounding modes when the floating-point NF is used in VHDL-2008.

Round-Nearest | ||||
---|---|---|---|---|

Parameter | Float32 | Float64 | ||

T${}_{CLK\_min}$ (ns) | 83.356 | 84.719 | 124.612 | 116.746 |

DSP | 4 | 0 | 18 | 0 |

LUT | 8683 | 9675 | 20,378 | 24,296 |

FF | 64 | 64 | 128 | 128 |

Round-Zero | ||||

Parameter | Float32 | Float64 | ||

T${}_{CLK\_min}$ (ns) | 62.564 | 69.217 | 84.093 | 97.730 |

DSP | 4 | 0 | 18 | 0 |

LUT | 4185 | 4782 | 11,754 | 14,850 |

FF | 64 | 64 | 128 | 128 |

**Table 6.**Hardware needs in terms of speed (T${}_{CLK\_min}$) and area (LUTs and FFs) with and without DSPs, for different WLs, as rounding and overflow modes when the fixed-point NF is used in VHDL-2008.

Round and Saturate | ||||||
---|---|---|---|---|---|---|

Parameter | Fixed OPT | Fixed32 | Fixed64 | |||

T${}_{CLK\_min}$ (ns) | 16.880 | 17.745 | 16.940 | 20.587 | 31.674 | 34.800 |

DSP | 2 | 0 | 6 | 0 | 32 | 0 |

LUT | 242 | 426 | 368 | 1287 | 1225 | 5925 |

FF | 50 | 50 | 64 | 64 | 128 | 128 |

Truncate and Wrap | ||||||

Parameter | Fixed OPT | Fixed32 | Fixed64 | |||

T${}_{CLK\_min}$ (ns) | 8.558 | 8.576 | 10.525 | 13.863 | 16.933 | 20.462 |

DSP | 2 | 0 | 6 | 0 | 32 | 0 |

LUT | 114 | 311 | 241 | 1083 | 731 | 4668 |

FF | 50 | 50 | 64 | 64 | 128 | 128 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cirugeda-Roldán, E.M.; Martínez-García, M.S.; Sanchez, A.; de Castro, A.
Evaluation of the Different Numerical Formats for HIL Models of Power Converters after the Adoption of VHDL-2008 by Xilinx. *Electronics* **2021**, *10*, 1952.
https://doi.org/10.3390/electronics10161952

**AMA Style**

Cirugeda-Roldán EM, Martínez-García MS, Sanchez A, de Castro A.
Evaluation of the Different Numerical Formats for HIL Models of Power Converters after the Adoption of VHDL-2008 by Xilinx. *Electronics*. 2021; 10(16):1952.
https://doi.org/10.3390/electronics10161952

**Chicago/Turabian Style**

Cirugeda-Roldán, Eva M., María Sofía Martínez-García, Alberto Sanchez, and Angel de Castro.
2021. "Evaluation of the Different Numerical Formats for HIL Models of Power Converters after the Adoption of VHDL-2008 by Xilinx" *Electronics* 10, no. 16: 1952.
https://doi.org/10.3390/electronics10161952