# Design and Analysis of a Novel High-Gain DC-DC Boost Converter with Low Component Count

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Operation and the Switching Modes

#### 2.1. During M0

#### 2.2. During M1

## 3. Steady-State Analysis

#### 3.1. DC Voltage Gain

#### 3.2. Voltage Stresses

#### 3.3. Efficiency Analysis

## 4. Designing of the Passive Components

#### 4.1. Design of Inductor L1

#### 4.2. Design of Inductor L2

#### 4.3. Design of Capacitor C1

#### 4.4. Design of Capacitor Co

## 5. Results

#### 5.1. Operating Modes of the Proposed Converter

#### 5.2. Output DC Voltage

#### 5.3. DC Voltage Stress

#### 5.4. DC Voltage Gain vs. Duty-Cycle Response

#### 5.5. Efficiency vs. Duty-Cycle Response

#### 5.6. Efficiency vs. Output Power Response

#### 5.7. Efficiency Comparison with Cascaded-Boost Converter

## 6. Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Shahir, F.M.; Babaei, E. Extended topology for a Boost DC-DC Converter. IEEE Trans. Power Electron.
**2019**, 34, 2375–2384. [Google Scholar] [CrossRef] - Bhaskar, M.S.; Almakhles, D.J.; Padmanaban, S.; Blaabjerg, F.; Subramaniam, U.; Ionel, D.M. Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) for High Voltage Step-Up Applications: Hardware Implementation. IEEE Access
**2020**, 8, 87309–87328. [Google Scholar] [CrossRef] - Ferdowsi, A.M.; Shamsi, P. A Family of Scalable Non-Isolated Interleaved DC-DC Boost Converters with Voltage Multiplier Cells. IEEE Access
**2019**, 7, 11707–11721. [Google Scholar] [CrossRef] - Jiang, W.; Chincholkar, S.H.; Chan, C.-Y. Investigation of a Voltage-Mode Controller for a dc-dc Multilevel Boost Converter. IEEE Trans. Circuits Syst. II Express Briefs
**2018**, 65, 908–912. [Google Scholar] [CrossRef] - Nguyen, M.-K.; Duong, T.-D.; Lim, Y.C. Switched-Capacitor-Based Dual-Switch High-Boost DC–DC Converter. IEEE Trans. Power Electron.
**2018**, 33, 4181–4189. [Google Scholar] [CrossRef] - Khaligh, A.; Li, Z. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Trans. Veh. Technol.
**2010**, 59, 2806–2814. [Google Scholar] [CrossRef] - Lai, C.-M.; Cheng, Y.-H.; Hsieh, M.-H.; Lin, Y.-C. Development of a Bidirectional DC/DC Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System. IEEE Trans. Veh. Technol.
**2017**, 67, 1036–1052. [Google Scholar] [CrossRef] - Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron.
**2017**, 32, 9143–9178. [Google Scholar] [CrossRef] - Pires, V.F.; Cordeiro, A.; Foito, D.; Silva, J.F. High Step-Up DC-DC Converter for Fuel Cell Vehicles Based on Merged Quadratic Boost-Cuk. IEEE Trans. Veh. Technol.
**2019**, 68, 7521–7530. [Google Scholar] [CrossRef] - Zhang, Y.; Liu, H.; Li, J.; Sumner, M.; Xia, C. DC–DC Boost Converter With a Wide Input Range and High Voltage Gain for Fuel Cell Vehicles. IEEE Trans. Power Electron.
**2018**, 34, 4100–4111. [Google Scholar] [CrossRef] - Ferdowsi, A.A.M.; Shamsi, P. High-Voltage-Gain DC-DC Step-Up Converter with Bifold Dickson Voltage Multiplier Cells. IEEE Trans. Power Electron.
**2019**, 34, 9732–9742. [Google Scholar]

D | S1 | D1 | D2 | D3 | ||||
---|---|---|---|---|---|---|---|---|

(13) | PSIM | (14) | PSIM | (15) | PSIM | (16) | PSIM | |

0.1 | 12.34 | 12.34 | 1.22 | 1.24 | 11.24 | 11.12 | 12.34 | 12.34 |

0.2 | 15.62 | 15.61 | 3.12 | 3.15 | 12.8 | 12.5 | 15.62 | 15.61 |

0.3 | 20.4 | 20.44 | 6.11 | 6.07 | 14.42 | 14.35 | 20.4 | 20.44 |

0.4 | 27.8 | 27.8 | 11.22 | 11.2 | 16.8 | 16.67 | 27.8 | 27.8 |

0.5 | 40 | 40.1 | 20.2 | 20.17 | 20.24 | 20.01 | 40 | 40.1 |

0.6 | 62.5 | 62.5 | 37.51 | 37.44 | 27.2 | 26.6 | 62.5 | 62.5 |

0.7 | 111.11 | 111.11 | 78.11 | 78.08 | 39.24 | 38.33 | 111.11 | 111.11 |

0.75 | 160 | 159.8 | 113.82 | 113.8 | 39.88 | 38.31 | 160 | 159.8 |

Converter Design | Component Count | Steady-State Gain | ||||
---|---|---|---|---|---|---|

Switches | Diodes | Inductors | Capacitors | Total | - | |

Proposed in [9] | 1 | 4 | 3 | 4 | 12 | $\frac{1+D}{{\left(1-D\right)}^{2}}$ |

Proposed in [10] | 2 | 5 | 2 | 5 | 14 | $\frac{3+D}{{\left(1-D\right)}^{2}}$ |

Proposed in [11] | 2 | 6 | 2 | 6 | 16 | $\frac{2N}{1-D}$ |

Cascaded boost | 2 | 2 | 2 | 2 | 8 | $\frac{1}{{\left(1-D\right)}^{2}}$ |

Proposed in this paper | 1 | 3 | 2 | 2 | 8 | $\frac{1}{{\left(1-D\right)}^{2}}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rafiq, U.; Murtaza, A.F.; Sher, H.A.; Gandini, D.
Design and Analysis of a Novel High-Gain DC-DC Boost Converter with Low Component Count. *Electronics* **2021**, *10*, 1761.
https://doi.org/10.3390/electronics10151761

**AMA Style**

Rafiq U, Murtaza AF, Sher HA, Gandini D.
Design and Analysis of a Novel High-Gain DC-DC Boost Converter with Low Component Count. *Electronics*. 2021; 10(15):1761.
https://doi.org/10.3390/electronics10151761

**Chicago/Turabian Style**

Rafiq, Usman, Ali Faisal Murtaza, Hadeed A. Sher, and Dario Gandini.
2021. "Design and Analysis of a Novel High-Gain DC-DC Boost Converter with Low Component Count" *Electronics* 10, no. 15: 1761.
https://doi.org/10.3390/electronics10151761