Miniaturized Sample Preparation Methods to Simultaneously Determine the Levels of Glycols, Glycol Ethers and Their Acetates in Cosmetics
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Materials
2.2. Cosmetic Samples
2.3. UAE Procedure
2.4. Micro-MSPD Procedure
2.5. GC-MS Analysis
2.6. Analytical Quality Parameters
3. Results and Discussion
3.1. Chromatographic Separation
3.2. UAE and µMSPD-GC-MS Performance
3.3. Comparison with Other Methodologies
3.4. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Ketttenis, P. The historic and current use of glycol ethers: A picture of change. Toxicol. Lett. 2005, 156, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Boatman, R.J. International industry initiatives to improve the glycol ether health effects knowledge base. Toxicol. Lett. 2005, 156, 39–50. [Google Scholar] [CrossRef] [PubMed]
- European Regulation (EC). No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetics products. Off. J. Eur. Union. 2009, 342, 59–209. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1223 (accessed on 9 September 2021).
- Johanson, G. Toxicity review of ethylene glycol monomethyl ether and its acetate ester. Crit. Rev. Toxicol. 2000, 30, 307–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-S.; Ohtani, K.; Suda, M.; Kitagawa, K.; Nakayama, K.; Kawamoto, T.; Nakajima, T. Reproductive toxicity of ethylene glycol monoethyl ether in Aldh2 knockout mice. Ind. Health 2007, 45, 574–578. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Venier, M.; Adami, G.; Larese, F.; Maina, G.; Renzi, N. Percutaneous absorption of 5 glycol ethers through human skin in vitro. Toxicol. In Vitro 2004, 18, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.; Xun, Z.; Du, W.; Guo, X.; Xian, Y.; Lin, S.; Tan, J. Simultaneous determination of glycol ethers and their acetates in cosmetics by gas chromatography with mass spectrometry. J. Sep. Sci. 2018, 41, 2354–2359. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Villa, C.; Neuhoff, C.; Dorato, S. Derivatization Procedure and HPLC Determination of 2-ethoxyethanol in Cosmetic Samples. Int. J. Cosmet. Sci. 1999, 21, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Garcia-Jares, C.; Llompart, M.; Lores, M. Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules 2021, 26, 4900. [Google Scholar] [CrossRef] [PubMed]
- Lores, M.; Llompart, M.; Alvarez-Rivera, G.; Guerra, E.; Vila, M.; Celeiro, M.; Lamas, J.P.; Garcia-Jares, C. Positive lists of cosmetic ingredients: Analytical methodology for regulatory and safety controls—A review. Anal. Chim. Acta 2016, 915, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Lores, M.; Celeiro, M.; Rubio, L.; Llompart, M.; Garcia-Jares, C. Extreme cosmetics and borderline products: An analytical-based survey of European regulation compliance. Anal. Bioanal. Chem. 2018, 410, 7085–7102. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Vazquez, L.; Lamas, J.P.; Vila, M.; Garcia-Jares, C.; Llompart, M. Miniaturized Matrix Solid-Phase Dispersion for the Analysis of Ultraviolet Filters and Other Cosmetic Ingredients in Personal Care Products. Separations 2019, 6, 30. [Google Scholar] [CrossRef]
- Celeiro, M.; Rubio, L.; Garcia-Jares, C.; Lores, M. Multi-Target Strategy to Uncover Unexpected Compounds in Rinse-Off and Leave-On Cosmetics. Molecules 2021, 26, 2504. [Google Scholar] [CrossRef] [PubMed]
- Gembus, V.; Goullé, J.-P.; Lacroix, C. Determination of glycols in biological specimens by gas chromatography-mass spectrometry. J. Anal. Toxicol. 2002, 26, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Tani, C. Sensitive determination of alkoxyethanols by pre-column derivatization with 1-anthroylnitrile and reversed-phasehigh-performance liquid chromatography. J. Chromatogr. A 2003, 1005, 215–221. [Google Scholar] [CrossRef]
- Giesen, Y.; Friedrich, C.; Breuer, D.; Fauss, J.; Hebisch, R.; Brock, T.H.; Hartwig, A.; Commission, M.A.K. Glycol esters, glycol ethers-Method for the determination of propylene glycol monoethyl ether, 1-ethoxy-2-propanol acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether in workplace air using gas chromatography [Air Monitoring Methods, 2018]. In The MAK-Collection for Occupational Health and Safety: Annual Thresholds and Classifications for the Workplace; Wiley Online Library: Hoboken, NJ, USA, 2002; Volume 4, pp. 285–302. [Google Scholar]
- Kawakami, T.; Isama, K.; Tanaka-Kagawa, T.; Jinnno, H. Analysis of glycols, glycol ethers, and other volatile organic compounds present in household water-based hand pump sprays. J. Environ. Sci. Health Part A 2017, 52, 1204–1210. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Campillo, N.; Hernández-Córdoba, M.; Viñas, P. Gas chromatography with mass spectrometry for the quantification of ethylene glycol ethers in different household cleaning products. J. Sep. Sci. 2016, 39, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
Acronym | Common Name | CAS | EU Restrictions [3] |
---|---|---|---|
Glycols | |||
ETG a | Ethylene glycol | 107-21-1 | Allowed as a humectant, solvent, and for viscosity control |
DEG a | Diethylene glycol | 111-46-6 | Forbidden, except as traces in ingredients (0.1%) |
TMG a | Tetramethylene glycol | 110-63-4 | Allowed as solvent |
Glycol ethers | |||
EGME a | Ethylene glycol monomethyl ether | 109-86-4 | Forbidden |
EGDME a | Ethylene glycol dimethyl ether | 110-71-4 | Forbidden |
EGEE a | Ethylene glycol monoethyl ether | 110-80-5 | Forbidden |
EGBE b | Ethylene glycol monobutyl ether | 111-76-2 | Forbidden in aerosol dispensers (sprays); 4% (oxidative hair dyes); 2% (non-oxidative hair dyes) |
DEGME a | Diethylene glycol monomethyl ether | 111-77-3 | Forbidden |
DEGDME a | Diethylene glycol dimethyl ether | 111-96-6 | Forbidden |
DEGEE b | Diethylene glycol monoethyl ether | 111-90-0 | Forbidden in eye and oral products; 7% (oxidative hair dyes); 5% (non-oxidative hair dyes); 10% (other leave-on products); 2.6% (other non-spray products); 2.6% (sprays: fine fragrance, hair sprays, antiperspirants, deodorants). In all cases, ETG ≤ 0.1%. |
DEGBE b | Diethylene glycol monobutyl ether | 112-34-5 | Forbidden in aerosol dispensers (sprays); 9% (solvent in hair dye products) |
PGME a | Propylene glycol monomethyl ether | 1589-47-5 | Forbidden |
TEGDME a | Triethylene glycol dimethyl ether | 112-49-2 | Forbidden |
Glycol ether acetates | |||
EGMEA a | Ethylene glycol monomethyl ether acetate | 110-49-6 | Forbidden |
EGEEA a | Ethylene glycol monoethyl ether acetate | 111-15-9 | Forbidden |
PGMEA a | Propylene glycol monomethyl ether acetate | 108-65-6 | Allowed as solvent |
iPGMEAb a | Isopropylene glycol monomethyl ether acetate | 70657-70-4 | Forbidden |
Compounds | Retention Time (Min) | Quantification m/z Ion | Identification m/z Ions |
---|---|---|---|
Glycols | |||
ETG | 17.06 | 31 | 33, 43, 62 |
DEG | 21.97 | 75 | 45, 76 |
TMG | 21.18 | 71 | 44, 57 |
Glycol ethers | |||
EGME | 9.91 | 45 | 58, 76 |
EGDME | 7.16 | 60 | 45, 90 |
EGEE | 10.59 | 59 | 45, 72 |
EGBE | 13.57 | 57 | 87, 100 |
DEGME | 16.57 | 59 | 58, 90 |
DEGDME | 12.32 | 59 | 58, 89 |
DEGEE | 17.04 | 59 | 72, 104 |
DEGBE | 19.56 | 57 | 75, 87, 100 |
PGME | 10.32 | 59 | 60, 75 |
TEGDME | 18.52 | 103 | 59, 89, 133 |
Glycol ether acetates | |||
EGMEA | 10.99 | 58 | 43, 73 |
EGEEA | 11.64 | 72 | 59, 87 |
PGMEA | 10.49 | 43 | 72, 87 |
iPGMEA | 10.96 | 59 | 43, 72 |
Compounds | Linearity | Precision, RSD % | Recovery, % a | LODs (μg g−1) b | ||||
---|---|---|---|---|---|---|---|---|
Linear Range (μg L−1) | R2 | Intra-Day | Inter-Day | UAE | µMSPD | UAE | µMSPD | |
Glycols | ||||||||
ETG | 2–2000 | 0.9987 | 9.1 | 7.7 | 91 ± 6 | 92 ± 18 | 0.20 | 0.10 |
DEG | 2–2000 | 0.9992 | 4.6 | 3.9 | 109 ± 14 | 100 ± 16 | 0.30 | 0.40 |
TMG | 2–2000 | 0.9999 | 2.2 | 14 | 93 ± 10 | 96 ± 7 | 0.45 | 0.40 |
Glycol ethers | ||||||||
EGME | 2–2000 | 0.9941 | 6.5 | 4.9 | 99 ± 9 | 95 ± 9 | 0.19 | 0.10 |
EGDME | 5–2000 | 0.9992 | 8.0 | 8.1 | 100 ± 8 | 96 ± 6 | 0.43 | 0.44 |
EGEE | 2–2000 | 0.9947 | 0.8 | 0.7 | 103 ± 10 | 101 ± 18 | 0.25 | 0.21 |
EGBE | 2–2000 | 0.9977 | 4.2 | 3.0 | 100 ± 20 | 98 ± 13 | 0.25 | 0.14 |
DEGME | 2–2000 | 0.9991 | 4.2 | 6.4 | 94 ± 12 | 97 ± 5 | 0.75 | 0.38 |
DEGDME | 2–2000 | 0.9952 | 4.0 | 3.3 | 102 ± 8 | 108 ± 16 | 0.07 | 0.03 |
DEGEE | 5–2000 | 0.9984 | 3.6 | 3.1 | 108 ± 12 | 102 ± 4 | 0.75 | 0.43 |
DEGBE | 5–2000 | 0.9988 | 0.1 | 5.6 | 99 ± 1 | 97 ± 15 | 0.50 | 0.30 |
PGME | 2–2000 | 0.9959 | 8.0 | 5.8 | 104 ± 11 | 103 ± 18 | 0.25 | 0.11 |
TEGDME | 2–2000 | 0.9991 | 13 | 9.4 | 100 ± 2 | 91 ± 4 | 0.30 | 0.31 |
Glycol ether acetates | ||||||||
EGMEA | 5–2000 | 0.9955 | 0.6 | 3.3 | 95 ± 4 | 99 ± 12 | 0.55 | 0.25 |
EGEEA | 5–2000 | 0.9980 | 9.8 | 7.2 | 98 ± 8 | 94 ± 11 | 0.60 | 0.33 |
PGMEA | 2–2000 | 0.9935 | 3.6 | 2.7 | 101 ± 10 | 100 ± 13 | 0.20 | 0.08 |
iPGMEA | 2–2000 | 0.9947 | 2.5 | 2.6 | 98 ± 3 | 102 ± 13 | 0.15 | 0.08 |
Analytes | Matrix | Extraction Technique | Extraction Time | Analysis | Recovery (%) | LODs (µg g−1) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
10 glycol ethers and their acetates | Cosmetics (0.5 g) | SLE | 19 min | GC-MS | 80–105 | 0.09–0.59 | 2018 | [7] |
EGME | Cosmetics (0.1 g) | SLE + derivatization | >3 h | HPLC-UV a | 84–89 | 0.6–7.6 | 1999 | [8] |
12 glycols, glycol ethers, and their acetates | Household water-based sprays (0.5 mL) | SPE | - | GC-MS | 42–103 | 0.04–1.3 | 2017 | [17] |
6 glycol ethers | Household cleaning products, detergents (2 g) | QuEChERS b | 5 min | GC-MS | 89–115 | 0.01–1 | 2016 | [18] |
17 glycols, glycol ethers, and their acetates | Cosmetics (0.1 g) | µMSPD, UAE | 10 min | GC-MS | 79–116 | 0.03–0.75 | 2021 | This work |
Analytes | Liquid Soap | Solid Soap | Body Milk |
---|---|---|---|
ETG | 9.7 ± 0.8 | 8.2 ± 1.3 | 14 ± 3 |
DEG | 7.0 ± 2.7 | 16 ± 3 | 15 ± 1 |
DEGEE | ND | ND | 9.4 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celeiro, M.; Rubio, L.; Garcia-Jares, C.; Lores, M. Miniaturized Sample Preparation Methods to Simultaneously Determine the Levels of Glycols, Glycol Ethers and Their Acetates in Cosmetics. Cosmetics 2021, 8, 102. https://doi.org/10.3390/cosmetics8040102
Celeiro M, Rubio L, Garcia-Jares C, Lores M. Miniaturized Sample Preparation Methods to Simultaneously Determine the Levels of Glycols, Glycol Ethers and Their Acetates in Cosmetics. Cosmetics. 2021; 8(4):102. https://doi.org/10.3390/cosmetics8040102
Chicago/Turabian StyleCeleiro, Maria, Laura Rubio, Carmen Garcia-Jares, and Marta Lores. 2021. "Miniaturized Sample Preparation Methods to Simultaneously Determine the Levels of Glycols, Glycol Ethers and Their Acetates in Cosmetics" Cosmetics 8, no. 4: 102. https://doi.org/10.3390/cosmetics8040102
APA StyleCeleiro, M., Rubio, L., Garcia-Jares, C., & Lores, M. (2021). Miniaturized Sample Preparation Methods to Simultaneously Determine the Levels of Glycols, Glycol Ethers and Their Acetates in Cosmetics. Cosmetics, 8(4), 102. https://doi.org/10.3390/cosmetics8040102