Date Fruit and Seed in Nutricosmetics
Abstract
:1. Introduction
2. Sustainability of Date Palm
2.1. Date Palm Fruit
2.2. Date Seed
3. Chemical Composition of Date Fruits
4. Chemical Composition of Date Seeds
5. Value-Added Products from Date Fruits and Seeds
6. Bioactive Compounds from Date Fruits and Seed
7. Bioactive Compounds from Date Seeds
8. Date Seed Oil and Its Commercial Application
9. Cosmetic Applications of Date Fruits and Seeds
9.1. Skin Cosmetics
9.2. Hair Cosmetics
9.3. Nail Cosmetics
9.4. Other Nutricosmetics
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, I.A.; Ahmed, A.W.K.; Robinson, R.K. Chemical composition of date varieties as influenced by the stage repining. Food Chem. 1995, 54, 305–309. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saudigazette.com.sa. 25 February 2021/13, Rajab, 1442. Available online: https://saudigazette.com.sa (accessed on 24 June 2021).
- Abdullahi, M.H.; Garko, M. Medicinal value of date palm (Phoenix dactylifera L.). In Proceedings of the Agricultural Society of Nigeria Conference, Nsukka, Nigeria, 11–14 March 2012. [Google Scholar]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Tengberg, M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid. Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Al-hajjaj, H.S.; Jamal, Y. Ayad Effect of foliar boron applications on yield and quality of Medjool date palm. J. Appl. Hortic. 2018, 20, 181–188. [Google Scholar] [CrossRef]
- Chao, C.C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.) Overview of Biology Uses, and Cultivation. J. Am. Soc. Hortic. 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 22 December 2020).
- Mia, M.A.; Mosaib, M.G.; Khalil, M.I.; Islam, M.A.; Gan, S.H. Potentials and safety of date palm fruit against diabetes: A Critical Review. Foods 2020, 9, 1557. [Google Scholar] [CrossRef]
- Khalid, S.; Khalid, N.; Khan, R.S.; Ahmed, H.; Ahmad, A. A review on chemistry and pharmacology of ajwa date fruit and pit. Trends Food Sci. Tech. 2017, 63, 60–69. [Google Scholar] [CrossRef]
- Nasir, M.U.; Hussain, S.; Jabbar, S.; Rahid, F.; Khalid, N.; Mehmood, A. A review on the nutritional content, functional properties and medicinal potential of dates. Sci. Lett. 2014, 3, 17–22. [Google Scholar]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Saafi, E.B.; El Arem, A.; Issaoui, M.; Hammami, M. Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Food Sci. Technol. 2009, 56, 2314–2319. [Google Scholar]
- Royan, I.; As’ad, S.; Mappaware, N.A.; Hatta, M.; Rabia. Effect of ajwa dates consumption to inhibit the progression of preeclampsia threats on mean arterial pressure and roll-over test. BioMed Res. Int. 2019, 2019, 2917895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubah, S.A.; Agbonu, O.A.; Kwinjoh, C.P.; Abah, K.O.; Chibuogwu, I.C.; Eneojo, A.S.; Abayomi, S.B.; Enem, S.I.; Ajayi, I.E. Effects of date fruit (Phoenix dactylifera) on sperm cell morphology and reproductive hormonal profiles in cypermethrin-induced male infertility. BioRxiv 2020. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.M.; Tan, C.P.; Rashid, U.; Al-Resayes, S.I. Chemical Composition of Date Palm (Phoenix dactylifera L.) Seed oil from six Saudi Arabian cultivars. J. Food Sci. 2018, 83, 624–630. [Google Scholar] [CrossRef]
- Vayalil, P.K. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J. Agric. Food Chem. 2002, 50, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Samir, D.; Anfal, D. Control of lead and cadmium in cosmetic product (Kohl) of pits dates by cyclic voltammetry. J. Chem. Pharm. 2017, 9, 319–323. [Google Scholar]
- Al-Bulushi, A.; Attard, T.M.; North, M.; Hunt, A.J. Optimisation and economic evaluation of the supercritical carbon dioxide extraction of waxes from waste date palm (Phoenix dactylifera) leaves. J. Clean. Prod. 2018, 186, 988–996. [Google Scholar] [CrossRef] [Green Version]
- Baliga, M.S.; Baliga, B.R. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Khan, S.A.; Al Kiyumi, A.R.; Al Sheidi, M.S.; Al Khusaibi, T.S.; Al Shehhi, N.M.; Alam, T. In vitro inhibitory effects on a-glucosidase and a-amylase level and antioxidant potential of seeds of Phoenix dactylifera L. Asian Pac. J. Trop. Biomed. 2016, 6, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Besbes, S.; Drira, L.; Blecker, C.; Deroanne, C.; Attia, H. Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Food Chem. 2009, 112, 406–411. [Google Scholar] [CrossRef]
- Lattieff, F.A. A study of biogas production from date palm fruit wastes. J. Clean. Prod. 2016, 139, 1191–1195. [Google Scholar] [CrossRef]
- Galiwango, E.; AL-Marzouqi, A.H.; Abu-Omar, M.M.; Khaleel, A.A.; Abdelrahman, N.S. Estimating combustion kinetics of UAE Date palm tree Biomass using thermogravimetic Analysis. J. Nat. Sci. Res. 2017, 7, 106–120. [Google Scholar]
- Makkawi, Y.; El Sayed, Y.; Salih, M.; Nancarrow, P.; Banks, S.; Bridgwater, T. Fast pyrolysis of date palm (Phoenix dactylifera) wast in a bubbling fluidized bed reactor. Renew. Energy 2019, 143, 1–31. [Google Scholar] [CrossRef]
- Ikbel, S.; Liu, X. Anaerobic digestion of waste Tunisian date (Phoenix dactylifera L.): Effect of biochemical composition of pulp and seeds from six varieties. Environ. Technol. 2020, 43, 1–13. [Google Scholar]
- Chanderasekaran, M.; Bahkali, A.H. Valorization of date palm (Phoenix dactylifera) fruit processing byproducts and wastes using bioprocess technology. Saudi J. Biol. Sci. 2013, 20, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Besbes, S.; Cheikh Rouhou, S.; Blecker, C.; Hentati, B.; Deroanne, C.; Attia, H. Voies de valorisation des pulpes de dates. Microbiol. Hyg. Alim. 2006, 18, 3–7. [Google Scholar]
- Al-Farsi, M.; Lee, C.Y. Usage of Date (Phoenix dactylifera L.) Seeds in Human Health and Animal Feed. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 53; pp. 447–452. [Google Scholar]
- Bouallegue, K.; Allaf, T.; Besombes, C.; Younes, R.B.; Allaf, K. Phenomenological modeling and intensification of texturing/grinding-assisted solvent oil extraction; case of date seeds (Phoenix Dactylifera L.). Arab. J. Chem. 2015, 12, 2398–2410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.R.; Aldosari, S.A.; Vidyasagar, P.; Shukla, P.; Nair, M.G. Determination of the variability of sugars in date fruit varieties. J. Plant. Crops 2015, 43, 53–61. [Google Scholar]
- Habib, H.M.; Ibrahim, W.H. Nutritional quality of 18 date fruit varieties. Int. J. Food Sci. Nutr. 2011, 62, 544–551. [Google Scholar] [CrossRef]
- Al-Humaid, A.I.; Mousa, H.M.; El-Mergawi, R.A.; Abdel-Salam, A.M. Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am. J. Food Technol. 2010, 5, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Chai, M.N.; Isa, M.I.N. The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. JCPT 2013, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A.A.; Awadelkarem, A.M.; Sharif Hossain, A.B.M.; Ibrahim, N.A.; Fawzi, M.; Ashraf, S.A. Nutritional assessment of different date fruits (Phoenix dactylifera L.) varieties cultivated in Hail province, Saudi Arabia. Biosci. Biotech. Res. Comm. 2018, 11, 263–269. [Google Scholar] [CrossRef]
- Benmeziane-Derradji, F. Nutritional value, phytochemical composition, and biological activities of Middle Eastern and North African date fruit: An overview. Euro Mediterr. J. Environ. Integr. 2019, 4, 39. [Google Scholar] [CrossRef]
- Golshan Tafti, A.; Solaimani Dahdivan, N.; Yasini Ardakani, S.A. Physicochemical properties and applications of date seed and its oil. Int. Food Res. J. 2017, 24, 1399–1406. [Google Scholar]
- Siddiq, M.; Greibly, I. Overview of Date Fruit Production, Postharvest Handling, Processing, and Nutrition, Dates: Postharvest Science, Processing Technology and Health Benefits; John Wiley & Sons, Ltd.: Chichester, UK, 2013; Chapter 1; pp. 1–28. [Google Scholar]
- Borchani, C.; Besbes, S.; Blecker, C.; Masmoudi, M.; Baati, R.; Attia, H. Chemical properties of 11 date cultivars and their corresponding fiber extracts. Afr. J. Biotechnol. 2010, 9, 4096–4110. [Google Scholar]
- Habib, H.M.; Ibrahim, W.H. Nutritional quality evaluation of eighteen date pit varieties. Int. J. Food Sci. Nutr. 2009, 60, 99–111. [Google Scholar] [CrossRef]
- Mohamed, R.M.A.; Fageer, A.S.M.; Eltayeb, M.M.; Ahmed, I.A.M. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits. Food Sci. Nutr. 2014, 2, 478–489. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Ghafoor, K.; Ozcan, M.M. Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (Phoenix dactylifera L.) varieties. Int. J. Food Sci. Nutr. 2012, 63, 84–89. [Google Scholar] [CrossRef]
- Assirey, E.A. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.X.; Shi, L.E.; Aleid, S.M. Date fruit: Chemical composition, nutritional and medicinal values, products. J. Sci. Food Agric. 2013, 93, 2351–2361. [Google Scholar] [CrossRef]
- Hong, Y.J.; Tomas-Barberan, F.A.; Kader, A.A.; Mitchell, A.E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). J. Agric. Food Chem. 2006, 54, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Karimi, K.; Taherzadeh, M.J. Palm date fibers: Analysis and enzymatic hydrolysis. Int. J. Mol. Sci. 2010, 11, 4285–4296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogungbenle, N.H. Chemical and fatty acid compositions of date palm fruit (Phoenix dactylifera L.) flour. Bangladesh J. Sci. Ind. Res. 2011, 46, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Al-shahib, W.; Marshall, R.J. The fruit of the date palm: It’s possible use as the best food for the future? Int. J. Food Sci. Nutr. 2009, 54, 247–259. [Google Scholar] [CrossRef]
- Mrabet, M.; Jiménez-Araujo, A.; Guillén-Bejarano, R.; Rodriguez-Arcos, R.; Sindic, M. Date seeds: A promising source of oil with functional properties. Foods 2020, 9, 787. [Google Scholar] [CrossRef]
- Boulal, A.; Kihal, M.; Khelifi, C.; Benali, B. Bioethanol production from date palm fruit waste fermentation using solar energy. Afr. J. Biotechnol. 2016, 15, 1621–1627. [Google Scholar]
- Bouaziz, F.; Abdeddayem, A.B.; Koubaa, M.; Barba, F.J.; Jeddou, K.B.; Kacem, I.; Ghorbel, R.E.; Chaaboun, S.E. Bioethanol production from date seed cellulosic fraction using Saccharomyces cerevisiae. Separations 2020, 7, 67. [Google Scholar] [CrossRef]
- Acourene, S.; Djafri, K.; Ammouche, A.; Djidda, A.; Tama, M.; Taleb, B. Utilisation of the date wastes as substrate for the production of baker’s yeast and citric acid. Biotechnology 2011, 10, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, K.; Trivedi, U.; Patel, K.C. Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol. 2007, 98, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Moosavi-Nasab, M.; Yousefi, A. Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran. J. Biotechnol. 2011, 9, 94–101. [Google Scholar]
- Moosavi-Nasab, M.; Shekaripour, F.; Alipoor, M. Use of date syrup as agricultural waste for xanthan production by Xanthomonas campestris. Iran Agric. Res. 2009, 28, 89–97. [Google Scholar]
- Di Cagno, R.; Filannino, P.; Cavoski, I.; Lanera, A.; Mamdouh, B.M.; Gobbetti, M. Bioprocessing technology to exploit organic palm date (Phoenix dactylifera L. cultivar Siwi) fruit as a functional dietary supplement. J. Funct. Foods. 2017, 31, 9–19. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kasapis, S.; Al-Kharusi, N.S.Z.; Al-Marhubia, I.M.; Khanb, A.J. Composition characterisation and thermal transition of date pits powders. J. Food Eng. 2007, 80, 1–10. [Google Scholar] [CrossRef]
- Mrabet, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Hamza, H.; Rodríguez-Arcos, R.; Guillen-Bejarano, R.; Sindic, M.; Jimenez-Araujo, A. Enzymatic conversion of date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber. LWT 2017, 75, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Ambigaipalan, P.; Shahidi, F. Date seed flour and hydrolysates affect physicochemical properties of muffin. Food Biosci. 2015, 12, 54–60. [Google Scholar] [CrossRef]
- Jridi, M.; Souissi, N.; Salem, M.B.; Ayadi, M.A.; Nasri, M.; Azabou, S. Tunisian date (Phoenix dactylifera L.) by-products: Characterization and potential effects on sensory, textural and antioxidant properties of dairy desserts. Food Chem. 2015, 188, 8–15. [Google Scholar] [CrossRef]
- Gad, A.S.; Kholif, A.M.; Sayed, A.F. Evaluation of the nutritional value of functional yogurt resulting from combination of date palm syrup and skim milk. Am. J. Food Technol. 2010, 5, 250–259. [Google Scholar] [CrossRef]
- Martin-Sanchez, A.M.; Ciro-Gomez, G.; Sayas, E.; Vilella-Espla, J.; Ben-Abda, J.; Perez-Alvarez, J.A. Date palm by-products as a new ingredient for the meat industry: Application to pork liver pate. Meat Sci. 2013, 93, 880–887. [Google Scholar] [CrossRef]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Smaali, I.; Jazzar, S.; Soussi, A.; Muzard, M.; Aubry, N.; Marzouki, M.N. Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnol. Bioprocess Eng. 2012, 17, 385–392. [Google Scholar] [CrossRef]
- Kulkarni, S.G.; Vijayanand, P.; Shubha, L. Effect of processing of dates into date juice concentrate and appraisal of its quality characteristics. J. Food Sci. Technol. 2010, 47, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awe, S.; Nnadoze, S.N. Production and microbiological assesment of date palm (Phoenix dactylifera L.) fruit wine. Microbiol. Res. J. Int. 2015, 8, 480–488. [Google Scholar] [CrossRef]
- Platat, C.; Habib, H.M.; Hashim, I.B.; Kamal, H.; AlMaqbali, F.; Souka, U.; Ibrahim, W.H. Production of functional pita bread using date seed powder. J. Food Sci. Technol. 2015, 52, 6375–6384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokrollahi, F.; Taghizadeh, M. Date seed as a new source of dietary fiber: Physicochemical and baking properties. Int. Food Res. J. 2016, 23, 2419–2425. [Google Scholar]
- Bouaziz, M.A.; Amara, W.B.; Attia, H.; Blecker, C.; Besbes, S. Effect of the addition of defatted date seeds on wheat dough performance and bread quality. J. Texture Stud. 2010, 41, 511–531. [Google Scholar] [CrossRef]
- Amany, M.B.; Shaker, M.A.; Abeer, A.K. Antioxidant activities of date pits in a model meat system. Int. Food Res. J. 2012, 19, 223–227. [Google Scholar]
- Meer, S.; Akhtar, N.; Mahmood, T.; Igielska-Kalwat, J. Efficacy of Phoenix dactylifera L. (Date Palm) creams on healthy skin. Cosmetics 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Razavizadeh, R.; Mohebbi, G.H.; Barmak, A. Oil characteristics and fatty acid profile of seeds from three varieties of date palm (Phoenix dactylifera) cultivars in Bushehr-Iran. Afr. J. Biotechnol. 2012, 11, 12088–12093. [Google Scholar] [CrossRef]
- Othmani, A.; Monia, J.; Karim, K.; Sellemi, A.; Artes, F.; Jameel, M.A.-K. Preharvest fruit drop of date palm (Phoenix dactylifera L.) Cv. Deglet Nour at Kimri Stage: Development, physico-chemical characterization, and functional properties. Int. J. Fruit Sci. 2020, 20, 414–432. [Google Scholar] [CrossRef]
- Sivarajasekar, N.; Prakashmaran, J.; Naushad, M.; ALFarhan, B.Z.; Poornima, S.; Sivapriya, S.; Gayathri, V.; Pradeepika, T.; Raghu, V.; Sivamani, S.; et al. Recent Updates on Heavy Metal Remediation Using Date Stones (Phoenix dactylifera L.)—Date Fruit Processing Industry Waste. In Sustainable Agriculture Reviews 34; Sustainable Agriculture Reviews; Naushad, M., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2019; Volume 34, pp. 193–206. [Google Scholar]
- Fernandez-Lopez, J.; Sendra, E.; Sayas-Barbera, E.; Navarro, C.; Perez-Alvarez, J.A. Physico-chemical and microbiological profiles of “salchichón” (Spanish dry-fermented sausage) enriched with orange fiber. Meat Sci. 2008, 80, 410–417. [Google Scholar] [CrossRef]
- Sanchez-Zapata, E.; Fernández-Lopez, J.; Penaranda, M.; Fuentes-Zaragoza, E.; Sendra, E.; Sayas, E.; Perez-Alvarez, J.A. Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product. Food Res. Int. 2011, 44, 2401–2407. [Google Scholar] [CrossRef]
- Chakroun, M.; Khemakhem, B.; Mabrouk, H.B.; El Abed, H.; Makni, M.; Bouaziz, M.; Drira, N.; Marrakchi, N.; Mejdoub, H. Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Biomed. Pharmacother. 2016, 84, 415–422. [Google Scholar] [CrossRef]
- Zhang, C.R.; Aldosari, S.A.; Vidyasagar, P.S.P.V.; Shukla, P.; Nair, M.G. Health-benefits of date fruits produced in Saudi Arabia based on in vitro antioxidant, anti-inflammatory and human tumor cell proliferation inhibitory assays. J. Saudi Soc. Agric. Sci. 2017, 16, 287–293. [Google Scholar] [CrossRef] [Green Version]
- El Hadrami, A.; Al-Khayri, J.M. Socioeconomic and traditional importance of date palm. Emir. J. Food Agric. 2012, 24, 371–385. [Google Scholar]
- Al Juhaimi, F.; Ozcan, M.M.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of date varieties on physico-chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process Preserv. 2018, 42, e13584. [Google Scholar] [CrossRef]
- Konkol, K.L.; Rasmussen, S.C. An Ancient Cleanser: Soap Productionand Use in Antiquity. In Chemical Technology in Antiquity; Rasmussen, S.C., Ed.; American Chemical Society: Washington, DC, USA, 2015; pp. 245–266. [Google Scholar]
- Al-Farsi, M.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naczk, M. Nutritional and Pharmacological Effects of Food Phenolics. In Phenolics in Food and Nutraceuticals; CRC Press LLC: New York, NY, USA, 2004; pp. 331–402. [Google Scholar]
- Vinson, J.A.; Zubik, L.; Bose, P.; Samman, N.; Proch, J. Dried fruits: Excellent in vitro and in vivo antioxidants. J. Am. Coll. Nutr. 2005, 24, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- El-Mergawi, A.; AlGeffari, M.A.; Al-Humaid, A. Sugar Types, Phenolic Contents, and Antioxidant Activities for 17 Saudi Arabian Date Cultivars and Their Relations with Glycemic Indices. Int. J. Fruit Sci. 2019, 19, 315–325. [Google Scholar] [CrossRef]
- Surh, Y.J. Anti-tumor promoting potential of selected spices ingredients with antioxidative and anti-inflammatory activities. Food Chem. Toxicol. 2002, 40, 1091–1097. [Google Scholar] [CrossRef]
- Wilcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Mansour, A.; Kokkalou, E.; Kefalas, P.; Embarek, G. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of a-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum. Exp. Dermatol. 2010, 19, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.G.; Cho, S.H.; Park, D.; Jung, E. Anti-Skin aging properties of protocatechuic acid in vitro and in vivo. J. Cosmet. Dermatol. 2020, 19, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Kashani, F.Z.; Ghoreishi, S.M.; Khoobi, A. Experimental and statistical analysis on a nanostructured sensor for determination of p-hydroxybenzoic acid in cosmetics. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 45–55. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Na, E.J. MMP expression alteration and MMP-1 production control by syringic acid via AP-1 mechanism. Biomed. Dermatol. 2018, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: Current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnani, C.; Correa, M.A.; Salgado, H.; Isaac, V. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods 2014, 6, 3203–3210. [Google Scholar] [CrossRef]
- Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Madhan, B.; Subramanian, V.; Rao, J.R.; Nair, B.U.; Ramasami, T. Stabilization of collagen using plant polyphenol: Role of catechin. Int. J. Biol. Macromol. 2005, 37, 47–53. [Google Scholar] [CrossRef]
- Kwon, O.S.; Han, J.H.; Yoo, H.G.; Chung, J.H.; Cho, K.H.; Eun, H.C.; Kim, K.H. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine 2007, 14, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Zilius, M.; Ramanauskienė, K.; Briedis, V. Release of propolis phenolic acids from semisolid formulations and their penetration into the human skin in vitro. Evid. Based Complement. Alternat. Med. 2013, 2013, 958717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, A.S.; Tawfik, M.S.; Abu-Tarboush, H.M. Phenolic contents and antioxidant activity of various date palm (Phoenix dactylifera L.) fruits from Saudi Arabia. Food Sci. Nutr. 2011, 2, 1134–1141. [Google Scholar]
- Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals. Curr. Pharm. Des. 2018, 24, 5181–5187. [Google Scholar]
- Platat, C.; Hillary, S.; Tomas-Barberan, F.A.; Martinez-Blazquez, J.A.; Al-Meqbali, F.; Souka, U.; Al-Hammadi, S.; Ibrahim, W. Urine metabolites and antioxidant effect after oral intake of date (Phoenix dactylifera L.) seeds-based products (powder, bread and extract) by human. Nutrients 2019, 11, 2489. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.F. Fruits of Warm Climates; Distributed by Creative Resources Systems; J.F. Morton: Miami, FL, USA; Winterville, NC, USA, 1987; pp. 5–11. [Google Scholar]
- Adeosun, A.M.; Oni, S.O.; Ighodaro, O.M.; Durosinlorun, O.H.; Oyedele, O.M. Phytochemical, minerals and free radical scavenging profiles of Phoenix dactilyfera L. seed extract. J. Taibah Univ. Med. Sci. 2016, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Habib, H.M.; Platat, C.; Meudec, E.; Cheynier, V.; Ibrahim, W.H. Polyphenolic compounds in date fruit seed (Phoenix dactylifera): Characterisation and quantification by using UPLC-DAD-ESI-MS. J. Sci. Food Agric. 2014, 94, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Hamada, J.S.; Hashim, I.B.; Sharif, F.A. Preliminary analysis and potential uses of date pits in foods. Food Chem. 2002, 76, 135–137. [Google Scholar] [CrossRef]
- Al-Meqbaali, F.; Habib, H.; Othman, A.; Al-Marzooqi, S.; AlBawardi, A.; Pathan, J.Y.; Hilary, S.; Souka, U.; Al-Hammadi, S.; Ibrahim, W.; et al. The antioxidant activity of date seed: Preliminary results of a preclinical in vivo, study. Emir. J. Food Agric. 2017, 29, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Kchaou, W.; Abbes, F.; Blecker, C.; Attia, H. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind. Crop Prod. 2013, 45, 262–269. [Google Scholar] [CrossRef]
- Aris, N.A.B. Extraction of Phoenix Dactylifera (Mariami) Seed oil Using Supercritical Carbon Dioxide. Master’s Thesis, Universiti Teknologi Mara, Shah Alam, Malaysia, 2014. [Google Scholar]
- Djaoudene, O.; Lopez, V.; Casedas, G.; Les, F.; Schisano, C.; Bachir Bey, M.; Tenore, G.C. Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food Funct. 2019, 10, 4953–4965. [Google Scholar] [CrossRef]
- Thouri, A.; Chahdoura, H.; El Arem, A.; Hichri, A.O.; Hassin, R.B.; Achour, L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med. 2017, 17, 248. [Google Scholar] [CrossRef] [PubMed]
- Hilary, S.; Tomas-Barberan, F.A.; Martinez-Blazquez, J.A.; Kizhakkayil, J.; Souka, U.; Al-Hammadi, S.; Habib, H.; Ibrahim, W.; Platat, C. Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulated in-vitro digestion/Caco-2 culture model. Food Chem. 2020, 311, 125969. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. 2013, 4, 112–116. [Google Scholar]
- Abdul Afiq, M.J.; Abdul Rahman, R. Date seed and date seed oil. Int. Food Res. J. 2013, 20, 2036–2040. [Google Scholar]
- Rahmani, A.H.; Aly, S.M.; Ali, H.; Babiker, A.Y.; Srikar, S.; Khan, A.A. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int. J. Clin. Exp. Med. 2014, 7, 483–491. [Google Scholar]
- Dammak, I.; Boudaya, S.; Abdallah, F.B.; Hamida, T.; Attia, H. Date seed oil inhibits hydrogen peroxide-induced oxidative stress in normal human epidermal melanocytes. Connect. Tissue Res. 2009, 50, 330–335. [Google Scholar] [CrossRef]
- Ines, D.; Sonia, B.; Fatma, B.A.; Souhail, B.; Hamadi, A.; Hamida, T.; Basma, H. Date seed oil inhibits Hydrogen peroxide-induced oxidative stress in human epidermal keratinocytes. Int. J. Dermatol. 2010, 49, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lecheb, F.; Benamara, S. Feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design. Int. J. Cosmet. Sci. 2015, 66, 359–370. [Google Scholar]
- Gunter, S.; SvenGohla, J.S.; Whaltrand, K.; Uwe Schonrock, H.; Schmidt, L.; Annegret, K.; Xenia, P.; Wolfgang, P.; Hellmut, I.; Walter, D. Skin Cosmetics. In Ullmann’s Encyclopedia of Industrial Chemistry; Willey VCH: Weinheim, Germany, 2005; pp. 280–285. [Google Scholar]
- Hammani, H.; Laghrib, F.E.; Farahi, A.; Lahrich, S. Preparation of activated carbon from date stones as a catalyst to the reactivivty of hydroquinone: Application in skin whitening cosmetics samples. J. Sci. Adv. Mat. Devices 2019, 4, 451–458. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied. Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Song, C.; Liu, S. A new healthy sunscreen system for human: Solid lipid nanoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding vitamin E. Int. J. Biol. Macromol. 2005, 36, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Cherubim, D.J.; Martins, C.V.; De Farina, L.O.; Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Pouillot, A.; Polla, L.; Tacchini, P.; Neequaye, A.; Polla, A.; Polla, B. Natural Antioxidants and their Effects on the Skin chapter13. In Formulating, Packaging, and Marketing of Natural Cosmetic Products; Dayan, N., Kromidas, L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 239–257. [Google Scholar]
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Djouab, A.; Benamara, S.; Gougam, H.; Amellal, H.; Hidous, K. Physical and antioxidant properties of two Algerian date fruit species (Phoenix Dactylifera L. And Phoenix Canariensis, L.). Emir. J. Food. Agric. 2017, 28, 601–608. [Google Scholar] [CrossRef]
- Abdalla, R.S.M.; Albasheer, A.A.; ELHussein, A.R.M.; Gadkariem, E.A. Physico-chemical characteristics of date seed oil grown in Sudan. Am. J. Appl. Sci. 2012, 9, 993–999. [Google Scholar]
- Younas, A.; Naqvi, S.A.; Khan, M.R.; Shabbir, M.A.; Jatoi, M.A.; Anwar, F.; Inam-Ur-Raheem, M.; Saari, N.; Aadil, R.M. Functional food and nutra-pharmaceutical perspectives of date (Phoenix dactylifera L.) fruit. J. Food Biochem. 2020, 44, e13332. [Google Scholar] [CrossRef]
- BouHlali, E.; Ramchoun, M.; Alem, C.; Ghafoor, K.; Ennassir, J.; Zegzouti, Y.F. Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 350–357. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Al-Qahtani, J.H.; Al-Yousef, H.M.; Al-Said, M.S.; Ashour, A.E.; Al-Sohaibani, M.; Rafatullah, S. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity. J. Med. Food 2015, 18, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Gutierrez, S.; Martinez-Blanco, H.; Ferrero, M.A.; Monteagudo-Mera, A.; Rodriguez-Aparicio, L.B. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: A natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling 2014, 30, 1175–1182. [Google Scholar] [CrossRef]
- Kazemi, M.; Dadkhah, A. Antioxidant activity of date seed oils of fifteen varieties from Iran. Orient. J. Chem. 2012, 28, 1201–1205. [Google Scholar] [CrossRef]
- Patel, S.; Sharma, V.; Chauhan, N.S.; Thakur, M.; Dixit, V.K. Hair Growth: Focus on herbal therapeutic agent. Curr. Drug Discov. Technol. 2015, 12, 21–42. [Google Scholar] [CrossRef]
- Adhirajan, N.; Ravi Kumar, T.; Shanmugasundaram, N.; Babu, M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J. Ethnopharmacol. 2003, 88, 235–239. [Google Scholar] [CrossRef]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Mundkur, L.; Neupane, P.; Shah, K. Clinical study to evaluate the efficacy and safety of a hair serum product in healthy adult male and female volunteers with hair fall. Clin. Cosmet. Investig. Dermatol. 2020, 13, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, R.S.; Abbeddou, S.; Mansouri, A.; Calokerinos, A.C.; Kefalas, P. Phenolic profile and antioxidant activity of date-pits of seven Algerian date palm fruit varieties. Int. J. Food Prop. 2013, 16, 1037–1047. [Google Scholar] [CrossRef]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nistico, S.P. Role of vitamins in skin health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef] [Green Version]
- Benchelah, A.C.; Maka, M. Les dattes de la prehistoire a nos jours. Phytotherapie 2006, 1, 43–47. [Google Scholar] [CrossRef]
- Walke, D.D.; Daud, F.S. Date palm fruit (Phoenix dactylifera L.) as a cosmetic ingredient. JETIR 2018, 5, 755–762. [Google Scholar]
- DiBaise, M.; Tarleton, S.M. Hair, Nails, and Skin: Differentiating cutaneous manifestations of micronutrient deficiency. Nutr. Clin. Pract. 2019, 34, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.S.; Al-Shaqsi, M.S.; Albusaidi, J.Z.; Al-Balushi, M.S.; Hakkim, F.L.; Aleemallah, G.M.; Al-Jabri, A.A. Influence of different cultivars of Phoenix dactylifera L-date fruits on blood clotting and wound healing. Asian Pac. J. Trop. Biomed. 2018, 8, 371–376. [Google Scholar] [CrossRef]
- Rambabu, K.; Edathil, A.A.; Nirmala, G.S.; Hasan, S.W.; Yousef, A.F.; Show, P.L.; Banat, F. Date-fruit syrup waste extract as a natural additive for soap production with enhanced antioxidant and antibacterial activity. Environ. Technol. Innov. 2020, 20, 101153. [Google Scholar] [CrossRef]
Arabic Name | Stages (Weeks) | Fruit Maturity Characters |
---|---|---|
Hababauk | 1 to 5 | The first stage of development after pollination. |
Kimry | 6 to 16 | Fruit is small, green, and the moisture content is 85%. The weight and the concentration of tannins is high. |
Khalal | 17 to 20 | Fruit reaches maximum weight, starts to become yellow or red, and becomes rich in sucrose. |
Rutab | 21 to 24 | Water content is gradually reduced, and the fruit becomes soft, sweet, and dark. Sucrose is converted into reduced sugars, and the protein, ash, and fat content is decreased. |
Tamar | 25 to 27 | Final stage of maturity; the fruit is sweet, dark brown and wavy. |
Component | Date Fruit | Date Seed | References |
---|---|---|---|
Moisture * | 9.43–21.53 | 8.64–12.25 | [36,40,41] |
Protein * | 1.22–3.30 | 4.81–5.84 | [36,40,41] |
Fat * | 0.11–7.33 | 5.71–8.77 | [36,37,41] |
Ash * | 1.43–6.20 | 0.82–1.14 | [37,40,41] |
Carbohydrate * | 65.7–88.02 | 2.43–4.65 | [37,38,42] |
Dietary fiber * | 1.9–16.95 | 67.56–74.20 | [36,37,41] |
Magnesium # | 56–150 | 51.7–58.4 | [43,45] |
Calcium # | 123–187 | 28.9–38.8 | [43,45] |
Phosphorus # | 12–27 | 83.6–68.3 | [43,45] |
Potassium # | 289.6–512 | 229–293 | [43,45] |
Sodium # | 4.9–8.9 | 10.25–10.4 | [43,45] |
Iron # | 0.3–2.2 | 2.30–2.21 | [43] |
Type | Source | Products and Application | References |
---|---|---|---|
Date fruit | Fruit fiber | Muffins—increases total dietary fiber and ash content, improves antioxidant levels | [51,61] |
Syrup and powders | Dairy desserts—natural thickening agent, improves apparent viscosity and antioxidant activities | [62] | |
Syrup (10%) | Yogurt—increases sweetness and antioxidant value, high mineral and folate concentrations | [63] | |
Fermented fruit puree | Functional dietary supplement—increases concentrations of γ-amino butyric acid, conjugated fatty acids, and insoluble dietary fibers | [58] | |
Paste | Pork liver pâté—lowers lipid oxidation and enhances sensory acceptability | [64] | |
Pulp powder | Bread—increases dietary fiber content | [65] | |
Discarded fruits | High-fructose syrup | [66] | |
Immature fruits | Date juice concentrate | [67] | |
Wine | Wine | [71] | |
Date seed (pit) | Powder | Pit bread—contains high amounts of phenolics and increased antioxidant activities | [69] |
Powder (defatted) | Bread—increases dietary fiber content | [70,71] | |
Extract | Mayonnaise—ensures high oxidative stability and sensory acceptability | [72] | |
Extract | Oxidative stability of ground beef—increases total polyphenol content and antioxidant activity and lowers TBARS value | [73] | |
Powder | Used as coffee substitute | [59] | |
Oil | Used in ooking, pharmaceutical, and cosmetic applications | [51] | |
Date fruit and seed | Fatty acid and oil | Used in soap and cosmetic products | [74] |
Components | Source and Bioactivity | References |
---|---|---|
Gallic acid | Fruit and Seed. Antibacterial and antioxidant. Thermally fluctuating, Galloyl-RGD (linked with a peptide) used as cosmetic ingredient. | [81,90,103] |
Vanillic acid | Fruit and seed. Skin lightening and reducing pigmentation. | [47,81,90,91] |
Protocatechuic acid | Fruit and Seed. Reduces skin aging process. | [81,90,92] |
p-Hydroxybenzoic acid | Fruit and Seed. Increases the shelf life of cosmetics. | [83,90,93] |
Syringic acid | Seed. Fragrance ingredient and surfactant-emulsifying, surfactant-cleansing tool, skin penetration enhancer. | [82,94] |
Pelargonic acid | Fruit and Seed. Thermally fluctuating, Galloyl-RGD used as cosmetic ingredient. | [81,90] |
Syringic acid | Fruit and Seed. Anti-aging, antioxidant, and works as natural phytochemical in cosmetic products. | [90,94] |
Cinnamic acid | Fruit and Seed. UV stabilizer, antioxidant, and antimicrobial agent. | [83,90,95] |
Caffeic Acid | Fruit and Seed. Antioxidant. | [90,96] |
Ferulic acid | Fruit and Seed. Antioxidant, decreases melanogenesis, improves angiogenesis and stimulates wound healing, delays photoaging and promotes skin tone. | [90,97] |
Catechin | Fruit and Seed. Improves collagen arrangement, binding agent. | [81,98,99,101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, K.L.; Raman, J.; Shin, H.-J. Date Fruit and Seed in Nutricosmetics. Cosmetics 2021, 8, 59. https://doi.org/10.3390/cosmetics8030059
Alharbi KL, Raman J, Shin H-J. Date Fruit and Seed in Nutricosmetics. Cosmetics. 2021; 8(3):59. https://doi.org/10.3390/cosmetics8030059
Chicago/Turabian StyleAlharbi, Khlood Lafi, Jegadeesh Raman, and Hyun-Jae Shin. 2021. "Date Fruit and Seed in Nutricosmetics" Cosmetics 8, no. 3: 59. https://doi.org/10.3390/cosmetics8030059
APA StyleAlharbi, K. L., Raman, J., & Shin, H. -J. (2021). Date Fruit and Seed in Nutricosmetics. Cosmetics, 8(3), 59. https://doi.org/10.3390/cosmetics8030059