Next Article in Journal
Spirulina for Skin Care: A Bright Blue Future
Previous Article in Journal
4′,7-Isoflavandiol (Equol) Enhances Human Dermal Fibroblast Renewal and Has Effects Similar to 17β-Estradiol in Stimulating Collagen and Elastin Expression. Cell Cycle and RT-PCR Analysis without Phenol Red
Article

Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota

1
BASF Beauty Care Solutions France, 32 rue Saint Jean de Dieu, 69007 Lyon, France
2
Biofortis, Mérieux NutriSciences Company, 3 Route de la Chatterie, Saint-Herblain, 44800 Nantes, France
*
Author to whom correspondence should be addressed.
Cosmetics 2021, 8(1), 6; https://doi.org/10.3390/cosmetics8010006
Received: 4 December 2020 / Accepted: 24 December 2020 / Published: 6 January 2021
In this study, we assessed the change in skin microbiota composition, relative abundance, and diversity with skin physiology disruption induced by SLS patch. Healthy women declaring to have a reactive skin were submitted to a 0.5% aqueous sodium lauryl sulfate solution application under occlusive patch condition for 24 h. Skin properties were characterized by tewametry, corneometry, and colorimetry and bacterial diversity was assessed by 16S rRNA sequencing. Analysis before and one day after SLS patch removal revealed an increase of skin redness and a decrease of stratum corneum hydration and skin barrier function. The relative abundance of taxa containing potential pathogens increase (Firmicutes: Staphylococcaceae; Proteobacteria: Enterobacteriaceae, Pantoea) while some of the most occurring Actinobacteria with valuable skin protection and repair capacities decreased (Micrococcus, Kocuria, and Corynebacterium). We observed an impaired skin barrier function and dehydration induced by SLS patch disturb the subtle balance of skin microbiota towards skin bacterial community dysbiosis. This study provides new insights on the skin bacterial composition and skin physiology simultaneously impaired by a SLS patch. View Full-Text
Keywords: SLS patch; skin barrier; dysbiosis; skin microbiota SLS patch; skin barrier; dysbiosis; skin microbiota
Show Figures

Figure 1

MDPI and ACS Style

Leoty-Okombi, S.; Gillaizeau, F.; Leuillet, S.; Douillard, B.; Le Fresne-Languille, S.; Carton, T.; De Martino, A.; Moussou, P.; Bonnaud-Rosaye, C.; André, V. Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota. Cosmetics 2021, 8, 6. https://doi.org/10.3390/cosmetics8010006

AMA Style

Leoty-Okombi S, Gillaizeau F, Leuillet S, Douillard B, Le Fresne-Languille S, Carton T, De Martino A, Moussou P, Bonnaud-Rosaye C, André V. Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota. Cosmetics. 2021; 8(1):6. https://doi.org/10.3390/cosmetics8010006

Chicago/Turabian Style

Leoty-Okombi, Sabrina, Florence Gillaizeau, Sébastien Leuillet, Benoit Douillard, Sophie Le Fresne-Languille, Thomas Carton, Alessandra De Martino, Philippe Moussou, Catherine Bonnaud-Rosaye, and Valérie André. 2021. "Effect of Sodium Lauryl Sulfate (SLS) Applied as a Patch on Human Skin Physiology and Its Microbiota" Cosmetics 8, no. 1: 6. https://doi.org/10.3390/cosmetics8010006

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop