A Novel Development of a Curcuma aromatica Salisb Extract-Loaded Hydrogel Patch for Acne and Skin Inflammation: Physicochemical Properties and In Vitro Anti-Inflammatory and Anti-Acne Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Extract
2.3. Preparation of CA Hydrogel Patch
2.4. Drug Entrapment Efficiency of CA Hydrogel Patches Method
2.5. In Vitro Release and Skin Permeation Study
2.6. HPLC Analytical Method
2.7. Anti-Inflammatory Activity via Nitric Oxide Inhibition and Cytotoxicity in RAW 264.7 Cells Method
2.8. Determination of Anti-Cutibacterium Acnes Activity of Hydrogel Patch Using Disc Diffusion Method
2.9. Determination of Physicochemical Properties of Hydrogel Patch
2.9.1. pH of Product
2.9.2. Thickness
2.9.3. Tensile Strength and % Elongation at Break
2.9.4. Surface Morphology
2.9.5. Differential Scanning Calorimetry (DSC)
2.9.6. X-Ray Diffraction (XRD)
2.9.7. FTIR Spectroscopy
2.10. Statistical Analysis
3. Results and Discussion
3.1. C. aromatica Extract and Physical Appearance of Hydrogel Patch
3.2. Mechanical and Physicochemical Properties of Hydrogel Patches
3.3. Drug Entrapment Efficiency of CA Hydrogel Patches
3.4. In Vitro Drug Release Study
3.5. Anti-Inflammatory Activity via Nitric Oxide Inhibition and Cytotoxicity in RAW 264.7 Cells
3.6. Anti-Acne Activity Against Cutibacterium Acnes of Hydrogel Patch
3.7. In Vitro Skin Permeation Study
3.8. Physicochemical Properties of the Hydrogel Patch
3.8.1. The Surface Morphology
3.8.2. Differential Scanning Calorimetry Analysis
3.8.3. XRD Analysis
3.8.4. FTIR Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalewska, B.; Jankowiak, B.; Krajewska-Kułak, E.; Khvorik, D.F.; Niczyporuk, W. Quality of life in skin diseases as perceived by patients and nurses. Adv. Dermatol. Allergol. 2020, 37, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Chilicka, K.; Maj, J.; Panaszek, B. General quality of life of patients with acne vulgaris before and after performing selected cosmetological treatments. Patient Prefer. Adherence 2017, 11, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Çetinarslan, T.; Kümper, L.; Fölster-Holst, R. The immunological and structural epidermal barrier dysfunction and skin microbiome in atopic dermatitis-an update. Front. Mol. Biosci. 2023, 10, 1159404. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, X.; Li, X.; He, X.; Xiong, X.; Lai, J. Epidermal Barrier Integrity is Associated with Both Skin Microbiome Diversity and Composition in Patients with Acne Vulgaris. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2065–2075. [Google Scholar] [CrossRef]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int. J. Mol. Sci. 2023, 24, 10502. [Google Scholar] [CrossRef]
- Cong, T.X.; Hao, D.; Wen, X.; Li, X.H.; He, G.; Jiang, X. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 2019, 311, 337–349. [Google Scholar] [CrossRef]
- Stacey, S.K.; McEleney, M. Topical Corticosteroids: Choice and Application. Am. Fam. Physician 2021, 103, 337–343. [Google Scholar]
- Sevimli Dikicier, B. Topical treatment of acne vulgaris: Efficiency, side effects, and adherence rate. J. Int. Med. Res. 2019, 47, 2987–2992. [Google Scholar] [CrossRef]
- Kandhari, R. Side effects of anti-acne medications: A narrative review. Egypt. J. Dermatol. Venereol. 2024, 44, 1–6. [Google Scholar] [CrossRef]
- Saising, J.; Maneenoon, K.; Sakulkeo, O.; Limsuwan, S.; Götz, F.; Voravuthikunchai, S.P. Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand. Plants 2022, 11, 880. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Rakib, A.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Shahid-Ud-Daula, A.F.M.; Amin, M.N.; Simal-Gandara, J. The Genus Curcuma and Inflammation: Overview of the Pharmacological Perspectives. Plants 2021, 10, 63. [Google Scholar] [CrossRef]
- Ahmed, S.; Ansari, S.H.; Ali, M.; Bhatt, D.; Ansari, F. Phytochemical and biological investigations on Curcuma aromatica: A review. Pharmacogn. Rev. 2008, 2, 151–156. [Google Scholar]
- Umar, N.M.; Parumasivam, T.; Aminu, N.; Toh, S.-M. Phytochemical and pharmacological properties of Curcuma aromatica Salisb (wild turmeric). J. Appl. Pharm. Sci. 2020, 10, 180–194. [Google Scholar] [CrossRef]
- Pandey, C.; Karadi, R.V.; Bhardwaj, K.L.; Sahu, K.A. Screening of selected herbal plants for anti-acne properties. Int. J. Drug Dev. Res. 2012, 4, 216–222. [Google Scholar]
- Pabuprapap, W.; Nakyai, W.; Chaichompoo, W.; Pheedee, N.; Phetkeereerat, S.; Viyoch, J.; Yingyongnarongkul, B.; Ajavakom, V.; Chompoosor, A.; Piyachaturawat, P.; et al. Curcuma aromatica and Curcuma comosa extracts and isolated constituents provide protection against UVB-induced damage and attenuate matrix metalloproteinase-1 expression in HaCaT cells. Cosmetics 2022, 9, 23. [Google Scholar] [CrossRef]
- Gu, J.; Sun, R.; Wang, Q.; Liu, F.; Tang, D.; Chang, X. Standardized Astragalus mongholicus Bunge–Curcuma aromatica Salisb. extract efficiently suppresses colon cancer progression through gut microbiota modification in CT26-bearing mice. Front. Pharmacol. 2021, 12, 714322. [Google Scholar] [CrossRef]
- Pant, N.; Misra, H.; Jain, D.C.C. Phytochemical investigation of ethyl acetate extract from Curcuma aromatica Salisb. rhizomes. Arab. J. Chem. 2013, 6, 279–283. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory Effects of Curcumin in Microglial Cells. Front. Pharmacol. 2018, 9, 386. [Google Scholar] [CrossRef]
- Benameur, T.; Soleti, R.; Panaro, M.A.; La Torre, M.E.; Monda, V.; Messina, G.; Porro, C. Curcumin as Prospective Anti-Aging Natural Compound: Focus on Brain. Molecules 2021, 26, 4794. [Google Scholar] [CrossRef]
- Liu, C.-H.; Huang, H.-Y. In vitro anti-propionibacterium activity by curcumin containing vesicle system. Chem. Pharm. Bull. 2013, 61, 419–425. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Liao, C.; Liu, X.; Zhang, L.; Wang, P.; Wang, X. Curcumin-mediated photodynamic therapy for mild to moderate acne: A self-controlled split-face randomized study. Photodiagnosis Photodyn. Ther. 2024, 45, 103887. [Google Scholar] [CrossRef]
- Vollono, L.; Falconi, M.; Gaziano, R.; Iacovelli, F.; Dika, E.; Terracciano, C.; Bianchi, L.; Campione, E. Potential of Curcumin in Skin Disorders. Nutrients 2019, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G.; Allegrini, P.; de Combarieu, E.; Novicelli, F.; Ramaschi, G.; Sardone, N. Shedding light on curcumin stability. Fitoterapia 2022, 156, 105084. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J. Agric. Food Chem. 2017, 65, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.F.; Ang, K.P.; Sethi, G.; Looi, C.Y. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina 2023, 59, 778. [Google Scholar] [CrossRef]
- Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Neamtu, B.; Barbu, A.; Negrea, M.O.; Berghea-Neamțu, C.Ș.; Popescu, D.; Zăhan, M.; Mireșan, V. Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci. 2022, 23, 9117. [Google Scholar] [CrossRef]
- Amruth, P.; Jacob, R.; Joy, J.M.; Visnuvinayagam, S.; Remya, S.; Mathew, S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int. J. Biol. Macromol. 2024, 282 Pt 5, 137084. [Google Scholar] [CrossRef]
- Zepon, K.M.; Martins, M.M.; Marques, M.S.; Heckler, J.M.; Dal Pont Morisso, F.; Moreira, M.G.; Ziulkoski, A.L.; Kanis, L.A. Smart wound dressing based on κ-carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr. Polym. 2019, 206, 362–370. [Google Scholar] [CrossRef]
- Yuan, L.; Wu, Y.; Qin, Y.; Yong, H.; Liu, J. Recent advances in the preparation, characterization and applications of locust bean gum-based films. J. Renew. Mater. 2020, 8, 1565–1579. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Patel, N.A.; Patel, N.J.; Patel, R.P. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug. Drug Dev. Ind. Pharm. 2009, 35, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Saka, O.M.; Aygüler, C.İ.; Özdemir, N.S.; Sürücü, B.; Çakırlı, E.; Nemutlu, E.; Demirbolat, G.M. An Experimental Design Approach for Producing Curcumin-Loaded Solid Lipid Nanoparticles. Pharmaceuticals 2025, 18, 470. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology Q2(R1); ICH: Geneva, Switzerland, 2005; pp. 6–13. [Google Scholar]
- Kongkwamcharoen, C.; Itharat, A.; Ketjinda, W.; Lee, H.Y.; Moon, G.S.; Davies, N.M. Formulation design and physicochemical evaluation of an anti-inflammatory hydrogel patch containing Crinum asiaticum L. extract. Res. Pharm. Sci. 2023, 18, 244–261. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Berg, R.W.; Milligan, M.C.; Sarbaugh, F.C. Association of skin wetness and pH with diaper dermatitis. Pediatr. Dermatol. 1994, 11, 18–20. [Google Scholar] [CrossRef]
- Blaak, J.; Staib, P. The Relation of pH and Skin Cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar] [CrossRef]
- Prakash, C.; Bhargava, P.; Tiwari, S.; Majumdar, B.; Bhargava, R.K. Skin Surface pH in Acne Vulgaris: Insights from an Observational Study and Review of the Literature. J. Clin. Aesthetic Dermatol. 2017, 10, 33–39. [Google Scholar]
- Syed, M.S.; Azam, F.; Ahmad, S.; Ahmad, F.; Mushtaq, B.; Habib, S.; Rasheed, A.; Zafar, M.S.; Rasul, S. Development of environment friendly biodegradable biopolymer-based hydrogel composites incorporated with waste cotton for wound dressings. J. Ind. Text. 2025, 55, 15280837251324895. [Google Scholar] [CrossRef]
- Musa, I.; Rotaru-Zavaleanu, A.D.; Sfredel, V.; Aldea, M.; Gresita, A.; Glavan, D.G. Post-Stroke Recovery: A Review of Hydrogel-Based Phytochemical Delivery Systems. Gels 2025, 11, 260. [Google Scholar] [CrossRef]
- Petitjean, M.; Isasi, J.R. Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. Molecules 2022, 27, 8265. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Gonçalves, A.M.M. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar. Drugs 2023, 21, 384. [Google Scholar] [CrossRef]
- Tako, M.; Nakamura, S. Synergistic interaction between kappa-carrageenan and locust-bean gum in aqueous media. Agric. Biol. Chem. 1986, 50, 2817–2822. [Google Scholar] [CrossRef]
- Martins, J.T.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Souza, B.W.S.; Vicente, A.A. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012, 29, 280–289. [Google Scholar] [CrossRef]
- Ballesteros-Mártinez, L.; Pérez, C.E.; Andrade, R. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS J. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, A.; Puri, V.; Singh, I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. BioImpacts BI 2019, 9, 37–43. [Google Scholar] [CrossRef]
- Coondoo, A.; Phiske, M.; Vermah, S.; Lahiri, K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J. 2014, 5, 416–425. [Google Scholar] [CrossRef]
- Pintatum, A.; Maneerat, W.; Logie, E.; Tuenter, E.; Sakavitsi, M.E.; Pieters, L.; Berghe, W.V.; Sripisut, T.; Deachathai, S.; Laphookhieo, S. In Vitro Anti-Inflammatory, Anti-Oxidant, and Cytotoxic Activities of Four Curcuma Species and the Isolation of Compounds from Curcuma aromatica Rhizome. Biomolecules 2020, 10, 799. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.; Lee, J.; Jeon, W.; Yeo, C.; Lee, Y.; Baek, S.; Ha, I. Curcuma aromatica Salisb. Protects from Acetaminophen-Induced Hepatotoxicity by Regulating the Sirt1/HO-1 Signaling Pathway. Nutrients 2023, 15, 808. [Google Scholar] [CrossRef]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef]
- Feldman, S.R.; Chen, D.M. How patients experience and manage dryness and irritation from acne treatment. J. Drugs Dermatol. JDD 2011, 10, 605–608. [Google Scholar]
- Kwon, K.C.; Won, J.G.; Kim, M.S.; Shin, Y.W.; Park, S.W.; Song, Y.S. Anti-acne activity of carnitine salicylate and magnolol through the regulation of exfoliation, lipogenesis, bacterial growth and inflammation. Skin Res. Technol. 2023, 29, e13406. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, C.; Wang, H.; Wang, D. Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels. ChemPhysMater 2024, 3, 357–375. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.H.; Shahien, M.M.; El-Horany, H.E.-S.; Ahmed, E.H. Modified Phospholipid Vesicular Gel for Transdermal Drug Delivery: The Influence of Glycerin and/or Ethanol on Their Lipid Bilayer Fluidity and Penetration Characteristics. Gels 2025, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Liew, J.W.Y.; Loh, K.S.; Ahmad, A.; Lim, K.L.; Wan Daud, W.R. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS ONE 2017, 12, e0185313. [Google Scholar] [CrossRef]
- Elnashar, M.M.; Yassin, M.A. Lactose hydrolysis by beta-galactosidase covalently immobilized to thermally stable biopolymers. Appl. Biochem. Biotechnol. 2009, 159, 426–437. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Febriyenti Indra, P.; Zaini, E.; Ismed, F.; Lucida, H. Preparation and characterization of quercetin-polyvinylpyrrolidone K-30 spray dried solid dispersion [Preparación y caracterización de dispersión sólida de quercetina-polivinilpirrolidona K-30 secada por rociado]. J. Pharm. Pharmacogn. Res. 2020, 8, 127–134. [Google Scholar] [CrossRef]
- Wdowiak, K.; Tajber, L.; Miklaszewski, A.; Cielecka-Piontek, J. Sweeteners Show a Plasticizing Effect on PVP K30—A Solution for the Hot-Melt Extrusion of Fixed-Dose Amorphous Curcumin-Hesperetin Solid Dispersions. Pharmaceutics 2024, 16, 659. [Google Scholar] [CrossRef]
- Hezma, A.M.; Abdelrazzak, A.B.; El-Bahy, G.S. Preparation and spectroscopic investigations of hydroxyapatite-curcumin nanoparticles-loaded polylactic acid for biomedical application. Egypt. J. Basic Appl. Sci. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Anand, R.; Collard, D.; Thomann, J.S.; Duday, D. Antimicrobial Sponge: A Polyvinyl Alcohol, Tannic Acid and Curcumin-Loaded Nanolignin Hydrogel Composite Scaffold. Gels 2025, 11, 168. [Google Scholar] [CrossRef]









| Formulations | Carrageenan | LG and PVP K-30 | Glycerin | Curcuma aromatica Extract |
|---|---|---|---|---|
| B1 (Blank) | 1.5 | 1.5 | 0.5 | - |
| B2 (Blank) | 1.25 | 1.75 | 0.5 | - |
| B3 (Blank) | 1 | 2 | 0.5 | - |
| CA1 | 1.5 | 1.5 | 0.5 | 1 |
| CA2 | 1.25 | 1.75 | 0.5 | 1 |
| CA3 | 1 | 2 | 0.5 | 1 |
| Formulation | Thickness (mm) ± SD | pH Value ± SD | Tensile Strength (kg/cm2) ± SD | Elongation at Break (%) ± SD |
|---|---|---|---|---|
| B1 | 0.63 ± 0.01 | 6.83 ± 0.31 | 1.21 ± 0.13 | 209.41 ± 4.90 |
| B2 | 0.59 ± 0.01 | 6.80 ± 0.26 | 1.14 ± 0.21 | 242.65 ± 7.95 |
| B3 | 0.61 ± 0.01 | 6.83 ± 0.29 | 1.20 ± 0.18 | 269.00 ± 5.52 |
| CA1 | 0.63 ± 0.03 | 5.58 ± 0.10 * | 1.52 ± 0.13 * | 199.75 ± 13.37 |
| CA2 | 0.57 ± 0.02 | 5.57 ± 0.12 * | 1.50 ± 0.09 * | 264.15 ± 19.08 |
| CA3 | 0.60 ± 0.01 | 5.57 ± 0.12 * | 1.46 ± 0.12 | 285.02 ± 18.56 |
| Hydrogel Patches | Zero Order Qt = K0t + Q0 | First Order (Qt = Q0e−Kt) | |
|---|---|---|---|
| R2 | R2 | R2 | |
| CA1 | 0.6524 | 0.7321 | 0.8890 |
| CA2 | 0.6951 | 0.7948 | 0.9147 |
| CA3 | 0.6200 | 0.7037 | 0.8650 |
| Samples | Code | Inhibition Zone (mm; Mean ± SD, n = 6) |
|---|---|---|
| CA1 hydrogel patch 1% | CA1 | 9.60 ± 0.50 * |
| CA2 hydrogel patch 1% | CA2 | 12.70 ± 2.10 |
| CA3 hydrogel patch 1% | CA3 | 11.20 ± 1.10 |
| B1 hydrogel patch | B1 | NA |
| B2 hydrogel patch | B2 | NA |
| B3 hydrogel patch | B3 | NA |
| Clindamycin hydrogel patch 0.01% | Clindamycin 0.01% | 29.10 ± 1.80 |
| Commercial anti-acne patch product; Salicylic acid 0.4% patch | CS | 0.00 ± 0.00 |
| Commercial anti-acne patch product; Acne-absorbing patch | CM | 0.00 ± 0.00 |
| Hydrogel Patch | Zero Order Qt = K0t + Q0 | First Order (Qt Q0e−Kt) | |
|---|---|---|---|
| R2 | R2 | R2 | |
| CA2 | 0.4957 | 0.4763 | 0.7011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongkwamcharoen, C.; Ungphaiboon, S.; Ooraikul, B.; Punsawad, C. A Novel Development of a Curcuma aromatica Salisb Extract-Loaded Hydrogel Patch for Acne and Skin Inflammation: Physicochemical Properties and In Vitro Anti-Inflammatory and Anti-Acne Activities. Cosmetics 2025, 12, 240. https://doi.org/10.3390/cosmetics12060240
Kongkwamcharoen C, Ungphaiboon S, Ooraikul B, Punsawad C. A Novel Development of a Curcuma aromatica Salisb Extract-Loaded Hydrogel Patch for Acne and Skin Inflammation: Physicochemical Properties and In Vitro Anti-Inflammatory and Anti-Acne Activities. Cosmetics. 2025; 12(6):240. https://doi.org/10.3390/cosmetics12060240
Chicago/Turabian StyleKongkwamcharoen, Chonthicha, Suwipa Ungphaiboon, Buncha Ooraikul, and Chuchard Punsawad. 2025. "A Novel Development of a Curcuma aromatica Salisb Extract-Loaded Hydrogel Patch for Acne and Skin Inflammation: Physicochemical Properties and In Vitro Anti-Inflammatory and Anti-Acne Activities" Cosmetics 12, no. 6: 240. https://doi.org/10.3390/cosmetics12060240
APA StyleKongkwamcharoen, C., Ungphaiboon, S., Ooraikul, B., & Punsawad, C. (2025). A Novel Development of a Curcuma aromatica Salisb Extract-Loaded Hydrogel Patch for Acne and Skin Inflammation: Physicochemical Properties and In Vitro Anti-Inflammatory and Anti-Acne Activities. Cosmetics, 12(6), 240. https://doi.org/10.3390/cosmetics12060240

