Frontiers in Topical Photoprotection
Abstract
:1. Introduction
2. The Effects of Sun Exposure on Skin Health
2.1. Mechanisms of UVB-Mediated Skin Damage
2.2. UVA Exposure: Cellular Mechanisms and Clinical Outcomes
2.3. Blue Light Effects on Skin: Emerging Mechanisms and Clinical Outcomes
2.4. Infrared Light: Dual Effects on Skin
2.5. UV Radiation and Skin Cell Senescence
Marker | Function | Cell Types | UV Effect | Refs. |
---|---|---|---|---|
SA-β-gal | accumulates in the lysosomes of senescent cells. | Keratinocyte Fibroblast Melanocyte | ↑ | [120,131,135,136] |
p16 | tumor suppressor, which induces cell-cycle arrest and senescence | Keratinocyte Fibroblast Melanocyte | ↑ | [120,131,135,137,138] |
p21 | cyclin-dependent kinase inhibitor, inhibits cell proliferation | Keratinocyte Fibroblast Melanocyte | ↑ | [135,137,139] |
p53 | tumor suppressor, frequently mutated in skin cancer cells | Keratinocyte Fibroblast Melanocyte | ↑ | [135,140,141,142] |
Lamin B1 | ensures the stability of nuclear structure and regulates chromatin distribution, DNA replication and transcription, gene expression, and cell cycle maintenance. | Keratinocyte Fibroblast Melanocyte | ↓ | [136,139,143] |
Telomere-associated foci (TAFs) | structures that form at the ends of telomeres when they become damaged or dysfunctional | Melanocyte | ↑ | [120] |
mtDNA mutations | mutations result in mitochondrial dysfunction, which can manifest as disruption of energy production and exacerbation of ROS production [144,145] | Keratinocyte Fibroblast Melanocyte | ↑ | [144,145] |
DNA methylation (DNMT1) | epigenetic marker involved in activating the X chromosome, silencing repetitive elements of the genome, inhibiting gene transcription and genomic imprinting | Keratinocyte Fibroblast | ↑ | [146,147] |
Senescence-Associated Secretory Phenotype (SASP) factors | a collection of soluble signaling factors including cytokines, chemokines, and growth factors, secreted proteases, and secreted insoluble proteins/extracellular matrix components (ECM) | Keratinocyte Fibroblast Melanocyte | ↑ | [123,148,149,150,151] |
mTOR | protein kinase complex that integrates mitogenic signals to synthesize growth factors and ATP to drive anabolic pathways such as protein translation, lipid and nucleotide biosynthesis and organelle biogenesis | Keratinocyte Fibroblast | ↑ | [152,153] |
HMGB1 | nuclear protein that is involved in transcriptional activation, DNA folding, and tissue damage signaling. In senescent cells, HMGB1 translocates from the nucleus to the cytoplasm and extracellular space, facilitating the release of SASP factors | Keratinocyte Melanocyte | ↑ | [154,155,156] |
SIRT1 | NAD+-dependent deacetylase that regulate cellular stress response through DNA repair, chromatin regulation, metabolism, and inflammation. | Keratinocyte Fibroblast | ↓ | [157,158] |
2.6. UV Radiation Effects on RNA
2.7. The Circadian Rhythms Impact on UV Damage Severity
2.8. Comparative Effects of Acute and Chronic UVR Exposure
2.9. Beyond UV Radiation: Combined Environmental Impacts
2.10. Internal Photoprotection: The Gut-Skin Axis
2.11. Skin Microbiome Dynamics Under UV Exposure
3. Advances in Formulating Sunscreens
Sunscreen Formulation and Delivery Optimization
4. Sunscreen Filters
Enhancing Photoprotection with Non-Filter Approaches
5. Assessing Sunscreen Efficacy
6. Regulatory Landscape and UV Filter Considerations
7. Next Frontiers in Sun Protection
7.1. AI Applications in Sunscreen Development
7.2. Biotechnological Production of Sunscreen Ingredients
8. Closing Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldahan, A.S.; Shah, V.V.; Mlacker, S.; Nouri, K. The History of Sunscreen. JAMA Dermatol. 2015, 151, 1316. [Google Scholar] [CrossRef] [PubMed]
- Varada, S.; Alessa, D. Saving Their Skins: How Animals Protect From the Sun. JAMA Dermatol. 2014, 150, 989. [Google Scholar] [CrossRef] [PubMed]
- Rivers, J.K. Hippos Help Shed Light on Photoprotection. J. Cutan. Med. Surg. 2012, 16, 73. [Google Scholar] [CrossRef]
- Rifkin, R.F.; Dayet, L.; Queffelec, A.; Summers, B.; Lategan, M.; d’Errico, F. Evaluating the Photoprotective Effects of Ochre on Human Skin by In Vivo SPF Assessment: Implications for Human Evolution, Adaptation and Dispersal. PLoS ONE 2015, 10, e0136090. [Google Scholar] [CrossRef]
- Saraf, S.; Kaur, C. In Vitro Sun Protection Factor Determination of Herbal Oils Used in Cosmetics. Phcog. Res. 2010, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Nutting, J. 2000 Years of Zinc and Brass. Int. Mater. Rev. 1991, 36, 81–84. [Google Scholar] [CrossRef]
- Drissi, M.; Carr, E.; Housewright, C. Sunscreen: A Brief Walk through History. Bayl. Univ. Med. Cent. Proc. 2022, 35, 121–123. [Google Scholar] [CrossRef]
- Goldsberry, A.; Dinner, A.; Hanke, C.W. Thanaka: Traditional Burmese Sun Protection. J. Drugs Dermatol. 2014, 13, 306–307. [Google Scholar]
- Urbach, F. The Historical Aspects of Sunscreens. J. Photochem. Photobiol. B Biol. 2001, 64, 99–104. [Google Scholar] [CrossRef]
- Svarc, F. A Brief Illustrated History on Sunscreens and Sun Protection. Pure Appl. Chem. 2015, 87, 929–936. [Google Scholar] [CrossRef]
- Sun Care Products Market Size, Share & Industry Analysis, by Product Type (Sun-Protection, After-Sun, and Tanning), by form (Lotion, Spray, Stick, and Others), by SPF (0-29, 30-50, and >50), by Distribution Channel (Hypermarkets & Supermarkets, Pharmacy Stores, Online Channels, and Others), and Regional Forecast, 2025–2032. Available online: https://www.fortunebusinessinsights.com/sun-care-products-market-103821 (accessed on 25 February 2025).
- Kochevar, I.E.; Pathak, M.A.; Parrish, J.A. Photophysics, Photochemistry and Photobiology. In Fitzpatrick’s Dermatology in General Medicine; McGraw-Hill: New York, NY, USA, 1999; pp. 220–229. [Google Scholar]
- Raffa, R.B.; Pergolizzi, J.V.; Taylor, R.; Kitzen, J.M.; for the NEMA Research Group. Sunscreen Bans: Coral Reefs and Skin Cancer. J. Clin. Pharm. Ther. 2019, 44, 134–139. [Google Scholar] [CrossRef]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. Human Skin Pigmentation as an Adaptation to UV Radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 8962–8968. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Solar and Ultraviolet Radiation. In Radiation; Agency for Research on Cancer: Lyon, France, 2012; ISBN 978-92-832-1321-5. [Google Scholar]
- Trucco, L.D.; Mundra, P.A.; Hogan, K.; Garcia-Martinez, P.; Viros, A.; Mandal, A.K.; Macagno, N.; Gaudy-Marqueste, C.; Allan, D.; Baenke, F.; et al. Ultraviolet Radiation–Induced DNA Damage Is Prognostic for Outcome in Melanoma. Nat. Med. 2019, 25, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Karisola, P.; Nikkola, V.; Joronen, H.; Ylianttila, L.; Grönroos, M.; Partonen, T.; Snellman, E.; Alenius, H. Narrow-Band UVB Radiation Triggers Diverse Changes in the Gene Expression and Induces the Accumulation of M1 Macrophages in Human Skin. J. Photochem. Photobiol. B 2024, 253, 112887. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.; Beissert, S. Milestones in Photoimmunology. J. Investig. Dermatol. 2013, 133, E7–E10. [Google Scholar] [CrossRef]
- Byrne, S.N. How Much Sunlight Is Enough? Photochem. Photobiol. Sci. 2014, 13, 840–852. [Google Scholar] [CrossRef]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A Global Perspective for Health. Dermato-Endocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef]
- Suozzi, K.; Turban, J.; Girardi, M. Cutaneous Photoprotection: A Review of the Current Status and Evolving Strategies. Yale J. Biol. Med. 2020, 93, 55–67. [Google Scholar]
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef]
- Rees, J.L. The Genetics of Sun Sensitivity in Humans. Am. J. Hum. Genet. 2004, 75, 739–751. [Google Scholar] [CrossRef]
- Latreille, J.; Ezzedine, K.; Elfakir, A.; Ambroisine, L.; Gardinier, S.; Galan, P.; Hercberg, S.; Gruber, F.; Rees, J.; Tschachler, E.; et al. MC1R Gene Polymorphism Affects Skin Color and Phenotypic Features Related to Sun Sensitivity in a Population of French Adult Women. Photochem. Photobiol. 2009, 85, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.C.; Emmert, S.; Boeckmann, L. Xeroderma Pigmentosum: Gene Variants and Splice Variants. Genes 2021, 12, 1173. [Google Scholar] [CrossRef]
- Spivak, G.; Hanawalt, P.C. Photosensitive Human Syndromes. Mutat. Res. 2015, 776, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Labecka, N.; Szczepanczyk, M.; Mojumdar, E.; Sparr, E.; Björklund, S. Unraveling UVB Effects: Catalase Activity and Molecular Alterations in the Stratum Corneum. J. Colloid Interface Sci. 2024, 666, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodríguez, L.A.; Reichardt, C.; Hoehn, S.J.; Jockusch, S.; Crespo-Hernández, C.E. Detection of the Thietane Precursor in the UVA Formation of the DNA 6–4 Photoadduct. Nat. Commun. 2020, 11, 3599. [Google Scholar] [CrossRef]
- Sinha, N.K.; McKenney, C.; Yeow, Z.Y.; Li, J.J.; Nam, K.H.; Yaron-Barir, T.M.; Johnson, J.L.; Huntsman, E.M.; Cantley, L.C.; Ordureau, A.; et al. The Ribotoxic Stress Response Drives UV-Mediated Cell Death. Cell 2024, 187, 3652–3670.e40. [Google Scholar] [CrossRef]
- Gallagher, R.P.; Lee, T.K. Adverse Effects of Ultraviolet Radiation: A Brief Review. Progress. Biophys. Mol. Biol. 2006, 92, 119–131. [Google Scholar] [CrossRef]
- El-Abaseri, T.B.; Putta, S.; Hansen, L.A. Ultraviolet Irradiation Induces Keratinocyte Proliferation and Epidermal Hyperplasia through the Activation of the Epidermal Growth Factor Receptor. Carcinogenesis 2006, 27, 225–231. [Google Scholar] [CrossRef]
- Green, A.C.; Wallingford, S.C.; McBride, P. Childhood Exposure to Ultraviolet Radiation and Harmful Skin Effects: Epidemiological Evidence. Progress. Biophys. Mol. Biol. 2011, 107, 349–355. [Google Scholar] [CrossRef]
- Armstrong, B.K.; Kricker, A. The Epidemiology of UV Induced Skin Cancer. J. Photochem. Photobiol. B Biol. 2001, 63, 8–18. [Google Scholar] [CrossRef]
- Al-Sadek, T.; Yusuf, N. Ultraviolet Radiation Biological and Medical Implications. Curr. Issues Mol. Biol. 2024, 46, 1924–1942. [Google Scholar] [CrossRef]
- Watson, R.E.B.; Gibbs, N.K.; Griffiths, C.E.M.; Sherratt, M.J. Damage to Skin Extracellular Matrix Induced by UV Exposure. Antioxid. Redox Signal. 2014, 21, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Taulescu, M.; Crisan, D.; Cosgarea, R.; Parvu, A.; Cãtoi, C.; Drugan, T. Expression of Advanced Glycation End-Products on Sun-Exposed and Non-Exposed Cutaneous Sites during the Ageing Process in Humans. PLoS ONE 2013, 8, e75003. [Google Scholar] [CrossRef] [PubMed]
- Alhasaniah, A.; Sherratt, M.J.; O’Neill, C.A. The Impact of Ultraviolet Radiation on Barrier Function in Human Skin: Molecular Mechanisms and Topical Therapeutics. Curr. Med. Chem. 2018, 25, 5503–5511. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef]
- Podda, M.; Grundmann-Kollmann, M. Low Molecular Weight Antioxidants and Their Role in Skin Ageing: Low MW Antioxidants in Skin Ageing. Clin. Exp. Dermatol. 2001, 26, 578–582. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ananthaswamy, H.N. Short-Term and Long-Term Cellular and Molecular Events Following UV Irradiation of Skin: Implications for Molecular Medicine. Expert. Rev. Mol. Med. 2002, 4, 1–22. [Google Scholar] [CrossRef]
- Abuetabh, Y.; Wu, H.H.; Chai, C.; Al Yousef, H.; Persad, S.; Sergi, C.M.; Leng, R. DNA Damage Response Revisited: The P53 Family and Its Regulators Provide Endless Cancer Therapy Opportunities. Exp. Mol. Med. 2022, 54, 1658–1669. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J. Actions of Ultraviolet Light on Cellular Structures. In Cancer: Cell Structures, Carcinogens and Genomic Instability; Springer: Berlin, Germany, 2006; pp. 131–157. [Google Scholar] [CrossRef]
- Bustamante, M.; Hernandez-Ferrer, C.; Tewari, A.; Sarria, Y.; Harrison, G.I.; Puigdecanet, E.; Nonell, L.; Kang, W.; Friedländer, M.R.; Estivill, X.; et al. Dose and Time Effects of Solar-simulated Ultraviolet Radiation on the in Vivo Human Skin Transcriptome. Br. J. Dermatol. 2020, 182, 1458–1468. [Google Scholar] [CrossRef]
- Young, A.R.; Harrison, G.I.; Chadwick, C.A.; Nikaido, O.; Ramsden, J.; Potten, C.S. The Similarity of Action Spectra for Thymine Dimers in Human Epidermis and Erythema Suggests That DNA Is the Chromophore for Erythema. J. Investig. Dermatol. 1998, 111, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Young, A.R. Acute Effects of UVR on Human Eyes and Skin. Progress. Biophys. Mol. Biol. 2006, 92, 80–85. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Falcucci, S.; Brocco, U.; Triani, F.; Lanzillotta, C.; Donati, M.; Panetta, C.; Luzi, F.; Iavarone, F.; Vincenzoni, F.; et al. Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression. Cancers 2020, 12, 110. [Google Scholar] [CrossRef]
- Mori, Y.; Aki, K.; Kuge, K.; Tajima, S.; Yamanaka, N.; Kaji, Y.; Yamamoto, N.; Nagai, R.; Yoshii, H.; Fujii, N.; et al. UV B-Irradiation Enhances the Racemization and Isomerizaiton of Aspartyl Residues and Production of Nε-Carboxymethyl Lysine (CML) in Keratin of Skin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 3303–3309. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-W.; Hung, Y.-C.; Lin, T.-Y.; Fang, J.-Y.; Yang, P.-M.; Chen, M.-H.; Pan, T.-L. Comparison of the Biological Impact of UVA and UVB upon the Skin with Functional Proteomics and Immunohistochemistry. Antioxidants 2019, 8, 569. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, P.; Li, H.; Dai, J. BMAL1 and CLOCK Proteins in Regulating UVB-induced Apoptosis and DNA Damage Responses in Human Keratinocytes. J. Cell. Physiol. 2018, 233, 9563–9574. [Google Scholar] [CrossRef]
- Dakup, P.; Gaddameedhi, S. Impact of the Circadian Clock on UV-Induced DNA Damage Response and Photocarcinogenesis. Photochem. Photobiol. 2017, 93, 296–303. [Google Scholar] [CrossRef]
- Kemp, M.; Spandau, D.; Travers, J. Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin. Molecules 2017, 22, 356. [Google Scholar] [CrossRef]
- Beitner, H.; Wennersten, G. The Immediate Action of Long-Wave Ultraviolet Radiation (UVA) on Suprabasal Melanocytes in Human Skin: A Transmission Electron Microscopical Study. Acta Derm. Venereol. 1983, 63, 328–334. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Kohara, N.; Sato, N.; Ando, H.; Ichihashi, M. Riboflavin Plays a Pivotal Role in the UVA-Induced Cytotoxicity of Fibroblasts as a Key Molecule in the Production of H2O2 by UVA Radiation in Collaboration with Amino Acids and Vitamins. Int. J. Mol. Sci. 2020, 21, 554. [Google Scholar] [CrossRef]
- Redmond, R.W.; Rajadurai, A.; Udayakumar, D.; Sviderskaya, E.V.; Tsao, H. Melanocytes Are Selectively Vulnerable to UVA-Mediated Bystander Oxidative Signaling. J. Investig. Dermatol. 2014, 134, 1083–1090. [Google Scholar] [CrossRef]
- Berlett, B.S.; Stadtman, E.R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed]
- Sander, C.S.; Chang, H.; Salzmann, S.; Müller, C.S.L.; Ekanayake-Mudiyanselage, S.; Elsner, P.; Thiele, J.J. Photoaging Is Associated with Protein Oxidation in Human Skin In Vivo. J. Investig. Dermatol. 2002, 118, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Witt, E.; Han, D.; Epstein, W.; Packer, L. Enzymic and Non-Enzymic Antioxidants in Epidermis and Dermis of Human Skin. J. Investig. Dermatol. 1994, 102, 122–124. [Google Scholar] [CrossRef]
- Cadet, J.; Douki, T.; Ravanat, J. Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation. Photochem. Photobiol. 2015, 91, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Cuquerella, M.C.; Lhiaubet-Vallet, V.; Bosca, F.; Miranda, M.A. Photosensitised Pyrimidine Dimerisation in DNA. Chem. Sci. 2011, 2, 1219. [Google Scholar] [CrossRef]
- Premi, S.; Wallisch, S.; Mano, C.M.; Weiner, A.B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E.J.H.; Halaban, R.; Douki, T.; Brash, D.E. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure. Science 2015, 347, 842–847. [Google Scholar] [CrossRef]
- Kielbassa, C. Wavelength Dependence of Oxidative DNA Damage Induced by UV and Visible Light. Carcinogenesis 1997, 18, 811–816. [Google Scholar] [CrossRef]
- Cheng, K.C.; Cahill, D.S.; Kasai, H.; Nishimura, S.; Loeb, L.A. 8-Hydroxyguanine, an Abundant Form of Oxidative DNA Damage, Causes G-T and A-C Substitutions. J. Biol. Chem. 1992, 267, 166–172. [Google Scholar] [CrossRef]
- Berneburg, M.; Grether-Beck, S.; Kürten, V.; Ruzicka, T.; Briviba, K.; Sies, H.; Krutmann, J. Singlet Oxygen Mediates the UVA-Induced Generation of the Photoaging-Associated Mitochondrial Common Deletion. J. Biol. Chem. 1999, 274, 15345–15349. [Google Scholar] [CrossRef] [PubMed]
- Berneburg, M.; Plettenberg, H.; Medve-König, K.; Pfahlberg, A.; Gers-Barlag, H.; Gefeller, O.; Krutmann, J. Induction of the Photoaging-Associated Mitochondrial Common Deletion In Vivo in Normal Human Skin. J. Investig. Dermatol. 2004, 122, 1277–1283. [Google Scholar] [CrossRef]
- Krutmann, J. Ultraviolet A Radiation-Induced Biological Effects in Human Skin: Relevance for Photoaging and Photodermatosis. J. Dermatol. Sci. 2000, 23, S22–S26. [Google Scholar] [CrossRef] [PubMed]
- Clayton, D.A.; Doda, J.N.; Friedberg, E.C. The Absence of a Pyrimidine Dimer Repair Mechanism in Mammalian Mitochondria. Proc. Natl. Acad. Sci. USA 1974, 71, 2777–2781. [Google Scholar] [CrossRef]
- Williams, M.D.; Van Remmen, H.; Conrad, C.C.; Huang, T.T.; Epstein, C.J.; Richardson, A. Increased Oxidative Damage Is Correlated to Altered Mitochondrial Function in Heterozygous Manganese Superoxide Dismutase Knockout Mice. J. Biol. Chem. 1998, 273, 28510–28515. [Google Scholar] [CrossRef]
- Krutmann, J. The Role of UVA Rays in Skin Aging. Eur. J. Dermatol. 2001, 11, 170–171. [Google Scholar] [PubMed]
- Moyal, D. Prevention of Ultraviolet-induced Skin Pigmentation. Photodermatol. Photoimmunol. Photomed. 2004, 20, 243–247. [Google Scholar] [CrossRef]
- Garbe, B.; Kockott, D.; Werner, M.; Theek, C.; Heinrich, U.; Braun, N. The Influence of Short-Wave and Long-Wave Radiation Spectrum on the Photostability of Sunscreens. Skin. Pharmacol. Physiol. 2020, 33, 77–85. [Google Scholar] [CrossRef]
- Sklar, L.R.; Almutawa, F.; Lim, H.W.; Hamzavi, I. Effects of Ultraviolet Radiation, Visible Light, and Infrared Radiation on Erythema and Pigmentation: A Review. Photochem. Photobiol. Sci. 2012, 12, 54–64. [Google Scholar] [CrossRef]
- de Gálvez, E.N.; Aguilera, J.; Solis, A.; de Gálvez, M.V.; de Andrés, J.R.; Herrera-Ceballos, E.; Gago-Calderon, A. The Potential Role of UV and Blue Light from the Sun, Artificial Lighting, and Electronic Devices in Melanogenesis and Oxidative Stress. J. Photochem. Photobiol. B 2022, 228, 112405. [Google Scholar] [CrossRef]
- Piazza, R.; Degiorgio, V. Scattering, Rayleigh. In Encyclopedia of Condensed Matter Physics; Elsevier: Amsterdam, The Netherlands, 2005; pp. 234–242. ISBN 978-0-12-369401-0. [Google Scholar]
- Pupa, L.; Orengo, I.F.; Rosen, T. Blue Light Effects on the Skin: A Post-2015 Update. J. Drugs Dermatol. 2024, 23, 472–476. [Google Scholar] [CrossRef]
- Coats, J.G.; Maktabi, B.; Abou-Dahech, M.S.; Baki, G. Blue Light Protection, Part I-Effects of Blue Light on the Skin. J. Cosmet. Dermatol. 2021, 20, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Austin, E.; Geisler, A.N.; Nguyen, J.; Kohli, I.; Hamzavi, I.; Lim, H.W.; Jagdeo, J. Visible Light. Part I: Properties and Cutaneous Effects of Visible Light. J. Am. Acad. Dermatol. 2021, 84, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Narla, S.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Visible Light in Photodermatology. Photochem. Photobiol. Sci. 2020, 19, 99–104. [Google Scholar] [CrossRef]
- Bonnans, M.; Fouque, L.; Pelletier, M.; Chabert, R.; Pinacolo, S.; Restellini, L.; Cucumel, K. Blue Light: Friend or Foe ? J. Photochem. Photobiol. B Biol. 2020, 212, 112026. [Google Scholar] [CrossRef] [PubMed]
- Tonolli, P.N.; Vera Palomino, C.M.; Junqueira, H.C.; Baptista, M.S. The Phototoxicity Action Spectra of Visible Light in HaCaT Keratinocytes. J. Photochem. Photobiol. B Biol. 2023, 243, 112703. [Google Scholar] [CrossRef]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue Light-Induced Oxidative Stress in Live Skin. Free Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef]
- Chamayou-Robert, C.; DiGiorgio, C.; Brack, O.; Doucet, O. Blue Light Induces DNA Damage in Normal Human Skin Keratinocytes. Photodermatol. Photoimmunol. Photomed. 2022, 38, 69–75. [Google Scholar] [CrossRef]
- Yoo, J.A.; Yu, E.; Park, S.-H.; Oh, S.W.; Kwon, K.; Park, S.J.; Kim, H.; Yang, S.; Park, J.Y.; Cho, J.Y.; et al. Blue Light Irradiation Induces Human Keratinocyte Cell Damage via Transient Receptor Potential Vanilloid 1 (TRPV1) Regulation. Oxidative Med. Cell. Longev. 2020, 8871745. [Google Scholar] [CrossRef]
- Lawrence, K.P.; Douki, T.; Sarkany, R.P.E.; Acker, S.; Herzog, B.; Young, A.R. The UV/Visible Radiation Boundary Region (385–405 Nm) Damages Skin Cells and Induces “Dark” Cyclobutane Pyrimidine Dimers in Human Skin in Vivo. Sci. Rep. 2018, 8, 12722. [Google Scholar] [CrossRef]
- Douki, T.; Bacqueville, D.; Jacques, C.; Geniès, C.; Roullet, N.; Bessou-Touya, S.; Duplan, H. Blue Light Impairs the Repair of UVB-induced Pyrimidine Dimers in a Human Skin Model. Photochem. Photobiol. 2024, 100, 1359–1364. [Google Scholar] [CrossRef]
- Kvam, E. Induction of Oxidative DNA Base Damage in Human Skin Cells by UV and near Visible Radiation. Carcinogenesis 1997, 18, 2379–2384. [Google Scholar] [CrossRef] [PubMed]
- Habib, L.; Michael-Jubeli, R.; Abboud, M.; Lteif, R.; Tfayli, A. Impact of Blue Light on Cutaneous Barrier Structures and Properties: NPLC/HR-MS and Raman Analyses. Analyst 2024, 149, 5693–5703. [Google Scholar] [CrossRef]
- Mahmoud, B.H.; Ruvolo, E.; Hexsel, C.L.; Liu, Y.; Owen, M.R.; Kollias, N.; Lim, H.W.; Hamzavi, I.H. Impact of Long-Wavelength UVA and Visible Light on Melanocompetent Skin. J. Investig. Dermatol. 2010, 130, 2092–2097. [Google Scholar] [CrossRef] [PubMed]
- Duteil, L.; Cardot-Leccia, N.; Queille-Roussel, C.; Maubert, Y.; Harmelin, Y.; Boukari, F.; Ambrosetti, D.; Lacour, J.-P.; Passeron, T. Differences in Visible Light-Induced Pigmentation According to Wavelengths: A Clinical and Histological Study in Comparison with UVB Exposure. Pigment. Cell Melanoma Res. 2014, 27, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Regazzetti, C.; Sormani, L.; Debayle, D.; Bernerd, F.; Tulic, M.K.; De Donatis, G.M.; Chignon-Sicard, B.; Rocchi, S.; Passeron, T. Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3. J. Investig. Dermatol. 2018, 138, 171–178. [Google Scholar] [CrossRef]
- Yu, E.; Oh, S.W.; Park, S.-H.; Kwon, K.; Han, S.B.; Kang, S.H.; Lee, J.H.; Ha, H.; Yoon, D.; Jung, E.; et al. The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3–TRPV1. J. Investig. Dermatol. 2024, 145, 908–918.e6. [Google Scholar] [CrossRef]
- Sun, M.; Ren, Y.; Du, Q.; Xie, Y.; Wang, A.; Jiang, H.; Lai, Y.; Liu, S.; Liu, M. Blue Light Inhibits Cell Viability and Proliferation in Hair Follicle Stem Cells and Dermal Papilla Cells. Lasers Med. Sci. 2024, 39, 251. [Google Scholar] [CrossRef]
- Antoniou, C.; Dessinioti, C.; Sotiriadis, D.; Kalokasidis, K.; Kontochristopoulos, G.; Petridis, A.; Rigopoulos, D.; Vezina, D.; Nikolis, A. A Multicenter, Randomized, Split-face Clinical Trial Evaluating the Efficacy and Safety of Chromophore Gel-assisted Blue Light Phototherapy for the Treatment of Acne. Int. J. Dermatol. 2016, 55, 1321–1328. [Google Scholar] [CrossRef]
- Nikolis, A.; Fauverghe, S.; Scapagnini, G.; Sotiriadis, D.; Kontochristopoulos, G.; Petridis, A.; Rigopoulos, D.; Dessinioti, C.; Kalokasidis, K.; Antoniou, C. An Extension of a Multicenter, Randomized, Split-face Clinical Trial Evaluating the Efficacy and Safety of Chromophore Gel-assisted Blue Light Phototherapy for the Treatment of Acne. Int. J. Dermatol. 2018, 57, 94–103. [Google Scholar] [CrossRef]
- Kharazi, L.; Dadkhahfar, S.; Rahimi, H.; Gheisari, M.; Mozafari, N.; Tehranchinia, Z. The Efficacy of Blue Light versus the Combination of Blue and Red Light Therapy in the Treatment of Acne Vulgaris. Photodermatol. Photoimmunol. Photomed. 2021, 37, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Nitayavardhana, S.; Manuskiatti, W.; Cembrano, K.A.G.; Wanitphadeedecha, R. A Comparative Study Between Once-Weekly and Alternating Twice-Weekly Regimen Using Blue (470 Nm) and Red (640 Nm) Light Combination LED Phototherapy for Moderate-to-Severe Acne Vulgaris. Lasers Surg. Med. 2021, 53, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, Z.; Layegh, P.; Maleki, M.; Sazgarnia, A.; Morovatdar, N.; Shiva, F.; Ferezeghi, M.R. Efficacy of Blue Light vs. Fluocinolone 0.025% Ointment in Treatment of Localized Plaque Psoriasis. Photodermatol. Photoimmunol. Photomed. 2021, 37, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Lodi, G.; Sannino, M.; Cannarozzo, G.; Giudice, A.; Del Duca, E.; Tamburi, F.; Bennardo, L.; Nisticò, S.P. Blue Light-Emitting Diodes in Hair Regrowth: The First Prospective Study. Lasers Med. Sci. 2021, 36, 1719–1723. [Google Scholar] [CrossRef]
- Christensen, T.; Johnsen, B.J.; Bruzell, E.M. Violet-Blue Light Exposure of the Skin: Is There Need for Protection? Photochem. Photobiol. Sci. 2021, 20, 615–625. [Google Scholar] [CrossRef]
- Kochevar, I.E.; Taylor, C.R.; Krutmann, J. Fundamentals of Cutaneous Photobiology and Photoimmunology. In Fitzpatrick’s Dermatology in General Medicine; Mc Graw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Schroeder, P.; Schieke, S.M.; Morita, A. Premature Skin Aging by Infrared Radiation, Tobacco Smoke and Ozone. In Skin Aging; Gilchrest, B.A., Krutmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–53. ISBN 978-3-540-24443-1. [Google Scholar]
- Chan, H.H.; Yu, C.S.; Shek, S.; Yeung, C.K.; Kono, T.; Wei, W.I. A Prospective, Split Face, Single-Blinded Study Looking at the Use of an Infrared Device with Contact Cooling in the Treatment of Skin Laxity in Asians. Lasers Surg. Med. 2008, 40, 146–152. [Google Scholar] [CrossRef]
- Tsai, S.-R.; Hamblin, M.R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B Biol. 2017, 170, 197–207. [Google Scholar] [CrossRef]
- Kligman, L.H. Intensification of Ultraviolet-Induced Dermal Damage by Infrared Radiation. Arch. Dermatol. Res. 1982, 272, 229–238. [Google Scholar] [CrossRef]
- Schieke, S.; Stege, H.; Kürten, V.; Grether-Beck, S.; Sies, H.; Krutmann, J. Infrared-A Radiation-Induced Matrix Metalloproteinase 1 Expression Is Mediated through Extracellular Signal-Regulated Kinase 1/2 Activation in Human Dermal Fibroblasts. J. Investig. Dermatol. 2002, 119, 1323–1329. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, M.J.; Lee, S.R.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Augmentation of UV-Induced Skin Wrinkling by Infrared Irradiation in Hairless Mice. Mech. Ageing Dev. 2005, 126, 1170–1177. [Google Scholar] [CrossRef]
- Schroeder, P.; Pohl, C.; Calles, C.; Marks, C.; Wild, S.; Krutmann, J. Cellular Response to Infrared Radiation Involves Retrograde Mitochondrial Signaling. Free Radic. Biol. Med. 2007, 43, 128–135. [Google Scholar] [CrossRef]
- Schroeder, P.; Lademann, J.; Darvin, M.E.; Stege, H.; Marks, C.; Bruhnke, S.; Krutmann, J. Infrared Radiation-Induced Matrix Metalloproteinase in Human Skin: Implications for Protection. J. Investig. Dermatol. 2008, 128, 2491–2497. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Kim, S.J.; You, G.; Lee, J.B.; Mok, H. Chronic Infrared-A Irradiation-Induced Photoaging of Human Dermal Fibroblasts from Different Donors at Physiological Temperature. Photodermatol. Photoimmunol. Photomed. 2022, 38, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Aoki, A.; Takahashi, T.; Harano, F. Infrared-A Irradiation-Induced Inhibition of Human Keratinocyte Proliferation and Potential Mechanisms. Photochem. Photobiol. 2020, 96, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Barolet, D.; Christiaens, F.; Hamblin, M.R. Infrared and Skin: Friend or Foe. J. Photochem. Photobiol. B 2016, 155, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.; Cadars, B. An Appraisal of the Need for Infrared Radiation Protection in Sunscreens. Photochem. Photobiol. Sci. 2016, 15, 361–364. [Google Scholar] [CrossRef]
- Wang, A.S.; Dreesen, O. Biomarkers of Cellular Senescence and Skin Aging. Front. Genet. 2018, 9, 247. [Google Scholar] [CrossRef]
- Park, K.; Jeon, M.C.; Lee, D.; Kim, J.-I.; Im, S.-W. Genetic and Epigenetic Alterations in Aging and Rejuvenation of Human. Mol. Cells 2024, 47, 100137. [Google Scholar] [CrossRef]
- Song, S.; Li, F.; Zhao, B.; Zhou, M.; Wang, X. Ultraviolet Light Causes Skin Cell Senescence: From Mechanism to Prevention Principle. Adv. Biol. 2024, 9, e2400090. [Google Scholar] [CrossRef]
- Mullenders, L.H.F. Solar UV Damage to Cellular DNA: From Mechanisms to Biological Effects. Photochem. Photobiol. Sci. 2018, 17, 1842–1852. [Google Scholar] [CrossRef]
- Martic, I.; Jansen-Dürr, P.; Cavinato, M. Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Krunic, D.; Moshir, S.; Greulich-Bode, K.M.; Figueroa, R.; Cerezo, A.; Stammer, H.; Stark, H.-J.; Gray, S.G.; Nielsen, K.V.; Hartschuh, W.; et al. Tissue Context-Activated Telomerase in Human Epidermis Correlates with Little Age-Dependent Telomere Loss. Biochim. Biophys. Acta-Mol. Basis Dis. 2009, 1792, 297–308. [Google Scholar] [CrossRef]
- Victorelli, S.; Lagnado, A.; Halim, J.; Moore, W.; Talbot, D.; Barrett, K.; Chapman, J.; Birch, J.; Ogrodnik, M.; Meves, A.; et al. Senescent Human Melanocytes Drive Skin Ageing via Paracrine Telomere Dysfunction. EMBO J. 2019, 38, e101982. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Aida, J.; Hatamochi, A.; Hamasaki, Y.; Izumiyama-Shimomura, N.; Nakamura, K.-I.; Ishikawa, N.; Poon, S.S.; Fujiwara, M.; Tomita, K.-I.; et al. Quantitative Fluorescence in Situ Hybridization Measurement of Telomere Length in Skin with/without Sun Exposure or Actinic Keratosis. Hum. Pathol. 2014, 45, 473–480. [Google Scholar] [CrossRef]
- Yu, G.T.; Ganier, C.; Allison, D.B.; Tchkonia, T.; Khosla, S.; Kirkland, J.L.; Lynch, M.D.; Wyles, S.P. Mapping Epidermal and Dermal Cellular Senescence in Human Skin Aging. Aging Cell 2025, 24, e14358. [Google Scholar] [CrossRef] [PubMed]
- Bierman, J.C.; Laughlin, T.; Tamura, M.; Hulette, B.C.; Mack, C.E.; Sherrill, J.D.; Tan, C.Y.R.; Morenc, M.; Bellanger, S.; Oblong, J.E. Niacinamide Mitigates SASP-Related Inflammation Induced by Environmental Stressors in Human Epidermal Keratinocytes and Skin. Int. J. Cosmet. Sci. 2020, 42, 501–511. [Google Scholar] [CrossRef]
- Tan, C.Y.R.; Tan, C.L.; Chin, T.; Morenc, M.; Ho, C.Y.; Rovito, H.A.; Quek, L.S.; Soon, A.L.; Lim, J.S.Y.; Dreesen, O.; et al. Nicotinamide Prevents UVB- and Oxidative Stress—Induced Photoaging in Human Primary Keratinocytes. J. Investig. Dermatol. 2022, 142, 1670–1681.e12. [Google Scholar] [CrossRef]
- Ge, Y.; Li, M.; Bai, S.; Chen, C.; Zhang, S.; Cheng, J.; Wang, X. Doxercalciferol Alleviates UVB-Induced HaCaT Cell Senescence and Skin Photoaging. Int. Immunopharmacol. 2024, 127, 111357. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, H.; Su, T.; Huang, W.; Wu, X.; Chen, X.; Ye, S.; Zhong, J.; Li, C.; Li, Y. Luteolin Mitigates Photoaging Caused by UVA-Induced Fibroblast Senescence by Modulating Oxidative Stress Pathways. Int. J. Mol. Sci. 2025, 26, 1809. [Google Scholar] [CrossRef]
- Sun, J.-M.; Liu, Y.-X.; Tsai, Y.-T.; Liu, Y.-D.; Ho, C.-K.; Wen, D.-S.; Tsai, T.-Y.; Zheng, D.-N.; Gao, Y.; Zhang, Y.-F.; et al. Salvianolic Acid B Protects against UVB-Induced HaCaT Cell Senescence and Skin Aging through NRF2 Activation and ROS Scavenging. J. Photochem. Photobiol. B Biol. 2025, 266, 113139. [Google Scholar] [CrossRef]
- Jeon, S.; Choi, M. Anti-Inflammatory and Anti-Aging Effects of Hydroxytyrosol on Human Dermal Fibroblasts (HDFs). Biomed. Dermatol. 2018, 2, 21. [Google Scholar] [CrossRef]
- Mao, G.-X.; Xing, W.-M.; Wen, X.-L.; Jia, B.-B.; Yang, Z.-X.; Wang, Y.-Z.; Jin, X.-Q.; Wang, G.-F.; Yan, J. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts. Int. J. Cosmet. Sci. 2015, 37, 321–328. [Google Scholar] [CrossRef]
- Choi, S.; Youn, J.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; An, I.-S.; Kwon, S.; Youn, H.J.; et al. Apigenin Inhibits UVA-Induced Cytotoxicity in Vitro and Prevents Signs of Skin Aging in Vivo. Int. J. Mol. Med. 2016, 38, 627–634. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, A.; Fernández-Duran, I.; Marazuela-Duque, A.; Simonet, N.G.; Yousef, I.; Martínez-Rovira, I.; Martínez-Hoyos, J.; Vaquero, A. Shikimic Acid Protects Skin Cells from UV-Induced Senescence through Activation of the NAD+-Dependent Deacetylase SIRT1. Aging 2021, 13, 12308–12333. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, N.Y.; Kim, Y.; Baek, D.J.; Park, T.J.; Kang, H.Y. Senolytic Targeting of Anti-Apoptotic Bcl Family Increases Cell Death in UV-Irradiated Senescent Melanocytes: Search for Senolytics. Exp. Dermatol. 2025, 34, e70037. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, J.; Song, M.J.; Kim, G.; Park, C.H.; Lee, D.H.; Lee, S.H.; Chung, J.H. Attenuation of Intrinsic Ageing of the Skin via Elimination of Senescent Dermal Fibroblasts with Senolytic Drugs. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, J.; Song, M.J.; Park, C.-H.; Lee, D.H.; Lee, S.-H.; Chung, J.H. Inhibition of Matrix Metalloproteinase Expression by Selective Clearing of Senescent Dermal Fibroblasts Attenuates Ultraviolet-Induced Photoaging. Biomed. Pharmacother. 2022, 150, 113034. [Google Scholar] [CrossRef]
- Chen, W.; Kang, J.; Xia, J.; Li, Y.; Yang, B.; Chen, B.; Sun, W.; Song, X.; Xiang, W.; Wang, X.; et al. P53-Related Apoptosis Resistance and Tumor Suppression Activity in UVB-Induced Premature Senescent Human Skin Fibroblasts. Int. J. Mol. Med. 2008, 21, 645–653. [Google Scholar] [CrossRef]
- Wang, A.S.; Ong, P.F.; Chojnowski, A.; Clavel, C.; Dreesen, O. Loss of Lamin B1 Is a Biomarker to Quantify Cellular Senescence in Photoaged Skin. Sci. Rep. 2017, 7, 15678. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Ueda, M.; Ichihashi, M. Induced Expression of P16 and P21 Proteins in UVB-Irradiated Human Epidermis and Cultured Keratinocytes. J. Dermatol. Sci. 1999, 19, 175–181. [Google Scholar] [CrossRef]
- Piepkorn, M. The Expression of p16INK4a, the Product of a Tumor Suppressor Gene for Melanoma, Is Upregulated in Human Melanocytes by UVB Irradiation. J. Am. Acad. Dermatol. 2000, 42, 741–745. [Google Scholar] [CrossRef]
- Martic, I.; Wedel, S.; Jansen-Dürr, P.; Cavinato, M. A New Model to Investigate UVB-Induced Cellular Senescence and Pigmentation in Melanocytes. Mech. Ageing Dev. 2020, 190, 111322. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-Y.; Bin, B.-H.; Kim, W.; Lee, E.; Lee, T.R.; Cho, E.-G. Exposure of Human Melanocytes to UVB Twice and Subsequent Incubation Leads to Cellular Senescence and Senescence-Associated Pigmentation through the Prolonged P53 Expression. J. Dermatol. Sci. 2018, 90, 303–312. [Google Scholar] [CrossRef] [PubMed]
- de Pedro, I.; Alonso-Lecue, P.; Sanz-Gómez, N.; Freije, A.; Gandarillas, A. Sublethal UV Irradiation Induces Squamous Differentiation via a P53-Independent, DNA Damage-Mitosis Checkpoint. Cell Death Dis. 2018, 9, 112892. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Xu, X.; Hou, S.; Liu, Z.; Chen, X.; Zhang, C.; Xu, H.; Wu, L.; Liu, K.; et al. IKKα Mediates UVB-Induced Cell Apoptosis by Regulating P53 Pathway Activation. Ecotoxicol. Environ. Saf. 2021, 227, 112892. [Google Scholar] [CrossRef]
- Wang, M.; Lei, M.; Chang, L.; Xing, Y.; Guo, Y.; Pourzand, C.; Bartsch, J.W.; Chen, J.; Luo, J.; Widya Karisma, V.; et al. Bach2 Regulates Autophagy to Modulate UVA-Induced Photoaging in Skin Fibroblasts. Free Radic. Biol. Med. 2021, 169, 304–316. [Google Scholar] [CrossRef]
- Sreedhar, A.; Aguilera-Aguirre, L.; Singh, K.K. Mitochondria in Skin Health, Aging, and Disease. Cell Death Dis. 2020, 11, 444. [Google Scholar] [CrossRef]
- Böhm, M.; Hill, H.Z. Ultraviolet B, Melanin and Mitochondrial DNA: Photo-Damage in Human Epidermal Keratinocytes and Melanocytes Modulated by Alpha-Melanocyte-Stimulating Hormone. F1000Res 2016, 5, 881. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Lee, D.H.; Shin, M.H.; Shin, H.S.; Kim, M.-K.; Chung, J.H. UV-Induced DNA Methyltransferase 1 Promotes Hypermethylation of Tissue Inhibitor of Metalloproteinase 2 in the Human Skin. J. Dermatol. Sci. 2018, 91, 19–27. [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Xia, Y.; Yang, X.; Lv, Q.; Fang, F.; Wang, Q.; Bu, W.; Wang, Y.; Zhang, K.; et al. UVB Induces Cutaneous Squamous Cell Carcinoma Progression by de Novo ID4 Methylation via Methylation Regulating Enzymes. EBioMedicine 2020, 57, 102835. [Google Scholar] [CrossRef]
- Valerio, H.P.; Ravagnani, F.G.; Ronsein, G.E.; Di Mascio, P. A Single Dose of Ultraviolet-A Induces Proteome Remodeling and Senescence in Primary Human Keratinocytes. Sci. Rep. 2021, 11, 23355. [Google Scholar] [CrossRef] [PubMed]
- Narzt, M.-S.; Pils, V.; Kremslehner, C.; Nagelreiter, I.-M.; Schosserer, M.; Bessonova, E.; Bayer, A.; Reifschneider, R.; Terlecki-Zaniewicz, L.; Waidhofer-Söllner, P.; et al. Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Pleiotropic Senescence-Associated Secretory Phenotype (SASP) Factors. J. Investig. Dermatol. 2021, 141, 993–1006.e15. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, E.; Parée, T.; Meurant, S.; Bouriez, I.; Hannart, C.; Wéra, A.-C.; Khelfi, A.; Fattaccioli, A.; Burteau, S.; Demazy, C.; et al. Senescence Induced by UVB in Keratinocytes Impairs Amino Acids Balance. J. Investig. Dermatol. 2023, 143, 554–565.e9. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Arbesman, J.; Harter, M.L. Premature Senescence in Human Melanocytes after Exposure to Solar UVR: An Exosome and UV-miRNA Connection. Pigment. Cell Melanoma Res. 2020, 33, 671–684. [Google Scholar] [CrossRef]
- Carr, T.D.; DiGiovanni, J.; Lynch, C.J.; Shantz, L.M. Inhibition of Mammalian Target of Rapamycin (mTOR) Suppresses UVB-Induced Keratinocyte Proliferation and Survival. Cancer Prev. Res. 2012, 5, 1394–1404. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Yang, Y.; Zhang, S.; Wang, J.; Zhang, D.; Yu, H. Metformin Attenuates UVA-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci. 2022, 23, 6960. [Google Scholar] [CrossRef]
- Zhang, K.; Anumanthan, G.; Scheaffer, S.; Cornelius, L.A. HMGB1/RAGE Mediates UVB-Induced Secretory Inflammatory Response and Resistance to Apoptosis in Human Melanocytes. J. Investig. Dermatol. 2019, 139, 202–212. [Google Scholar] [CrossRef]
- Mou, K.; Liu, W.; Han, D.; Li, P. HMGB1/RAGE Axis Promotes Autophagy and Protects Keratinocytes from Ultraviolet Radiation-Induced Cell Death. J. Dermatol. Sci. 2017, 85, 162–169. [Google Scholar] [CrossRef]
- Johnson, K.E.; Wulff, B.C.; Oberyszyn, T.M.; Wilgus, T.A. Ultraviolet Light Exposure Stimulates HMGB1 Release by Keratinocytes. Arch. Dermatol. Res. 2013, 305, 805–815. [Google Scholar] [CrossRef]
- Jing, R.; Guo, K.; Zhong, Y.; Wang, L.; Zhao, J.; Gao, B.; Ye, Z.; Chen, Y.; Li, X.; Xu, N.; et al. Protective Effects of Fucoidan Purified from Undaria Pinnatifida against UV-Irradiated Skin Photoaging. Ann. Transl. Med. 2021, 9, 1185. [Google Scholar] [CrossRef]
- Cao, C.; Lu, S.; Kivlin, R.; Wallin, B.; Card, E.; Bagdasarian, A.; Tamakloe, T.; Wang, W.; Song, X.; Chu, W.; et al. SIRT1 Confers Protection against UVB- and H2O2-Induced Cell Death via Modulation of P53 and JNK in Cultured Skin Keratinocytes. J. Cell Mol. Med. 2009, 13, 3632–3643. [Google Scholar] [CrossRef] [PubMed]
- Vind, A.C.; Wu, Z.; Firdaus, M.J.; Snieckute, G.; Toh, G.A.; Jessen, M.; Martínez, J.F.; Haahr, P.; Andersen, T.L.; Blasius, M.; et al. The Ribotoxic Stress Response Drives Acute Inflammation, Cell Death, and Epidermal Thickening in UV-Irradiated Skin in Vivo. Mol. Cell 2024, 84, 4774–4789.e9. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.-C.; Peterson, A.; Zinshteyn, B.; Regot, S.; Green, R. Ribosome Collisions Trigger General Stress Responses to Regulate Cell Fate. Cell 2020, 182, 404–416.e14. [Google Scholar] [CrossRef] [PubMed]
- Stoneley, M.; Harvey, R.F.; Mulroney, T.E.; Mordue, R.; Jukes-Jones, R.; Cain, K.; Lilley, K.S.; Sawarkar, R.; Willis, A.E. Unresolved Stalled Ribosome Complexes Restrict Cell-Cycle Progression after Genotoxic Stress. Mol. Cell 2022, 82, 1557–1572.e7. [Google Scholar] [CrossRef]
- Shlyakhtina, Y.; Moran, K.L.; Portal, M.M. Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA. Noncoding RNA 2019, 5, 38. [Google Scholar] [CrossRef]
- Edelmann, F.T.; Schlundt, A.; Heym, R.G.; Jenner, A.; Niedner-Boblenz, A.; Syed, M.I.; Paillart, J.-C.; Stehle, R.; Janowski, R.; Sattler, M.; et al. Molecular Architecture and Dynamics of ASH1 mRNA Recognition by Its mRNA-Transport Complex. Nat. Struct. Mol. Biol. 2017, 24, 152–161. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Feng, G.; Wang, Y.; Li, Y.; Li, X.; Liu, C.; Jiao, G.; Huang, C.; Shi, J.; et al. Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos. Cell 2018, 175, 1887–1901.e18. [Google Scholar] [CrossRef]
- Cayouette, M.; Raff, M. Asymmetric Segregation of Numb: A Mechanism for Neural Specification from Drosophila to Mammals. Nat. Neurosci. 2002, 5, 1265–1269. [Google Scholar] [CrossRef]
- Zhou, Y.; Panhale, A.; Shvedunova, M.; Balan, M.; Gomez-Auli, A.; Holz, H.; Seyfferth, J.; Helmstädter, M.; Kayser, S.; Zhao, Y.; et al. RNA Damage Compartmentalization by DHX9 Stress Granules. Cell 2024, 187, 1701–1718.e28. [Google Scholar] [CrossRef]
- Lalchhandama, K. The Path to the 2017 Nobel Prize in Physiology or Medicine. Sci. Vis. 2017, 17, S1–S13. [Google Scholar] [CrossRef]
- Zanello, S.B.; Jackson, D.M.; Holick, M.F. Expression of the Circadian Clock Genes Clock and Period1 in Human Skin. J. Investig. Dermatol. 2000, 115, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Hu, Q.; Li, X.; Wang, Z.; Xie, Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int. J. Mol. Sci. 2024, 25, 10926. [Google Scholar] [CrossRef]
- Innominato, P.F.; Lévi, F.A.; Bjarnason, G.A. Chronotherapy and the Molecular Clock: Clinical Implications in Oncology. Adv. Drug Deliv. Rev. 2010, 62, 979–1001. [Google Scholar] [CrossRef] [PubMed]
- Lamnis, L.; Christofi, C.; Stark, A.; Palm, H.; Roemer, K.; Vogt, T.; Reichrath, J. Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients 2024, 16, 254. [Google Scholar] [CrossRef]
- Budden, T.; Gaudy-Marqueste, C.; Porter, A.; Kay, E.; Gurung, S.; Earnshaw, C.H.; Roeck, K.; Craig, S.; Traves, V.; Krutmann, J.; et al. Ultraviolet Light-Induced Collagen Degradation Inhibits Melanoma Invasion. Nat. Commun. 2021, 12, 2742. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Yang, Y.; Yan, Y.; Kim, A.J.; Guo, C.; Fisher, G.J.; Quan, T. Reduced Expression of Collagen 17A1 in Naturally Aged, Photoaged, and UV-Irradiated Human Skin in Vivo: Potential Links to Epidermal Aging. J. Cell Commun. Signal. 2022, 16, 421. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; Lee, S.H.; Youn, C.S.; Choi, H.R.; Rhie, G.; Cho, K.H.; Kim, K.H.; Park, K.C.; Eun, H.C.; Chung, J.H. Ultraviolet Radiation Increases Tropoelastin mRNA Expression in the Epidermis of Human Skin In Vivo. J. Investig. Dermatol. 2001, 116, 915–919. [Google Scholar] [CrossRef]
- Iriyama, S.; Yasuda, M.; Nishikawa, S.; Takai, E.; Hosoi, J.; Amano, S. Decrease of Laminin-511 in the Basement Membrane Due to Photoaging Reduces Epidermal Stem/Progenitor Cells. Sci. Rep. 2020, 10, 12592. [Google Scholar] [CrossRef]
- Amano, S. Possible Involvement of Basement Membrane Damage in Skin Photoaging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 2–7. [Google Scholar] [CrossRef]
- Ouhtit, A.; Gorny, A.; Muller, H.K.; Hill, L.L.; Owen-Schaub, L.; Ananthaswamy, H.N. Loss of Fas-Ligand Expression in Mouse Keratinocytes during UV Carcinogenesis. Am. J. Pathol. 2000, 157, 1975–1981. [Google Scholar] [CrossRef]
- Lavker, R.M.; Gerberick, G.F.; Veres, D.; Irwin, C.J.; Kaidbey, K.H. Cumulative Effects from Repeated Exposures to Suberythemal Doses of UVB and UVA in Human Skin. J. Am. Acad. Dermatol. 1995, 32, 53–62. [Google Scholar] [CrossRef]
- Winter, S.D.; Pavel, S.; Roza, A.A.; Roza, L. Solar-Simulated Skin Adaptation and Its Effect on Subsequent UV-Induced Epidermal DNA Damage. J. Investig. Dermatol. 2001, 117, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.L.; Byrom, M.; Chiarello, S.; Lowery, M.G. Effects of Chronic Exposure to Ultraviolet B Radiation on DNA Repair in the Dermis and Epidermis of the Hairless Mouse. J. Investig. Dermatol. 2001, 116, 209–215. [Google Scholar] [CrossRef]
- Rognoni, E.; Goss, G.; Hiratsuka, T.; Sipilä, K.H.; Kirk, T.; Kober, K.I.; Lui, P.P.; Tsang, V.S.K.; Hawkshaw, N.J.; Pilkington, S.M.; et al. Role of Distinct Fibroblast Lineages and Immune Cells in Dermal Repair Following UV Radiation-Induced Tissue Damage. eLife 2021, 10, e71052. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Freudenberger, T.; Zipper, P.; Melchior, A.; Grether-Beck, S.; Rabausch, B.; de Groot, J.; Twarock, S.; Hanenberg, H.; Homey, B.; et al. Chronic Ultraviolet B Irradiation Causes Loss of Hyaluronic Acid from Mouse Dermis Because of Down-Regulation of Hyaluronic Acid Synthases. Am. J. Pathol. 2007, 171, 1451–1461. [Google Scholar] [CrossRef]
- Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature 2013, 504, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, E.; Gomez, C.; Pisco, A.O.; Rawlins, E.L.; Simons, B.D.; Watt, F.M.; Driskell, R.R. Inhibition of β-Catenin Signalling in Dermal Fibroblasts Enhances Hair Follicle Regeneration during Wound Healing. Development 2016, 143, 2522–2535. [Google Scholar] [CrossRef]
- Lichtenberger, B.M.; Mastrogiannaki, M.; Watt, F.M. Epidermal β-Catenin Activation Remodels the Dermis via Paracrine Signalling to Distinct Fibroblast Lineages. Nat. Commun. 2016, 7, 10537. [Google Scholar] [CrossRef]
- Phan, Q.M.; Fine, G.M.; Salz, L.; Herrera, G.G.; Wildman, B.; Driskell, I.M.; Driskell, R.R. Lef1 Expression in Fibroblasts Maintains Developmental Potential in Adult Skin to Regenerate Wounds. eLife 2020, 9, e60066. [Google Scholar] [CrossRef]
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current Insights and Future Perspectives of Ultraviolet Radiation (UV) Exposure: Friends and Foes to the Skin and beyond the Skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV Radiation-Induced Inflammation and Immunosuppression Accelerate the Aging Process in the Skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The Skin Aging Exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Woodby, B.; Pecorelli, A.; Schiavone, M.L.; Pambianchi, E.; Messano, N.; Therrien, J.-P.; Choudhary, H.; Valacchi, G. Additive Effect of Combined Pollutants to UV Induced Skin OxInflammation Damage. Evaluating the Protective Topical Application of a Cosmeceutical Mixture Formulation. Redox Biol. 2020, 34, 101481. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Pambianchi, E.; Woodby, B.; Messano, N.; Therrien, J.-P.; Pecorelli, A.; Canella, R.; Valacchi, G. Evaluating the Effect of Ozone in UV Induced Skin Damage. Toxicol. Lett. 2021, 338, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Yan, X.; Pecorelli, A.; Guiotto, A.; Colella, S.; Pasqui, A.; Lynch, S.; Ivarsson, J.; Anderias, S.; Choudhary, H.; et al. Combined Exposure to UV and PM Affect Skin Oxinflammatory Responses and It Is Prevented by Antioxidant Mix Topical Application: Evidences from Clinical Study. J. Cosmet. Dermatol. 2024, 23, 2644–2656. [Google Scholar] [CrossRef]
- Soeur, J.; Belaïdi, J.-P.; Chollet, C.; Denat, L.; Dimitrov, A.; Jones, C.; Perez, P.; Zanini, M.; Zobiri, O.; Mezzache, S.; et al. Photo-Pollution Stress in Skin: Traces of Pollutants (PAH and Particulate Matter) Impair Redox Homeostasis in Keratinocytes Exposed to UVA1. J. Dermatol. Sci. 2017, 86, 162–169. [Google Scholar] [CrossRef]
- Fuks, K.B.; Hüls, A.; Sugiri, D.; Altug, H.; Vierkötter, A.; Abramson, M.J.; Goebel, J.; Wagner, G.G.; Demuth, I.; Krutmann, J.; et al. Tropospheric Ozone and Skin Aging: Results from Two German Cohort Studies. Environ. Int. 2019, 124, 139–144. [Google Scholar] [CrossRef]
- Jin, S.-P.; Li, Z.; Choi, E.K.; Lee, S.; Kim, Y.K.; Seo, E.Y.; Chung, J.H.; Cho, S. Urban Particulate Matter in Air Pollution Penetrates into the Barrier-Disrupted Skin and Produces ROS-Dependent Cutaneous Inflammatory Response in Vivo. J. Dermatol. Sci. 2018, 91, 175–183. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef]
- Marrot, L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr. Med. Chem. 2018, 25, 5469–5486. [Google Scholar] [CrossRef]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles Skin Absorption: New Aspects for a Safety Profile Evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xia, Q.; Yan, J.; Herreno-Saenz, D.; Wu, Y.-S.; Tang, I.-W.; Fu, P.P. Photoirradiation of Polycyclic Aromatic Hydrocarbons with UVA Light—A Pathway Leading to the Generation of Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. Int. J. Environ. Res. Public Health 2006, 3, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Sticozzi, C.; Pecorelli, A.; Cervellati, F.; Cervellati, C.; Maioli, E. Cutaneous Responses to Environmental Stressors. Ann. N. Y. Acad. Sci. 2012, 1271, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.-C.E.; Wu, C.-S.; Yu, H.-S. Solar-Simulated Radiation and Heat Treatment Induced Metalloproteinase-1 Expression in Cultured Dermal Fibroblasts via Distinct Pathways: Implications on Reduction of Sun-Associated Aging. J. Dermatol. Sci. 2013, 72, 290–295. [Google Scholar] [CrossRef]
- Lan, C.-C.E. Effects and Interactions of Increased Environmental Temperature and UV Radiation on Photoageing and Photocarcinogenesis of the Skin. Exp. Dermatol. 2019, 28, 23–27. [Google Scholar] [CrossRef]
- Hudson, L.; Rashdan, E.; Bonn, C.A.; Chavan, B.; Rawlings, D.; Birch-Machin, M.A. Individual and Combined Effects of the Infrared, Visible, and Ultraviolet Light Components of Solar Radiation on Damage Biomarkers in Human Skin Cells. FASEB J. 2020, 34, 3874–3883. [Google Scholar] [CrossRef]
- Lerner, A.B.; Denton, C.R.; Fitzpatrick, T.B. Clinical and Experimental Studies with 8-Methoxypsoralen in Vitiligo. J. Investig. Dermatol. 1953, 20, 299–314. [Google Scholar] [CrossRef]
- Baswan, S.M.; Marini, A.; Klosner, A.E.; Jaenicke, T.; Leverett, J.; Murray, M.; Gellenbeck, K.W.; Krutmann, J. Orally Administered Mixed Carotenoids Protect Human Skin against Ultraviolet A-Induced Skin Pigmentation: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Photodermatol. Photoimmunol. Photomed. 2020, 36, 219–225. [Google Scholar] [CrossRef]
- Palombo, P.; Fabrizi, G.; Ruocco, V.; Ruocco, E.; Fluhr, J.; Roberts, R.; Morganti, P. Beneficial Long-Term Effects of Combined Oral/Topical Antioxidant Treatment with the Carotenoids Lutein and Zeaxanthin on Human Skin: A Double-Blind, Placebo-Controlled Study. Skin. Pharmacol. Physiol. 2007, 20, 199–210. [Google Scholar] [CrossRef]
- Stahl, W.; Heinrich, U.; Jungmann, H.; Sies, H.; Tronnier, H. Carotenoids and Carotenoids plus Vitamin E Protect against Ultraviolet Light-Induced Erythema in Humans. Am. J. Clin. Nutr. 2000, 71, 795–798. [Google Scholar] [CrossRef]
- McArdle, F.; Rhodes, L.E.; Parslew, R.A.G.; Close, G.L.; Jack, C.I.A.; Friedmann, P.S.; Jackson, M.J. Effects of Oral Vitamin E and β-Carotene Supplementation on Ultraviolet Radiation–Induced Oxidative Stress in Human Skin. Am. J. Clin. Nutr. 2004, 80, 1270–1275. [Google Scholar] [CrossRef]
- Lee, J.; Jiang, S.; Levine, N.; Watson, R.R. Carotenoid Supplementation Reduces Erythema in Human Skin after Simulated Solar Radiation Exposure. Proc. Soc. Exp. Biol. Med. 2000, 223, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Lee, D.H.; Won, C.-H.; Kim, S.M.; Lee, S.; Lee, M.-J.; Chung, J.H. Differential Effects of Low-Dose and High-Dose Beta-Carotene Supplementation on the Signs of Photoaging and Type I Procollagen Gene Expression in Human Skin in Vivo. Dermatology 2010, 221, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.; Wiebusch, M.; Tronnier, H.; Gärtner, C.; Eichler, O.; Sies, H.; Stahl, W. Supplementation with β-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef]
- Kobza, A.; Ramsay, C.A.; Magnus, I.A. Oral Carotene Therapy in Actinic Reticuloid and Solar Urticaria. Failure to Demonstrate a Photoprotective Effect against Long Wave Ultraviolet and Visible Radiation. Br. J. Dermatol. 1973, 88, 157–166. [Google Scholar] [CrossRef]
- Heinrich, U.; Neukam, K.; Tronnier, H.; Sies, H.; Stahl, W. Long-Term Ingestion of High Flavanol Cocoa Provides Photoprotection against UV-Induced Erythema and Improves Skin Condition in Women1. J. Nutr. 2006, 136, 1565–1569. [Google Scholar] [CrossRef]
- Mogollon, J.A.; Boivin, C.; Lemieux, S.; Blanchet, C.; Claveau, J.; Dodin, S. Chocolate Flavanols and Skin Photoprotection: A Parallel, Double-Blind, Randomized Clinical Trial. Nutr. J. 2014, 13, 66. [Google Scholar] [CrossRef]
- Farrar, M.D.; Nicolaou, A.; Clarke, K.A.; Mason, S.; Massey, K.A.; Dew, T.P.; Watson, R.E.B.; Williamson, G.; Rhodes, L.E. A Randomized Controlled Trial of Green Tea Catechins in Protection against Ultraviolet Radiation–Induced Cutaneous Inflammation. Am. J. Clin. Nutr. 2015, 102, 608. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, L.E.; Darby, G.; Massey, K.A.; Clarke, K.A.; Dew, T.P.; Farrar, M.D.; Bennett, S.; Watson, R.E.B.; Williamson, G.; Nicolaou, A. Oral Green Tea Catechin Metabolites Are Incorporated into Human Skin and Protect against UV Radiation-Induced Cutaneous Inflammation in Association with Reduced Production of pro-Inflammatory Eicosanoid 12-Hydroxyeicosatetraenoic Acid. Br. J. Nutr. 2013, 110, 891–900. [Google Scholar] [CrossRef]
- Megow, I.; Darvin, M.E.; Meinke, M.C.; Lademann, J. A Randomized Controlled Trial of Green Tea Beverages on the in Vivo Radical Scavenging Activity in Human Skin. Skin. Pharmacol. Physiol. 2017, 30, 225–233. [Google Scholar] [CrossRef]
- Charoenchon, N.; Rhodes, L.E.; Nicolaou, A.; Williamson, G.; Watson, R.E.B.; Farrar, M.D. Ultraviolet Radiation-induced Degradation of Dermal Extracellular Matrix and Protection by Green Tea Catechins: A Randomized Controlled Trial. Clin. Exp. Dermatol. 2022, 47, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Granger, M.; Eck, P. Chapter Seven—Dietary Vitamin C in Human Health. In Advances in Food and Nutrition Research; Eskin, N.A.M., Ed.; New Research and Developments of Water-Soluble Vitamins; Academic Press: Cambridge, MA, USA, 2018; Volume 83, pp. 281–310. [Google Scholar]
- Snaidr, V.A.; Damian, D.L.; Halliday, G.M. Nicotinamide for Photoprotection and Skin Cancer Chemoprevention: A Review of Efficacy and Safety. Exp. Dermatol. 2019, 28, 15–22. [Google Scholar] [CrossRef]
- Yiasemides, E.; Sivapirabu, G.; Halliday, G.M.; Park, J.; Damian, D.L. Oral Nicotinamide Protects against Ultraviolet Radiation-Induced Immunosuppression in Humans. Carcinogenesis 2009, 30, 101–105. [Google Scholar] [CrossRef]
- Aguilera, P.; Carrera, C.; Puig-Butille, J.A.; Badenas, C.; Lecha, M.; González, S.; Malvehy, J.; Puig, S. Benefits of Oral Polypodium Leucotomos Extract in MM High Risk Patients. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1095–1100. [Google Scholar] [CrossRef]
- Emanuele, E.; Bertona, M.; Biagi, M. Comparative Effects of a Fixed Polypodium Leucotomos/Pomegranate Combination versus Polypodium Leucotomos Alone on Skin Biophysical Parameters. Neuro Endocrinol. Lett. 2017, 38, 38–42. [Google Scholar] [PubMed]
- González, S.; Pathak, M.A.; Cuevas, J.; Villarrubia, V.G.; Fitzpatrick, T.B. Topical or Oral Administration with an Extract of Polypodium Leucotomos Prevents Acute Sunburn and Psoralen-Induced Phototoxic Reactions as Well as Depletion of Langerhans Cells in Human Skin. Photodermatol. Photoimmunol. Photomed. 1997, 13, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Kohli, I.; Shafi, R.; Isedeh, P.; Griffith, J.L.; Al-Jamal, M.S.; Silpa-archa, N.; Jackson, B.; Athar, M.; Kollias, N.; Elmets, C.A.; et al. The Impact of Oral Polypodium Leucotomos Extract on Ultraviolet B Response: A Human Clinical Study. J. Am. Acad. Dermatol. 2017, 77, 33–41.e1. [Google Scholar] [CrossRef]
- Middelkamp-Hup, M.A.; Pathak, M.A.; Parrado, C.; Goukassian, D.; Rius-Díaz, F.; Mihm, M.C.; Fitzpatrick, T.B.; González, S. Oral Polypodium Leucotomos Extract Decreases Ultraviolet-Induced Damage of Human Skin. J. Am. Acad. Dermatol. 2004, 51, 910–918. [Google Scholar] [CrossRef]
- Mohammad, T.F.; Kohli, I.; Nicholson, C.L.; Treyger, G.; Chaowattanapanit, S.; Nahhas, A.F.; Braunberger, T.L.; Lim, H.W.; Hamzavi, I.H. Oral Polypodium Leucotomos Extract and Its Impact on Visible Light-Induced Pigmentation in Human Subjects. J. Drugs Dermatol. 2019, 18, 1198–1203. [Google Scholar]
- Tanew, A.; Radakovic, S.; Gonzalez, S.; Venturini, M.; Calzavara-Pinton, P. Oral Administration of a Hydrophilic Extract of Polypodium Leucotomos for the Prevention of Polymorphic Light Eruption. J. Am. Acad. Dermatol. 2012, 66, 58–62. [Google Scholar] [CrossRef]
- Friedrich, A.D.; Campo, V.E.; Cela, E.M.; Morelli, A.E.; Shufesky, W.J.; Tckacheva, O.A.; Leoni, J.; Paz, M.L.; Larregina, A.T.; Maglio, D.H.G. Oral Administration of Lipoteichoic Acid from Lactobacillus Rhamnosus GG Overcomes UVB-Induced Immunosuppression and Impairs Skin Tumor Growth in Mice. Eur. J. Immunol. 2019, 49, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Lee, D.E.; Park, S.D.; Kim, Y.-T.; Kim, Y.J.; Jeong, J.W.; Jang, S.S.; Ahn, Y.-T.; Sim, J.-H.; Huh, C.-S.; et al. Oral Administration of Lactobacillus Plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging. J. Microbiol. Biotechnol. 2014, 24, 1583–1591. [Google Scholar] [CrossRef]
- Guéniche, A.; Benyacoub, J.; Buetler, T.M.; Smola, H.; Blum, S. Supplementation with Oral Probiotic Bacteria Maintains Cutaneous Immune Homeostasis after UV Exposure. Eur. J. Dermatol. 2006, 16, 511–517. [Google Scholar]
- Meinke, M.C.; Darvin, M.E.; Vollert, H.; Lademann, J. Bioavailability of Natural Carotenoids in Human Skin Compared to Blood. Eur. J. Pharm. Biopharm. 2010, 76, 269–274. [Google Scholar] [CrossRef]
- Dreher, F.; Maibach, H. Protective Effects of Topical Antioxidants in Humans. Curr. Probl. Dermatol. 2001, 29, 157–164. [Google Scholar] [CrossRef]
- Won, C.S.; Oberlies, N.H.; Paine, M.F. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport. Pharmacol. Ther. 2012, 136, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Galla, R.; Mulè, S.; Ferrari, S.; Molinari, C.; Uberti, F. Non-Animal Hyaluronic Acid and Probiotics Enhance Skin Health via the Gut–Skin Axis: An In Vitro Study on Bioavailability and Cellular Impact. Int. J. Mol. Sci. 2025, 26, 897. [Google Scholar] [CrossRef] [PubMed]
- Ieiri, H.; Kameda, N.; Naito, J.; Kawano, T.; Nishida, N.; Takahashi, M.; Katakura, Y. Paramylon Extracted from Euglena Gracilis EOD-1 Augmented the Expression of SIRT1. Cytotechnology 2021, 73, 755–759. [Google Scholar] [CrossRef]
- Ivarsson, J.; Bennett, A.; Ferrara, F.; Strauch, R.; Vallase, A.; Iorizzo, M.; Pecorelli, A.; Lila, M.A.; Valacchi, G. Gut-Derived Wild Blueberry Phenolic Acid Metabolites Modulate Extrinsic Cutaneous Damage. Food Funct. 2024, 15, 7849–7864. [Google Scholar] [CrossRef]
- Alsadi, N.; Yasavoli-Sharahi, H.; Mueller, R.; Cuenin, C.; Chung, F.; Herceg, Z.; Matar, C. Protective Mechanisms of Polyphenol-Enriched Blueberry Preparation in Preventing Inflammation in the Skin against UVB-Induced Damage in an Animal Model. Antioxidants 2024, 13, 25. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.G.; Jang, Y.A.; Bayazid, A.B.; Ou Lim, B. Fermented Black Rice and Blueberry with Lactobacillus Plantarum MG4221 Improve UVB-Induced Skin Injury. Food Agric. Immunol. 2021, 32, 499–515. [Google Scholar] [CrossRef]
- Natarelli, N.; Aflatooni, S.; Stankiewicz, K.; Correa-Selm, L.; Sivamani, R.K. Oral Supplements and Photoprotection: A Systematic Review. J. Med. Food 2025. [Google Scholar] [CrossRef]
- Gueniche, A.; Perin, O.; Bouslimani, A.; Landemaine, L.; Misra, N.; Cupferman, S.; Aguilar, L.; Clavaud, C.; Chopra, T.; Khodr, A. Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022, 11, 121. [Google Scholar] [CrossRef]
- Flowers, L.; Grice, E.A. The Skin Microbiota: Balancing Risk and Reward. Cell Host Microbe 2020, 28, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Sasaki, T.; Li, Y.; Tanoue, T.; Sugiura, Y.; Skelly, A.N.; Suda, W.; Kawashima, Y.; Okahashi, N.; Watanabe, E.; et al. Staphylococcus Cohnii Is a Potentially Biotherapeutic Skin Commensal Alleviating Skin Inflammation. Cell Rep. 2021, 35, 109052. [Google Scholar] [CrossRef]
- Patra, V.; Bordag, N.; Clement, Y.; Köfeler, H.; Nicolas, J.-F.; Vocanson, M.; Ayciriex, S.; Wolf, P. Ultraviolet Exposure Regulates Skin Metabolome Based on the Microbiome. Sci. Rep. 2023, 13, 7207. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet Radiation, Both UVA and UVB, Influences the Composition of the Skin Microbiome. Exp. Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef]
- Severn, M.M.; Horswill, A.R. Staphylococcus Epidermidis and Its Dual Lifestyle in Skin Health and Infection. Nat. Rev. Microbiol. 2023, 21, 97–111. [Google Scholar] [CrossRef]
- Smith, M.L.; O’Neill, C.A.; Dickinson, M.R.; Chavan, B.; McBain, A.J. Exploring Associations between Skin, the Dermal Microbiome, and Ultraviolet Radiation: Advancing Possibilities for next-Generation Sunscreens. Front. Microbiomes 2023, 2, 1102315. [Google Scholar] [CrossRef]
- Harel, N.; Ogen-Shtern, N.; Reshef, L.; Biran, D.; Ron, E.Z.; Gophna, U. Skin Microbiome Bacteria Enriched Following Long Sun Exposure Can Reduce Oxidative Damage. Res. Microbiol. 2023, 174, 104138. [Google Scholar] [CrossRef]
- Amar, Y.; Niedermeier, S.; Silva, R.; Kublik, S.; Schloter, M.; Biedermann, T.; Köberle, M.; Eberlein, B. Skin Microbiome Dynamics in Patients with Polymorphic Light Eruption in Response to Ultraviolet Radiation. Br. J. Dermatol. 2024, 192, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, R.; Claypool, J.; Sfriso, R.; Vollhardt, J.H. Sunscreens Can Preserve Human Skin Microbiome upon Erythemal UV Exposure. Int. J. Cosmet. Sci. 2024, 46, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; NISC Comparative Sequencing Program; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; et al. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef]
- Patra, V.; Wagner, K.; Arulampalam, V.; Wolf, P. Skin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function. iScience 2019, 15, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, M. Polymorphous Light Eruption. Adv. Exp. Med. Biol. 2017, 996, 61–70. [Google Scholar] [CrossRef]
- Townsend, E.C.; Kalan, L.R. The Dynamic Balance of the Skin Microbiome across the Lifespan. Biochem. Soc. Trans. 2023, 51, 71–86. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Park, M.; NISC Comparative Sequencing Program; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef]
- Zarfl, M.; Patra, V.; Bordag, N.; Quehenberger, F.; Golob-Schwarzl, N.; Gruber-Wackernagel, A.; Wolf, P. Eradication of Skin Microbiota Restores Cytokine Production and Release in Polymorphic Light Eruption. Exp. Dermatol. 2024, 33, e15034. [Google Scholar] [CrossRef]
- Willmott, T.; Campbell, P.M.; Griffiths, C.E.M.; O’Connor, C.; Bell, M.; Watson, R.E.B.; McBain, A.J.; Langton, A.K. Behaviour and Sun Exposure in Holidaymakers Alters Skin Microbiota Composition and Diversity. Front. Aging 2023, 4, 1217635. [Google Scholar] [CrossRef]
- Burq, M.; Verschoore, M. Historical Perspective on Sunscreens: Shift towards Worldwide Individualized Photoprotection. J. Photochem. Photobiol. 2024, 19, 100219. [Google Scholar] [CrossRef]
- Sunscreen FAQs. Available online: https://www.aad.org/media/stats-sunscreen (accessed on 14 February 2025).
- Patlola, M.; Shah, A.A.; Stead, T.; Mangal, R.; Ganti, L. Sunscreen Use amongst US Adults: A National Survey. Arch. Dermatol. Res. 2023, 315, 2137–2138. [Google Scholar] [CrossRef] [PubMed]
- Ullman, L.E.; Nasir-Moin, M.; Hoffman, V.; Ghadersohi, S.; Swartzman, I.; de Weever, M.; Augustin, M. Sunscreen Use and Affordability Attitudes Based on Ethnicity, Socioeconomic Status, and Fitzpatrick Skin Type. Arch. Dermatol. Res. 2024, 316, 266. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, K.; Schneider, J.; Moore, D.; Wu, B.V.; Johal, A.; Wei, M.L. Affordability Matters: A Cross-Sectional Study on Sunscreen Cost and Application Amount. J. Am. Acad. Dermatol. 2025, 315, 1103–1104. [Google Scholar] [CrossRef]
- Al-Balbeesi, A.; AlMukhadeb, E.; BinMayouf, M.; AlNasser, S.; Aldossari, A.; Alfaiz, F.; Alyamani, A.; Alammari, A.; Almuhaideb, Q. Dermatology Patients’ Knowledge of Sunscreen Guidelines at a University Hospital in Saudi Arabia. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2915–2923. [Google Scholar] [CrossRef]
- Stevens, C.R.; Green, M.; Hinh, K.; Chaudhry, S. Predictors of Sunscreen Use in United States High-School Students. Skin. Health Dis. 2024, 4, e370. [Google Scholar] [CrossRef] [PubMed]
- Brunsgaard, E.K.; Wu, Y.P.; Grossman, D. Melanoma in Skin of Color: Part I. Epidemiology and Clinical Presentation. J. Am. Acad. Dermatol. 2023, 89, 445–456. [Google Scholar] [CrossRef]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen Products: Rationale for Use, Formulation Development and Regulatory Considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, J.P. Sunscreen Formulation: Optimising Aesthetic Elements for Twenty-First-Century Consumers. In Principles and Practice of Photoprotection; Wang, S.Q., Lim, H.W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 289–302. ISBN 978-3-319-29381-3. [Google Scholar]
- Lionetti, N.; Rigano, L. The New Sunscreens among Formulation Strategy, Stability Issues, Changing Norms, Safety and Efficacy Evaluations. Cosmetics 2017, 4, 15. [Google Scholar] [CrossRef]
- Vollhardt, J. The Sensory Experience of Sunscreens—Which Properties Matter? A Descriptive Sensory Analysis of More than 50 Sunscreens. In Proceedings of the Sun Protection Conference 2013: Sun Protection for the 21st Century, London, UK, 4–5 June 2013. [Google Scholar]
- Eudier, F.; Savary, G.; Grisel, M.; Picard, C. Skin Surface Physico-Chemistry: Characteristics, Methods of Measurement, Influencing Factors and Future Developments. Adv. Colloid. Interface Sci. 2019, 264, 11–27. [Google Scholar] [CrossRef]
- Khyat, A.E.; Mavon, A.; Leduc, M.; Agache, P.; Humbert, P. Skin Critical Surface Tension: A Way to Assess the Skin Wettability Quantitatively. Skin. Res. Technol. 1996, 2, 91–96. [Google Scholar] [CrossRef]
- Hashizaki, K.; Hoshii, Y.; Ikeuchi, K.; Imai, M.; Taguchi, H.; Goto, Y.; Fujii, M. A Method for Measuring the Surface Free Energy of Topical Semi-Solid Dosage Forms. Chem. Pharm. Bull. 2021, 69, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Osterwalder, U.; Hubaud, J.-C.; Perroux-David, E.; Moraine, T.; van den Bosch, J. Sun-Protection Factor of Zinc-Oxide Sunscreens: SPFin Vitro Too Low Compared to SPFin Vivo-a Brief Review. Photochem. Photobiol. Sci. 2024, 23, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Cole, C. Sunscreen Formulation: Optimizing Efficacy of UVB and UVA Protection. In Principles and Practice of Photoprotection; Wang, S.Q., Lim, H.W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 275–287. ISBN 978-3-319-29381-3. [Google Scholar]
- Sohn, M.; Hêche, A.; Herzog, B.; Imanidis, G. Film Thickness Frequency Distribution of Different Vehicles Determines Sunscreen Efficacy. J. Biomed. Opt. 2014, 19, 115005. [Google Scholar] [CrossRef]
- Sohn, M.; Herzog, B.; Osterwalder, U.; Imanidis, G. Calculation of the Sun Protection Factor of Sunscreens with Different Vehicles Using Measured Film Thickness Distribution—Comparison with the SPF in Vitro. J. Photochem. Photobiol. B Biol. 2016, 159, 74–81. [Google Scholar] [CrossRef]
- Schulz, J.; Hohenberg, H.; Pflücker, F.; Gärtner, E.; Will, T.; Pfeiffer, S.; Wepf, R.; Wendel, V.; Gers-Barlag, H.; Wittern, K.-P. Distribution of Sunscreens on Skin. Adv. Drug Deliv. Rev. 2002, 54, S157–S163. [Google Scholar] [CrossRef]
- Lademann, J.; Rudolph, A.; Jacobi, U.; Weigmann, H.-J.; Schaefer, H.; Sterry, W.; Meinke, M. Influence of Nonhomogeneous Distribution of Topically Applied UV Filters on Sun Protection Factors. J. Biomed. Opt. 2004, 9, 1358. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.F.; Sarkas, H.W.; Boland, P.; Bouche, D. Beyond Sun Protection Factor: An Approach to Environmental Protection with Novel Mineral Coatings in a Vehicle Containing a Blend of Skincare Ingredients. J. Cosmet. Dermatol. 2020, 19, 407–415. [Google Scholar] [CrossRef]
- Morabito, K.; Shapley, N.C.; Steeley, K.G.; Tripathi, A. Review of Sunscreen and the Emergence of Non-Conventional Absorbers and Their Applications in Ultraviolet Protection: Emergence of Non-Conventional Absorbers. Int. J. Cosmet. Sci. 2011, 33, 385–390. [Google Scholar] [CrossRef]
- Binks, B.P.; Brown, J.; Fletcher, P.D.I.; Johnson, A.J.; Marinopoulos, I.; Crowther, J.M.; Thompson, M.A. Evaporation of Sunscreen Films: How the UV Protection Properties Change. ACS Appl. Mater. Interfaces 2016, 8, 13270–13281. [Google Scholar] [CrossRef]
- Nash, J.F.; Tanner, P.R. Relevance of UV Filter/Sunscreen Product Photostability to Human Safety. Photodermatol. Photoimmunol. Photomed. 2014, 30, 88–95. [Google Scholar] [CrossRef]
- Nesseem, D. Formulation of Sunscreens with Enhancement Sun Protection Factor Response Based on Solid Lipid Nanoparticles. Int. J. Cosmet. Sci. 2011, 33, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.A.; Cruz, Y.F.D.; Girão, Í.C.; Souza, F.J.J.D.; Oliveira, W.N.D.; Alencar, É.D.N.; Amaral-Machado, L.; Egito, E.S.T.D. Beyond Traditional Sunscreens: A Review of Liposomal-Based Systems for Photoprotection. Pharmaceutics 2024, 16, 661. [Google Scholar] [CrossRef] [PubMed]
- de Souza de Bustamante Monteiro, M.S.; Ozzetti, R.A.; Vergnanini, A.L.; de Brito-Gitirana, L.; Volpato, N.M.; de Freitas, Z.M.F.; Ricci-Júnior, E.; dos Santos, E.P. Evaluation of Octyl P-Methoxycinnamate Included in Liposomes and Cyclodextrins in Anti-Solar Preparations: Preparations, Characterizations and in Vitro Penetration Studies. Int. J. Nanomed. 2012, 7, 3045–3058. [Google Scholar] [CrossRef]
- Sanad, R.A.; Abdelmalak, N.S.; Elbayoomy, T.S.; Badawi, A.A. Formulation of a Novel Oxybenzone-Loaded Nanostructured Lipid Carriers (NLCs). AAPS PharmSciTech 2010, 11, 1684–1694. [Google Scholar] [CrossRef]
- Salih, H.; Psomadakis, C.; George, S.M.C. Sunscreens: A Narrative Review. Skin. Health Dis. 2024, 4, e432. [Google Scholar] [CrossRef]
- Hodge, A.A.; Hopkins, F.E.; Saha, M.; Jha, A.N. Ecotoxicological Effects of Sunscreen Derived Organic and Inorganic UV Filters on Marine Organisms: A Critical Review. Mar. Pollut. Bull. 2025, 213, 117627. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Sánchez-Quiles, D.; Basterretxea, G.; Benedé, J.L.; Chisvert, A.; Salvador, A.; Moreno-Garrido, I.; Blasco, J. Sunscreen Products as Emerging Pollutants to Coastal Waters. PLoS ONE 2013, 8, e65451. [Google Scholar] [CrossRef]
- Cole, C.; Shyr, T.; Ou-Yang, H. Metal Oxide Sunscreens Protect Skin by Absorption, Not by Reflection or Scattering. Photodermatol. Photoimmunol. Photomed. 2016, 32, 5–10. [Google Scholar] [CrossRef]
- Smijs, T. Pavel Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Song, Z.; Kelf, T.A.; Sanchez, W.H.; Roberts, M.S.; Rička, J.; Frenz, M.; Zvyagin, A.V. Characterization of Optical Properties of ZnO Nanoparticles for Quantitative Imaging of Transdermal Transport. Biomed. Opt. Express 2011, 2, 3321–3333. [Google Scholar] [CrossRef]
- Osmond, M.J.; Mccall, M.J. Zinc Oxide Nanoparticles in Modern Sunscreens: An Analysis of Potential Exposure and Hazard. Nanotoxicology 2010, 4, 15–41. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.A.; Marchetti, B.; Karsili, T.N.V.; Stavros, V.G.; Ashfold, M.N.R. Photoprotection: Extending Lessons Learned from Studying Natural Sunscreens to the Design of Artificial Sunscreen Constituents. Chem. Soc. Rev. 2017, 46, 3770–3791. [Google Scholar] [CrossRef]
- McMurry, J. Chapter 14: Conjugated Compounds and Ultraviolet Spectroscopy. In Organic Chemistry, 9th ed.; CENGAGE Learning: Boston, MA, USA, 2016; pp. 420–450. ISBN 978-1-305-08438-4. [Google Scholar]
- Alves, L.F.; Gargano, R.; Alcanfor, S.K.B.; Romeiro, L.A.S.; Martins, J.B.L. A Chromophoric Study of 2-Ethylhexyl p-Methoxycinnamate. Chem. Phys. Lett. 2011, 516, 162–165. [Google Scholar] [CrossRef]
- Magrin, C.P.; Saldaña-Serrano, M.; Bainy, A.C.D.; Vitali, L.; Micke, G.A. Analysis of the UV Filter Benzophenone-3 Assimilation in Crossostrea Gigas Oysters Post-Exposure in a Controlled Environment by LC-MS/MS. Chemosphere 2024, 363, 142725. [Google Scholar] [CrossRef] [PubMed]
- Holt, E.L.; Rodrigues, N.D.N.; Cebrián, J.; Stavros, V.G. Determining the Photostability of Avobenzone in Sunscreen Formulation Models Using Ultrafast Spectroscopy. Phys. Chem. Chem. Phys. 2021, 23, 24439–24448. [Google Scholar] [CrossRef]
- Bacqueville, D.; Jacques-Jamin, C.; Dromigny, H.; Boyer, F.; Brunel, Y.; Ferret, P.J.; Redoulès, D.; Douki, T.; Bessou-Touya, S.; Duplan, H. Phenylene Bis-Diphenyltriazine (TriAsorB), a New Sunfilter Protecting the Skin against Both UVB + UVA and Blue Light Radiations. Photochem. Photobiol. Sci. 2021, 20, 1475–1486. [Google Scholar] [CrossRef]
- Chatelain, E.; Gabard, B. Photostabilization of Butyl Methoxydibenzoylmethane (Avobenzone) and Ethylhexyl Methoxycinnamate by Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine (Tinosorb S), a New UV Broadband Filter. Photochem. Photobiol. 2001, 74, 401. [Google Scholar] [CrossRef]
- Herzog, B.; Giesinger, J.; Settels, V. Insights into the Stabilization of Photolabile UV-Absorbers in Sunscreens. Photochem. Photobiol. Sci. 2020, 19, 1636–1649. [Google Scholar] [CrossRef]
- Boyer, F.; Delsol, C.; Ribet, V.; Lapalud, P. Broad-spectrum Sunscreens Containing the TriAsorBTM Filter: In Vitro Photoprotection and Clinical Evaluation of Blue Light-induced Skin Pigmentation. Acad. Dermatol. Venereol. 2023, 37, 12–21. [Google Scholar] [CrossRef]
- Herzog, B.; Wehrle, M.; Quass, K. Photostability of UV Absorber Systems in Sunscreens. Photochem. Photobiol. 2009, 85, 869–878. [Google Scholar] [CrossRef]
- Shaath, N.A. Ultraviolet Filters. Photochem. Photobiol. Sci. 2010, 9, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Ramanathan, R.; Urban, S.; Sinclair, C.; King, K.; Tinker, R.; Bansal, V. Sunscreen Testing: A Critical Perspective and Future Roadmap. TrAC Trends Anal. Chem. 2022, 157, 116724. [Google Scholar] [CrossRef]
- Al-Jamal, M.S.; Griffith, J.L.; Lim, H.W. Photoprotection in Ethnic Skin. Dermatol. Sin. 2014, 32, 217–224. [Google Scholar] [CrossRef]
- Resolução—RDC No 600, de 9 de Fevereiro de 2022. Available online: www.in.gov.br/en/web/dou/-/resolucao-rdc-n-600-de-9-de-fevereiro-de-2022-380633694 (accessed on 17 April 2025).
- Sabzevari, N.; Qiblawi, S.; Norton, S.A.; Fivenson, D. Sunscreens: UV Filters to Protect Us: Part 1: Changing Regulations and Choices for Optimal Sun Protection. Int. J. Women’s Dermatol. 2021, 7, 28–44. [Google Scholar] [CrossRef]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorganica Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. UV Filters: Challenges and Prospects. Pharmaceuticals 2022, 15, 263. [Google Scholar] [CrossRef]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The Banned Sunscreen Ingredients and Their Impact on Human Health: A Systematic Review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef]
- Dangers of Oxybenzone in Sunscreens on Coral Reefs: Proposed Policy Approaches. Available online: https://www.sciencepolicyjournal.org/article_1038126_jspg240106.html (accessed on 13 February 2025).
- Adler, B.L. Sunscreen Safety: 2024 Updates. Cutis 2024, 113, 195–196. [Google Scholar] [CrossRef]
- Piluk, T.; Faccio, G.; Letsiou, S.; Liang, R.; Freire-Gormaly, M. A Critical Review Investigating the Use of Nanoparticles in Cosmetic Skin Products. Environ. Sci. Nano 2024, 11, 3674–3692. [Google Scholar] [CrossRef]
- De Kwek, D.Y.; Setyawati, M.I.; Gautam, A.; Adav, S.S.; Cheong, E.C.; Ng, K.W. Understanding the Toxicological Effects of TiO2 Nanoparticles Extracted from Sunscreens on Human Keratinocytes and Skin Explants. Part. Fibre Toxicol. 2024, 21, 49. [Google Scholar] [CrossRef]
- Brown, A.; Passeron, T.; Granger, C.; Gilaberte, Y.; Trullas, C.; Piquero-Casals, J.; Leone, G.; Schalka, S.; Lim, H.W.; Krutmann, J. An Evidence-Driven Classification of Non-Filtering Ingredients for Topical Photoprotection. Br. J. Dermatol. 2025. [Google Scholar] [CrossRef]
- Pantelic, M.N.; Wong, N.; Kwa, M.; Lim, H.W. Ultraviolet Filters in the United States and European Union: A Review of Safety and Implications for the Future of US Sunscreens. J. Am. Acad. Dermatol. 2023, 88, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Bacqueville, D.; Jacques-Jamin, C.; Lapalud, P.; Douki, T.; Roullet, N.; Sereno, J.; Redoulès, D.; Bessou-Touya, S.; Duplan, H. Formulation of a New Broad-Spectrum UVB + UVA and Blue Light SPF50+ Sunscreen Containing Phenylene Bis-Diphenyltriazine (TriAsorB), an Innovative Sun Filter with Unique Optical Properties. Acad. Dermatol. Venereol. 2022, 36, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Flament, F.; Mercurio, D.G.; Muller, B.; Li, J.; Tricaud, C.; Bernerd, F.; Roudot, A.; Candau, D.; Passeron, T. The Impact of Methoxypropylamino Cyclohexenylidene Ethoxyethylcyanoacetate (MCE) UVA1 Filter on Pigmentary and Ageing Signs: An Outdoor Prospective 8-week Randomized, Intra-individual Comparative Study in Two Populations of Different Genetic Background. Acad. Dermatol. Venereol. 2024, 38, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Marionnet, C.; de Dormael, R.; Marat, X.; Roudot, A.; Gizard, J.; Planel, E.; Tornier, C.; Golebiewski, C.; Bastien, P.; Candau, D.; et al. Sunscreens with the New MCE Filter Cover the Whole UV Spectrum: Improved UVA1 Photoprotection In Vitro and in a Randomized Controlled Trial. JID Innov. 2022, 2, 100070. [Google Scholar] [CrossRef]
- Sharma, G.; Khanna, G.; Gupta, S.; Ramzan, M.; Singh, J.; Singh, M.; Mudgill, U.; Gulati, J.S.; Kaur, I.P. Scope of Solid Lipid Nanoparticles per Se as All-Purpose Moisturising Sunscreens. J. Drug Deliv. Sci. Technol. 2022, 75, 103687. [Google Scholar] [CrossRef]
- Souto, E.B.; Jäger, E.; Jäger, A.; Štěpánek, P.; Cano, A.; Viseras, C.; de Melo Barbosa, R.; Chorilli, M.; Zielińska, A.; Severino, P.; et al. Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. Nanomaterials 2022, 12, 377. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Nam, G.-W. Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics 2020, 7, 14. [Google Scholar] [CrossRef]
- Khan, I.; Wongwas, S.; Yousaf, S. Review of Formulation Strategies to Enhance the Sun Protection Factor Values. In Micro and Nanomanufacturing Volume II; Jackson, M.J., Ahmed, W., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 445–479. ISBN 978-3-031-70499-4. [Google Scholar]
- Sohn, M. UV Booster and Photoprotection. In Principles and Practice of Photoprotection; Wang, S.Q., Lim, H.W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 227–245 . ISBN 978-3-319-29382-0. [Google Scholar]
- Chen, L.; Wang, J.; Wu, X.; Coulthard, C.T.; Qian, Y.; Chen, C.; O’Hare, D. Boosting the Effectiveness of UV Filters and Sunscreen Formulations Using Photostable, Non-Toxic Inorganic Platelets. Chem. Commun. 2024, 60, 1039–1042. [Google Scholar] [CrossRef]
- Aguilera, J.; Vicente-Manzanares, M.; De Gálvez, M.V.; Herrera-Ceballos, E.; Rodríguez-Luna, A.; González, S. Booster Effect of a Natural Extract of Polypodium Leucotomos (Fernblock®) That Improves the UV Barrier Function and Immune Protection Capability of Sunscreen Formulations. Front. Med. 2021, 8, 684665. [Google Scholar] [CrossRef]
- Lorquin, F.; Lorquin, J.; Claeys-Bruno, M.; Rollet, M.; Robin, M.; Di Giorgio, C.; Piccerelle, P. Lignosulfonate Is an Efficient SPF Booster: Application to Eco-Friendly Sunscreen Formulations. Sustain. Chem. Pharm. 2021, 24, 100539. [Google Scholar] [CrossRef]
- Landry, K.S.; Young, E.; Avery, T.S.; Gropman, J. Efficacy of a Novel SPF Booster Based on Research Aboard the International Space Station. Cosmetics 2023, 10, 138. [Google Scholar] [CrossRef]
- Peng, J.; Guo, F.; Liu, S.; Fang, H.; Xu, Z.; Wang, T. Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules 2023, 28, 5588. [Google Scholar] [CrossRef]
- Singh, A.; Čížková, M.; Bišová, K.; Vítová, M. Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage. Antioxidants 2021, 10, 683. [Google Scholar] [CrossRef]
- Geraldes, V.; Pinto, E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals 2021, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Kaur, P.; Soni, R.; Madan, A.; Agarwal, P.; Singh, G. Decoding the Photoprotection Strategies and Manipulating Cyanobacterial Photoprotective Metabolites, Mycosporine-like Amino Acids, for next-Generation Sunscreens. Plant Physiol. Biochem. 2024, 212, 108744. [Google Scholar] [CrossRef] [PubMed]
- Rosic, N.N. Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens. Mar. Drugs 2019, 17, 638. [Google Scholar] [CrossRef]
- Singh, V.K.; Das, B.; Jha, S.; Rana, P.; Kumar, R.; Sinha, R.P. Characterization, DFT Study and Evaluation of Antioxidant Potentials of Mycosporine-like Amino Acids (MAAs) in the Cyanobacterium Anabaenopsis Circularis HKAR-22. J. Photochem. Photobiol. B Biol. 2024, 257, 112975. [Google Scholar] [CrossRef]
- Woolley, J.M.; Staniforth, M.; Horbury, M.D.; Richings, G.W.; Wills, M.; Stavros, V.G. Unravelling the Photoprotection Properties of Mycosporine Amino Acid Motifs. J. Phys. Chem. Lett. 2018, 9, 3043–3048. [Google Scholar] [CrossRef]
- Conde, F.R.; Churio, M.S.; Previtali, C.M. Experimental Study of the Excited-State Properties and Photostability of the Mycosporine-like Amino Acid Palythine in Aqueous Solution. Photochem. Photobiol. Sci. 2007, 6, 669–674. [Google Scholar] [CrossRef]
- Esim, N.; Dawar, P.; Arslan, N.P.; Orak, T.; Doymus, M.; Azad, F.; Ortucu, S.; Albayrak, S.; Taskin, M. Natural Metabolites with Antioxidant Activity from Micro-and Macro-Algae. Food Bioscience 2024, 62, 105089. [Google Scholar] [CrossRef]
- Kageyama, H.; Waditee-Sirisattha, R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar. Drugs 2019, 17, 222. [Google Scholar] [CrossRef] [PubMed]
- Punchakara, A.; Prajapat, G.; Bairwa, H.K.; Jain, S.; Agrawal, A. Applications of Mycosporine-like Amino Acids beyond Photoprotection. Appl. Environ. Microbiol. 2023, 89, e00740-23. [Google Scholar] [CrossRef]
- Stern, C. Consumer Survey Reports Growing “Sunxiety” Is Fueling Demand for Multifunctional Sunscreens. Available online: https://www.cosmeticsdesign.com/Article/2024/07/08/Growing-sunxiety-fuels-consumer-demand-for-multi-functional-sunscreens/ (accessed on 12 February 2025).
- Chen, L.; Hu, J.Y.; Wang, S.Q. The Role of Antioxidants in Photoprotection: A Critical Review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Wang, Y.; Zhang, L. The Effect of α-Arbutin on UVB-Induced Damage and Its Underlying Mechanism. Molecules 2024, 29, 1921. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Zhou, Q.; Liang, M.; Liang, H.; Yu, Y.; Li, Y.; Zhang, Y.; Lu, L.; Zheng, Y.; Hao, J.; et al. α-Arbutin Ameliorates UVA-Induced Photoaging through Regulation of the SIRT3/PGC-1α Pathway. Front. Pharmacol. 2024, 15, 1413530. [Google Scholar] [CrossRef]
- Zhao, N.; Nie, X.; Yan, Y.; Liu, Z.; Chen, X.; Shu, P.; Zhong, J. α-Arbutin Prevents UVA-Induced Skin Photodamage via Alleviating DNA Damage and Collagen Degradation in NIH-3T3 Cells. J. Photochem. Photobiol. B 2025, 263, 113100. [Google Scholar] [CrossRef]
- Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Pamornpathomkul, B.; Opanasopit, P. Fabrication, Characterization and Comparison of α-Arbutin Loaded Dissolving and Hydrogel Forming Microneedles. Int. J. Pharm. 2020, 586, 119508. [Google Scholar] [CrossRef]
- Tan, C.Y.R.; Morenc, M.; Setiawan, M.; Lim, Z.Z.Y.; Soon, A.L.; Bierman, J.C.; Vires, L.; Laughlin, T.; DeAngelis, Y.M.; Rovito, H.; et al. Para-Hydroxycinnamic Acid Mitigates Senescence and Inflammaging in Human Skin Models. Int. J. Mol. Sci. 2024, 25, 8153. [Google Scholar] [CrossRef]
- Janson, W.P.; Breyfogle, L.E.; Bierman, J.C.; Chew, Z.Y.; Ehrman, M.C.; Oblong, J.E. Mitigation of Ultraviolet-Induced Erythema and Inflammation by Para-Hydroxycinnamic Acid in Human Skin. Int. J. Cosmet. Sci. 2025, 47, 91–100. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, H.S. Skin Deep: The Potential of Microbiome Cosmetics. J. Microbiol. 2024, 62, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.Y.; Jeong, D.; Park, S.H.; Shin, K.K.; Hong, Y.H.; Kim, E.; Yu, Y.-G.; Kim, T.-R.; Kim, H.; Lee, J.; et al. Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus Acidophilus KCCM12625P. Int. J. Mol. Sci. 2020, 21, 1620. [Google Scholar] [CrossRef]
- Patra, V.; Gallais Sérézal, I.; Wolf, P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020, 12, 1795. [Google Scholar] [CrossRef]
- Zhang, Z.; Ran, H.; Hua, Y.; Deng, F.; Zeng, B.; Chai, J.; Li, Y. Screening and Evaluation of Skin Potential Probiotic from High-Altitude Tibetans to Repair Ultraviolet Radiation Damage. Front. Microbiol. 2023, 14, 1273902. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Song, Y.; Zheng, B.; Wen, Z.; Gong, M.; Meng, L. Heat-Killed Lacticaseibacillus Paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants 2022, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-C.; Ng, S.-C.; Chuang, H.-L.; Wen, S.-Y.; Kuo, C.-H.; Mahalakshmi, B.; Huang, C.-Y.; Kuo, W.-W. Extracts of Flowers Fermented by Lactobacillus Rhamnosus Inhibit HO- and UVB-Induced Aging in Human Dermal Fibroblasts. Environ. Toxicol. 2021, 36, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Min, J.-W.; Gye, S.-B.; Kim, Y.-W.; Kang, H.-C.; Choi, Y.-S.; Seo, W.-S.; Lee, B.-Y. Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus Iners Derived from Korean Women’s Skin in Their Twenties. Curr. Issues Mol. Biol. 2024, 46, 513–526. [Google Scholar] [CrossRef]
- Ferrero, L.; Pissavini, M.; Doucet, O. How a Calculated Model of Sunscreen Film Geometry Can Explain in Vitro and in Vivo SPF Variation. Photochem. Photobiol. Sci. 2010, 9, 540–551. [Google Scholar] [CrossRef]
- Osterwalder, U.; Herzog, B. Sun Protection Factors: World Wide Confusion. Br. J. Dermatol. 2009, 161, 13–24. [Google Scholar] [CrossRef]
- Osterwalder, U.; Schutz, R.; Vollhardt, J. SPF Assessment Revisited—Status and Outlook. SOFW J. 2018, 144, 38–42. [Google Scholar]
- ISO 23698:2024; Cosmetics—Measurement of the Sunscreen Efficacy by Diffuse Reflectance Spectroscop. ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/76699.html (accessed on 12 February 2025).
- ISO 24443:2021; Cosmetics—Determination of Sunscreen UVA Photoprotection in Vitro. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75059.html (accessed on 12 February 2025).
- Groves, G.A.; Agin, P.P.; Sayre, R.M. In Vitro and In Vivo Methods to Define Sunscreen Protection. Australas. J. Dermatol. 1979, 20, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Cumpelik, B.M. Sunscreens at Skin Application Levels: Direct Spectrophotometric Evaluation. J. Soc. Cosmet. Chem. 1980, 31, 361–366. [Google Scholar]
- Petro, A.J. Correlation of Spectrophotometric Data with Sunscreen Protection Factors. Int. J. Cosmet. Sci. 1981, 3, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Pissavini, M.; Tricaud, C.; Wiener, G.; Lauer, A.; Contier, M.; Kolbe, L.; Trullás Cabanas, C.; Boyer, F.; Nollent, V.; Meredith, E.; et al. Validation of an in Vitro Sun Protection Factor (SPF) Method in Blinded Ring-Testing. Int. J. Cosmet. Sci. 2018, 40, 263–268. [Google Scholar] [CrossRef] [PubMed]
- COLIPA Guidelines, International Sun Protection Factor (SPF) Test Method. Available online: https://downloads.regulations.gov/FDA-1978-N-0018-0698/attachment_65.pdf. (accessed on 11 February 2025).
- ISO 24444:2019; Cosmetics—Sun protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/72250.html (accessed on 12 February 2025).
- Miksa, S.; Lutz, D.; Guy, C.; Delamour, E. Sunscreen Sun Protection Factor Claim Based on in Vivo Interlaboratory Variability. Int. J. Cosmet. Sci. 2016, 38, 541–549. [Google Scholar] [CrossRef]
- Andrews, D.Q.; Rauhe, K.; Burns, C.; Spilman, E.; Temkin, A.M.; Perrone-Gray, S.; Naidenko, O.V.; Leiba, N. Laboratory Testing of Sunscreens on the US Market Finds Lower in Vitro SPF Values than on Labels and Even Less UVA Protection. Photodermatol. Photoimmunol. Photomed. 2022, 38, 224–232. [Google Scholar] [CrossRef]
- Routaboul, C.; Denis, A.; Vinche, A. Immediate Pigment Darkening: Description, Kinetic and Biological Function. European Journal of Dermatology. J. Dermatol. 1999, 9, 95–99. [Google Scholar]
- ISO 24442:2022; Cosmetics—Sun Protection Test Methods—In Vivo Determination of Sunscreen UVA Protection. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/75496.html (accessed on 12 February 2025).
- Hwang, Y.J.; Park, H.J.; Hahn, H.J.; Kim, J.Y.; Ko, J.H.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Immediate Pigment Darkening and Persistent Pigment Darkening as Means of Measuring the Ultraviolet A Protection Factor in Vivo: A Comparative Study: IPD and PPD for Measuring UVAPF. Br. J. Dermatol. 2011, 164, 1356–1361. [Google Scholar] [CrossRef]
- Moyal, D. UVA Protection Labeling and in Vitro Testing Methods. Photochem. Photobiol. Sci. 2010, 9, 516–523. [Google Scholar] [CrossRef]
- Hedayat, K.; Ahmad Nasrollahi, S.; Firooz, A.; Rastegar, H.; Dadgarnejad, M. Comparison of UVA Protection Factor Measurement Protocols. Clin. Cosmet. Investig. Dermatol. 2020, 13, 351–358. [Google Scholar] [CrossRef]
- Moyal, D.; Alard, V.; Bertin, C.; Boyer, F.; Brown, M.W.; Kolbe, L.; Matts, P.; Pissavini, M. The Revised COLIPA in Vitro UVA Method. Int. J. Cosmet. Sci. 2013, 35, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Gers-Barlag, H.; Klette, E.; Bimczok, R.; Springob, C.; Finkel, P.; Rudolph, T.; Gonzenbach, H.U.; Schneider, P.H.; Kockott, D.; Heinrich, U.; et al. In Vitro Testing to Assess the UVA Protection Performance of Sun Care Products. Int. J. Cosmet. Sci. 2001, 23, 3–14. [Google Scholar] [CrossRef]
- Diffey, B.L.; Tanner, P.R.; Matts, P.J.; Nash, J.F. In Vitro Assessment of the Broad-Spectrum Ultraviolet Protection of Sunscreen Products. J. Am. Acad. Dermatol. 2000, 43, 1024–1035. [Google Scholar] [CrossRef]
- Matts, P.J.; Alard, V.; Brown, M.W.; Ferrero, L.; Gers-Barlag, H.; Issachar, N.; Moyal, D.; Wolber, R. The COLIPA in Vitro UVA Method: A Standard and Reproducible Measure of Sunscreen UVA Protection. Int. J. Cosmet. Sci. 2010, 32, 35–46. [Google Scholar] [CrossRef] [PubMed]
- ISO 24443:2012(En); Determination of Sunscreen UVA Photoprotection in Vitro. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/obp/ui/#iso:std:iso:24443:ed-1:v1:en (accessed on 12 February 2025).
- 21 CFR 201.327: § 201.327 Over-the-Counter Sunscreen Drug Products; Required Labeling Based on Effectiveness Testing. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-C/part-201/subpart-G/section-201.327 (accessed on 30 April 2025).
- Wang, S.Q.; Xu, H.; Stanfield, J.W.; Osterwalder, U.; Herzog, B. Comparison of Ultraviolet A Light Protection Standards in the United States and European Union through in Vitro Measurements of Commercially Available Sunscreens. J. Am. Acad. Dermatol. 2017, 77, 42–47. [Google Scholar] [CrossRef]
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- Su, Z.; Luo, F.; Pei, X.; Zhang, F.; Xing, S.; Wang, G. Final Publication of the “Regulations on the Supervision and Administration of Cosmetics” and New Prospectives of Cosmetic Science in China. Cosmetics 2020, 7, 98. [Google Scholar] [CrossRef]
- Australian Regulatory Guidelines for Sunscreens ARGS. Available online: https://www.tga.gov.au/sites/default/files/australian-regulatory-guidelines-for-sunscreens.pdf (accessed on 17 April 2025).
- FDA Circular No.2023-011||Updates and Amendments to the ASEAN Cosmetic Directive (ACD) as Adopted During the 37th ASEAN Cosmetic Committee (ACC) Meeting and Its Related Meetings. Available online: https://www.fda.gov.ph/fda-circular-no-2023-011-updates-and-amendments-to-the-asean-cosmetic-directive-acd-as-adopted-during-the-37th-asean-cosmetic-committee-acc-meeting-and-its-related-meetings/ (accessed on 17 April 2025).
- Personal Hygiene Products, Cosmetics and Fragrances. Available online: https://www.gov.br/anvisa/pt-br/english/regulation-of-products/personal-hygiene-products-cosmetics-and-fragrances (accessed on 17 April 2025).
- Guidance Document on Application Submission for Obtaining Import Registration Certificate for Import of Cosmetics into India. Available online: https://cdsco.gov.in/opencms/opencms/en/Cosmetics/cosmetics/ (accessed on 17 April 2025).
- Central Drugs Standard Control Organization (CDSCO). Guidance Document on Registration and Import of Cosmetics into India. Available online: https://www.cdsco.gov.in/opencms/export/sites/CDSCO_WEB/Pdf-documents/cosmetics/Guidance-Document-on-Registration-and-Import-of-cosmetics-into-India-converted.pdf (accessed on 17 April 2025).
- Bureau of Indian Standards, Sunscreen Cosmetics Products—Specification, (ICS 71.100.70). Available online: https://www.services.bis.gov.in/tmp/WCPCD5515096_29082023_1.pdf (accessed on 17 April 2025).
- GCC—Standards. Available online: https://www.gso.org.sa/en/standards/ (accessed on 17 April 2025).
- 70-Cosmetics, Toiletries Standards. Available online: https://www.gso.org.sa/store/standards?ics=71.100.70 (accessed on 17 April 2025).
- United Arab Emirates Ministry of Industry & Advanced Technology. Available online: https://www.moiat.gov.ae/en/ (accessed on 17 April 2025).
- Dubai Municipality, Health and Safety Department, Technical Guidelines for Cosmetics and Personal Care Products. Available online: https://www.dm.gov.ae/wp-content/uploads/2022/07/DM-HSD-GU116-CPCP2_Technical-Guidelines-for-Cosmetic-Personal-Care-Products_V1.pdf (accessed on 17 April 2025).
- GSO 2237:2012; Cosmetics—Sunscreen Products. GSO: Riyadh, Saudi Arabia, 2012. Available online: https://www.gso.org.sa/store/standards/GSO%3A591579 (accessed on 17 April 2025).
- Federal Food, Drug, and Cosmetic Act; 1938; 21 USC §321. Available online: http://uscode.house.gov/ (accessed on 17 April 2025).
- FDA Regulation of Over-the-Counter (OTC) Drugs: Overview and Issues for Congress. Available online: https://www.congress.gov/crs-product/R46985 (accessed on 11 February 2025).
- Proposed Order (OTC000008): Amending Over-the-Counter (OTC) Monograph M020: Sunscreen Drug Products for OTC Human Use. Available online: https://dps-admin.fda.gov/omuf/omuf/sites/omuf/files/primary-documents/2022-09/Proposed%20Administrative%20Order%20OTC000008_Amending%20M020_Sunscreen_Signed24Sept2021.pdf (accessed on 11 February 2025).
- Amending Over-the-Counter Monograph M020: Sunscreen Drug Products for Over-the-Counter Human Use; Over the Counter Monograph Proposed Order; Availability. Available online: https://www.federalregister.gov/documents/2021/09/27/2021-20780/amending-over-the-counter-monograph-m020-sunscreen-drug-products-for-over-the-counter-human-use-over (accessed on 11 February 2025).
- Nery, É.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A Short Review of Alternative Ingredients and Technologies of Inorganic UV Filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef]
- Faurschou, A.; Wulf, H.C. The Relation between Sun Protection Factor and Amount of Sunscreen Applied in Vivo. Br. J. Dermatol. 2007, 156, 716–719. [Google Scholar] [CrossRef]
- Shastri, D.H.; Gandhi, S.; Almeida, H. Enhancing Collaboration and Interdisciplinary Strategies for Navigating Innovative Technologies and Regulatory Approvals in the Cosmetic Industry. Available online: https://www.eurekaselect.com/article/143634 (accessed on 13 February 2025).
- Cui, Y.; He, W.; Wang, Z.; Yang, H.; Zheng, M.; Li, Y. Reduced Estrogenic Risks of a Sunscreen Additive: Theoretical Design and Evaluation of Functionally Improved Salicylates. J. Hazard. Mater. 2024, 477, 135371. [Google Scholar] [CrossRef]
- Sultana, N. Predicting Sun Protection Measures against Skin Diseases Using Machine Learning Approaches. J. Cosmet. Dermatol. 2022, 21, 758–769. [Google Scholar] [CrossRef]
- dos Santos, G.A.; Gomes, J.V.T.; da Silva, A.C.P.; dos Santos, J.L.; Bello, M.L.; Santos, B.A.M.C. Computer-Aided Drug Design Supporting Sunscreen Research: A Showcase Study Using Previously Synthesized Hybrid UV Filter-Antioxidant Compounds. J. Mol. Model. 2024, 30, 255. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Baldini, E.; Ravarotto, S.; Cesa, E.; De Lucia, D.; Durini, E.; Vertuani, S.; Manfredini, S.; Michniak-Kohn, B.B. Expert Systems for Predicting the Bioavailability of Sun Filters in Cosmetic Products, Software vs. Expert Formulator: The Benzophenone-3 Case. Pharmaceutics 2022, 14, 1815. [Google Scholar] [CrossRef] [PubMed]
- Cao, L. Combining Artificial Intelligence and Robotic System in Chemical Product/Process Design. Ph.D. Thesis, Apollo-University of Cambridge Repository, Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Herzog, B.; Bressel, L.; Pulbere, S.; Reich, O. Monte Carlo Simulations of Light Transport in Sunscreen Formulations. Photochem. Photobiol. Sci. 2024, 23, 1457–1469. [Google Scholar] [CrossRef]
- Daneshjou, R.; Barata, C.; Betz-Stablein, B.; Celebi, M.E.; Codella, N.; Combalia, M.; Guitera, P.; Gutman, D.; Halpern, A.; Helba, B.; et al. Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology: CLEAR Derm Consensus Guidelines From the International Skin Imaging Collaboration Artificial Intelligence Working Group. JAMA Dermatol. 2022, 158, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Borade, S.; Kalbande, D.; Pereira, K.; Patel, R.; Kulkarni, S. Deep Scattering Convolutional Network for Cosmetic Skin Classification. Int. J. Eng. Trends Technol. 2022, 70, 10–23. [Google Scholar] [CrossRef]
- Haykal, D. Emerging and Pioneering AI Technologies in Aesthetic Dermatology: Sketching a Path Toward Personalized, Predictive, and Proactive Care. Cosmetics 2024, 11, 206. [Google Scholar] [CrossRef]
- Herrick, G.; Frasier, K.; Li, V.; Fritts, H.; Woolhiser, E.; Vinagolu-Baur, J. Enhancing Patient Education and Engagement Through Digital Intelligence Tools in Dermatology. Int. J. Res. Dermatol. 2024, 10, 391–400. [Google Scholar] [CrossRef]
- Haykal, D. Digital Twins in Dermatology: A New Era of Personalized Skin Care. Front. Digit. Health 2025, 7, 1534859. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.; Holland-Letz, T.; et al. Deep Neural Networks Are Superior to Dermatologists in Melanoma Image Classification. Eur. J. Cancer 2019, 119, 11–17. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, Y.; Guo, L.; Wu, Q.; Peng, L.; Zhang, E.; Xie, J.; Li, Y.; Lin, T. Development and Validation of Two Artificial Intelligence Models for Diagnosing Benign, Pigmented Facial Skin Lesions. Skin Res. Technol. 2021, 27, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Zegour, R.; Belaid, A.; Ognard, J.; Ben Salem, D. Convolutional Neural Networks-Based Method for Skin Hydration Measurements in High Resolution MRI. Biomed. Signal Process. Control 2023, 81, 104491. [Google Scholar] [CrossRef]
- Koseki, K.; Kawasaki, H.; Atsugi, T.; Nakanishi, M.; Mizuno, M.; Naru, E.; Ebihara, T.; Amagai, M.; Kawakami, E. Assessment of Skin Barrier Function Using Skin Images with Topological Data Analysis. npj Syst. Biol. Appl. 2020, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Santagostino, S.F.; Danilenko, D.M.; Tseng, M.; Brumm, J.; Zehnder, P.; Wu, K.C. Assessment of Skin Toxicity in an in Vitro Reconstituted Human Epidermis Model Using Deep Learning. Am. J. Pathol. 2022, 192, 687–700. [Google Scholar] [CrossRef]
- Lee, A.K.W.; Chan, L.K.W.; Lee, C.H.; Bohórquez, J.M.C.; Haykal, D.; Wan, J.; Yi, K. Artificial Intelligence Application in Diagnosing, Classifying, Localizing, Detecting and Estimation the Severity of Skin Condition in Aesthetic Medicine: A Review. Dermatol. Rev. 2025, 6, e70015. [Google Scholar] [CrossRef]
- Rokni, G.R.; Gholizadeh, N.; Babaei, M.; Das, K.; Datta, S. Artificial Intelligence in Inflammatory Skin Disorders. Dermatol. Rev. 2024, 5, e243. [Google Scholar] [CrossRef]
- Sangers, T.E.; Kittler, H.; Blum, A.; Braun, R.P.; Barata, C.; Cartocci, A.; Combalia, M.; Esdaile, B.; Guitera, P.; Haenssle, H.A.; et al. Position Statement of the EADV Artificial Intelligence (AI) Task Force on AI-Assisted Smartphone Apps and Web-Based Services for Skin Disease. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 22–30. [Google Scholar] [CrossRef]
- Menzies, S.W.; Sinz, C.; Menzies, M.; Lo, S.N.; Yolland, W.; Lingohr, J.; Razmara, M.; Tschandl, P.; Guitera, P.; Scolyer, R.A.; et al. Comparison of Humans versus Mobile Phone-Powered Artificial Intelligence for the Diagnosis and Management of Pigmented Skin Cancer in Secondary Care: A Multicentre, Prospective, Diagnostic, Clinical Trial. Lancet Digit. Health 2023, 5, e679–e691. [Google Scholar] [CrossRef]
- Meel, V.; Bodepudi, A. Melatect: A Machine Learning Model Approach For Identifying Malignant Melanoma in Skin Growths. arXiv 2021, arXiv:2109.03310. [Google Scholar] [CrossRef]
- Wongvibulsin, S.; Frech, T.M.; Chren, M.-M.; Tkaczyk, E.R. Expanding Personalized, Data-Driven Dermatology: Leveraging Digital Health Technology and Machine Learning to Improve Patient Outcomes. JID Innov. 2022, 2, 100105. [Google Scholar] [CrossRef]
- Nielsen, J.; Tillegreen, C.B.; Petranovic, D. Innovation Trends in Industrial Biotechnology. Trends Biotechnol. 2022, 40, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Ming, Y.; Liu, J.; Yin, H.; He, Q.; Li, J.; Huang, M.; He, Z. Microbial Biotechnology: From Synthetic Biology to Synthetic Ecology. Adv. Biotechnol. 2025, 3, 1. [Google Scholar] [CrossRef]
- Fathi, F.; Hosseinabadi, T.; Faraji, A.; Tabarzad, M. Different Sources of Mycosporine-like Amino Acids: Natural, Heterologous Expression, and Chemical Synthesis/ Modifications. Future Nat. Prod. 2022, 8, 78–85. [Google Scholar] [CrossRef]
- Rosic, N.N. Recent Advances in the Discovery of Novel Marine Natural Products and Mycosporine-like Amino Acid UV-Absorbing Compounds. Appl. Microbiol. Biotechnol. 2021, 105, 7053–7067. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Jiang, Y.; Ding, Y. Recent Progress in Unraveling the Biosynthesis of Natural Sunscreens Mycosporine-like Amino Acids. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad038. [Google Scholar] [CrossRef]
- Chen, M.; Rubin, G.M.; Jiang, G.; Raad, Z.; Ding, Y. Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines. J. Org. Chem. 2021, 86, 11160–11168. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Garcia-Pichel, F. An ATP-Grasp Ligase Involved in the Last Biosynthetic Step of the Iminomycosporine Shinorine in Nostoc Punctiforme ATCC 29133. J. Bacteriol. 2011, 193, 5923–5928. [Google Scholar] [CrossRef]
- Yang, G.; Cozad, M.A.; Holland, D.A.; Zhang, Y.; Luesch, H.; Ding, Y. Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synth. Biol. 2018, 7, 664–671. [Google Scholar] [CrossRef]
- Kim, S.-R.; Cha, M.; Kim, T.; Song, S.; Kang, H.J.; Jung, Y.; Cho, J.-Y.; Moh, S.H.; Kim, S.-J. Sustainable Production of Shinorine from Lignocellulosic Biomass by Metabolically Engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 2022, 70, 15848–15858. [Google Scholar] [CrossRef]
- Kim, S.; Park, B.G.; Jin, H.; Lee, D.; Teoh, J.Y.; Kim, Y.J.; Lee, S.; Kim, S.-J.; Moh, S.H.; Yoo, D.; et al. Efficient Production of Natural Sunscreens Shinorine, Porphyra-334, and Mycosporine-2-Glycine in Saccharomyces Cerevisiae. Metab. Eng. 2023, 78, 137–147. [Google Scholar] [CrossRef]
- Tsuge, Y.; Kawaguchi, H.; Yamamoto, S.; Nishigami, Y.; Sota, M.; Ogino, C.; Kondo, A. Metabolic Engineering of Corynebacterium Glutamicum for Production of Sunscreen Shinorine. Biosci. Biotechnol. Biochem. 2018, 82, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Arsın, S.; Pollari, M.; Delbaje, E.; Jokela, J.; Wahlsten, M.; Permi, P.; Fewer, D. A Refactored Biosynthetic Pathway for the Production of Glycosylated Microbial Sunscreens. RSC Chem. Biol. 2024, 5, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Katoch, M.; Mazmouz, R.; Chau, R.; Pearson, L.A.; Pickford, R.; Neilan, B.A. Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia Coli. Appl. Environ. Microbiol. 2016, 82, 6167–6173. [Google Scholar] [CrossRef]
- Hengardi, M.T.; Liang, C.; Madivannan, K.; Yang, L.K.; Koduru, L.; Kanagasundaram, Y.; Arumugam, P. Reversing the Directionality of Reactions between Non-Oxidative Pentose Phosphate Pathway and Glycolytic Pathway Boosts Mycosporine-like Amino Acid Production in Saccharomyces Cerevisiae. Microb. Cell Fact 2024, 23, 121. [Google Scholar] [CrossRef] [PubMed]
- Osborn, A.R.; Almabruk, K.H.; Holzwarth, G.; Asamizu, S.; LaDu, J.; Kean, K.M.; Karplus, P.A.; Tanguay, R.L.; Bakalinsky, A.T.; Mahmud, T. De Novo Synthesis of a Sunscreen Compound in Vertebrates. eLife 2015, 4, e05919. [Google Scholar] [CrossRef]
- Arcaea Acquires Gadusol to Speed Development of Natural Sunscreen That Protects You Like a Fish. Available online: https://www.forbes.com/sites/jeffkart/2022/08/02/arcaea-acquires-gadusol-to-speed-development-of-natural-sunscreen-that-protects-you-like-a-fish/ (accessed on 10 February 2025).
- Oh, J.-J.; Kim, J.Y.; Son, S.H.; Jung, W.-J.; Kim, D.H.; Seo, J.-W.; Kim, G.-H. Fungal Melanin as a Biocompatible Broad-Spectrum Sunscreen with High Antioxidant Activity. RSC Adv. 2021, 11, 19682–19689. [Google Scholar] [CrossRef]
- Oh, J.-J.; Kim, J.Y.; Kwon, S.L.; Hwang, D.-H.; Choi, Y.-E.; Kim, G.-H. Production and Characterization of Melanin Pigments Derived from Amorphotheca Resinae. J. Microbiol. 2020, 58, 648–656. [Google Scholar] [CrossRef]
- Bennett, J.; Soule, T. Expression of Scytonemin Biosynthesis Genes under Alternative Stress Conditions in the Cyanobacterium Nostoc Punctiforme. Microorganisms 2022, 10, 427. [Google Scholar] [CrossRef]
- Gao, X.; Jing, X.; Liu, X.; Lindblad, P. Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy. Mar. Drugs 2021, 19, 129. [Google Scholar] [CrossRef]
- Malla, S.; Sommer, M.O.A. A Sustainable Route to Produce the Scytonemin Precursor Using Escherichia Coli. Green Chem. 2014, 16, 3255–3265. [Google Scholar] [CrossRef]
Culture/Period | Sun Protection Method |
---|---|
African Middle Stone Age | Early civilizations used ochre, a pigment from rocks, as sunscreen, adhesive, insect repellent, and leather preservative [4]. |
Ancient Egyptians (3100–300 BC) | Rice bran, jasmine, and lupine pastes (recently discovered to absorb UV, repair DNA, and lighten skin) [1]. |
Ancient Greeks (800–500 BC) | Olive oil (modern testing shows SPF ~ 8) [1,5]. |
Charaka Samhita, a foundational text of Ayurvedic medicine (Indian traditional medicine) (~500 BC) | Pushpanjan (zinc oxide), now a key UV filter, was mainly used to treat wounds and eyes [6]. |
Japanese (from 700s AD) | Lead- or mercury-based white face powders (o-shiro i), associated with female beauty in Japan [7]. |
Myanmar (~0 AD) | A paste made from the thanatka tree bark, where marmesin is assumed to serve as a UVA filter [8]. |
Nomadic Bedouins | Keffiyeh (traditional cotton head covering), loose tunics, henna dye [1]. |
European nobility (1600s) | Velvet visards (face coverings) and lead-containing whitening cosmetics [7]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, M.; Gonzalez Obezo, C.; Lipsky, Z.; Panchal, A.; Jensen, J. Frontiers in Topical Photoprotection. Cosmetics 2025, 12, 96. https://doi.org/10.3390/cosmetics12030096
Sullivan M, Gonzalez Obezo C, Lipsky Z, Panchal A, Jensen J. Frontiers in Topical Photoprotection. Cosmetics. 2025; 12(3):96. https://doi.org/10.3390/cosmetics12030096
Chicago/Turabian StyleSullivan, Margaret, Constancio Gonzalez Obezo, Zachary Lipsky, Abhishek Panchal, and Jaide Jensen. 2025. "Frontiers in Topical Photoprotection" Cosmetics 12, no. 3: 96. https://doi.org/10.3390/cosmetics12030096
APA StyleSullivan, M., Gonzalez Obezo, C., Lipsky, Z., Panchal, A., & Jensen, J. (2025). Frontiers in Topical Photoprotection. Cosmetics, 12(3), 96. https://doi.org/10.3390/cosmetics12030096