Identification of Phytosphingosine-Based 1-O-Acylceramide in Human Stratum Corneum and Investigation of Its Role in Skin Barrier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of 1-O-Stearoyl-Ceramide NP (18:0-t18:0/18:1) in Human Stratum Corneum
2.2. Ceramides and Test Creams
2.3. Human Study
2.4. Measurement of Skin Hydration, Retention of Hydration, and SC Cohesion
2.4.1. Assessment of SC Hydration and Retention of Hydration
2.4.2. SC Cohesion
2.5. Microscopic Observations of Maltese Cross Appearance
2.6. Statistical Analysis
3. Results
3.1. Identification of 1-O-Stearoyl-Ceramide NP (18:0-t18:0/18:1) in Human Stratum Corneum
3.2. Profiling of 1-O-Acylceramide NP (CerENP) in Human Stratum Corneum
3.3. Effects of CER 1-O-ENP on Multilamellar Formation and Its Stability
3.4. The Influence of CER 1-O-ENP on Skin Hydration
3.5. CER 1-O-ENP Fostered SC Cohesion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lampe, M.A.; Burlingame, A.L.; Whitney, J.; Williams, M.L.; Brown, B.E.; Roitman, E.; Elias, P.M. Human stratum corneum lipids: Characterization and regional variations. J. Lipid Res. 1983, 24, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased level of ceramides in stratum corneum of atopic dermatitis: An etiologic factor in atopic dry skin? J. Investig. Dermatol. 1991, 96, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 2006, 1758, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Hoppel, L.; van der Heijden, R.; Hankemeier, T.; Vreeken, R.J.; Bouwstra, J.A. LC/MS analysis of stratum corneum lipids: Ceramide profiling and discovery. J. Lipid Res. 2011, 52, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Zettersten, E.M.; Ghadially, R.; Feingold, K.R.; Crumrine, D.; Elias, P.M. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J. Am. Acad. Dermatol. 1997, 37, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Kircik, L.H. Effect of skin barrier emulsion cream vs. a conventional moisturizer on transepidermal water loss and corneometry in atopic dermatitis: A pilot study. J. Drugs Dermatol. 2014, 13, 1482–1484. [Google Scholar] [PubMed]
- Danby, S.G.; Andrew, P.V.; Brown, K.; Chittock, J.; Kay, L.J.; Cork, M.J. An Investigation of the Skin Barrier Restoring Effects of a Cream and Lotion Containing Ceramides in a Multi-vesicular Emulsion in People with Dry, Eczema-Prone, Skin: The RESTORE Study Phase 1. Dermatol. Ther. 2020, 10, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Narita, H.; Sato, H.; Naoe, A.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; et al. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009, 50, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T.; et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Boiten, W.A.; Hankemeier, T.; Rissmann, R.; Bouwstra, J.A.; Vreeken, R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta 2014, 1841, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Ohno, Y.; Kihara, A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J. Lipid Res. 2022, 63, 100235. [Google Scholar] [CrossRef] [PubMed]
- Janssens, M.; van Smeden, J.; Gooris, G.S.; Bras, W.; Portale, G.; Caspers, P.J.; Vreeken, R.J.; Hankemeier, T.; Kezic, S.; Wolterbeek, R.; et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012, 53, 2755–2766. [Google Scholar] [CrossRef] [PubMed]
- Oguri, M.; Gooris, G.S.; Bito, K.; Bouwstra, J.A. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes. Biochim. Biophys. Acta 2014, 1838, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.C.; Hartkamp, R.; Iacovella, C.R.; Bunge, A.L.; McCabe, C. Effect of Ceramide Tail Length on the Structure of Model Stratum Corneum Lipid Bilayers. Biophys. J. 2018, 114, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Pullmannová, P.; Pavlíková, L.; Kováčik, A.; Sochorová, M.; Školová, B.; Slepička, P.; Maixner, J.; Zbytovská, J.; Vávrová, K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017, 224, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Uche, L.E.; Gooris, G.S.; Bouwstra, J.A.; Beddoes, C.M. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. Langmuir ACS J. Surf. Colloids 2021, 37, 9478–9489. [Google Scholar] [CrossRef] [PubMed]
- Man, M.-Q.; Brown, B.E.; Wu-Pong, S.; Feingold, K.R.; Elias, P.M. Exogenous nonphysiologic vs. physiologic lipids. Divergent mechanisms for correction of permeability barrier dysfunction. Arch. Dermatol. 1995, 131, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Miyachi, Y.; Kawashima, M. Clinical significance of the water retention and barrier function-improving capabilities of ceramide-containing formulations: A qualitative review. J. Dermatol. 2021, 8, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, A.V.; Lane, M.E. Letter to the Editor Regarding ‘An Investigation of the Skin Barrier Restoring Effects of a Cream and Lotion Containing Ceramides in a Multi-Vesicular Emulsion in People with Dry, Eczema-Prone Skin: The RESTORE Study Phase 1’. Dermatol. Ther. 2021, 11, 2245–2248. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, A.V.; Lane, M.E. Comment on “Clinical significance of the water retention and barrier function-improving capabilities of ceramide-containing formulations: A qualitative review”. J. Dermatol. 2022, 49, e121–e123. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Bouwstra, J.A. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Curr. Probl. Dermatol. 2016, 49, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Opálka, L.; Kováčik, A.; Maixner, J.; Vávrová, K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir ACS J. Surf. Colloids 2016, 32, 12894–12904. [Google Scholar] [CrossRef] [PubMed]
- Nakaune-Iijima, A.; Sugishima, A.; Omura, G.; Kitaoka, H.; Tashiro, T.; Kageyama, S.; Hatta, I. Topical treatments with acylceramide dispersions restored stratum corneum lipid lamellar structures in a reconstructed human epidermis model. Chem. Phys. Lipids 2018, 215, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Lange, S.; Dobner, B.; Sonnenberger, S.; Hauß, T.; Neubert, R.H.H. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir ACS J. Surf. Colloids 2018, 34, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Uche, L.E.; Gooris, G.S.; Beddoes, C.M.; Bouwstra, J.A. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Yokose, U.; Ishikawa, J.; Morokuma, Y.; Naoe, Y.; Inoue, Y.; Yasuda, Y.; Tsujimura, H.; Fujimura, T.; Murase, T.; Hatamochi, A. The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation. BMC Dermatol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Bayerle, A.; Marsching, C.; Jennemann, R.; Gröne, H.J.; Yildiz, Y.; Wachten, D.; Shaw, W.; Shayman, J.A.; Sandhoff, R. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid Res. 2013, 54, 3312–3321. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-H.; Miner, J.H.; Turk, J.; Hsu, F.-F. Linear ion-trap MSn with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J. Lipid Res. 2017, 58, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Harazim, E.; Vrkoslav, V.; Buděšínský, M.; Harazim, P.; Svoboda, M.; Plavka, R.; Bosáková, Z.; Cvačka, J. Nonhydroxylated 1-O-acylceramides in vernix caseosa. J. Lipid Res. 2018, 59, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.; Bakar, J.; Libong, D.; Sarkees, E.; Solgadi, A.; Baillet-Guffroy, A.; Michael-Jubeli, R.; Tfayli, A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn:1-O-E (EO) Cer, a new ceramide subclass. Anal. Bioanal. Chem. 2020, 412, 777–793. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Bernard, P.; Pichery, M.; Marsching, C.; Bayerle, A.; Dworski, S.; Kamani, M.A.; Chitraju, C.; Gluchowski, N.L.; Gabriel, K.R.; et al. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022, 57, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.O.; Kim, J.W.; Liu, K.H.; Shin, K.; Nam, Y.S.; Kim, J.-W.; Park, C.S. A Novel Phytosphingosine Based 1-O-Acylceramide: Synthesis, Physicochemical Characterization, and Role in the Lipid Lamellar Organization. In Proceedings of the 32nd IFSCC Congress 2022, London, UK, 19–22 September 2022. [Google Scholar]
- Yang, M.Y.; Lee, E.; Park, C.S.; and Nam, Y.S. Molecular Dynamics Investigation into CerENP’s Effect on the Lipid Matrix of Stratum Corneum. J. Phys. Chem. B 2024, 128, 5378–5386. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Lee, E.O.; Kim, J.W.; Liu, K.H.; Lee, S.; Lim, K.M. Synthesis and Characterization of a Novel Phytosphingosine-Based 1-O-Acylceramide. IFSCC Mag. 2022, 25, 359–362. [Google Scholar]
- Oh, M.J.; Cho, Y.H.; Cha, S.Y.; Lee, E.O.; Kim, J.W.; Kim, S.K.; Park, C.S. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum. Clin. Cosmet. Investig. Dermatol. 2017, 10, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kim, E.J.; Lee, C.H.; Park, G.H.; Yoo, K.M.; Nam, S.J.; Shin, K.-O.; Park, K.; Choi, E.H. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Ski. Pharmacol. Physiol. 2022, 35, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Park, B.D.; Youm, J.K.; Jeong, S.K.; Choi, E.H.; Ahn, S.K.; Lee, S.H. The characterization of molecular organization of multilamellar emulsions containing pseudoceramide and type III synthetic ceramide. J. Invest. Dermatol. 2003, 121, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.I.; Lee, D.J.; Rahman, R.T.; and Nam, Y.S. Biomimetic Multilayered Lipid Nanovesicles for Potent Protein Vaccination. Adv. Healthc. Mater. 2024, 13, 2304109. [Google Scholar] [CrossRef] [PubMed]
Test Cream | Ingredients |
---|---|
Vehicle | Water, Dipropylenglycol, 1,2-Hexanediol, Alginine, Acrylates/C10-30 Alkyl acrylate crosspolymer, Hydroginated lecithin, Carbomer, Cholesterol, Behenic acid, Stearic acid, Behenyl alcohol, Caprylic/caprictriglyceride, Squalane, Glycerylstearate SE, Trisodium-EDTA, Phytosphingosine, Ammonium acryloyldimethyltaurate/VP copolymer |
Test cream (TC1) | Vehicle plus CerNP (0.2%) |
Test cream (TC2) | Vehicle plus CerNP (0.2%) + CerENP (0.02%) |
Test cream (TC3) | Vehicle plus CerNP (0.2%) + CerENP (0.05%) |
Test cream (TC4) | Vehicle plus CerNP (0.2%) + CerENP (0.2%) |
Test cream (TC5) | Vehicle plus CerNP (0.2%) + CerENP (0.5%) |
No. | [M + H]+ | Theoretical Mass (Da) | Deviation (mDa) | Composition | Identified 1-O-Acylceramides | |||
---|---|---|---|---|---|---|---|---|
Total Carbon | O-Acyl Chain | Phytosphingosine | N-Acyl Chain | |||||
1 | 822.7898 | 822.7909 | −1.34 | C52H104NO5 | 52:0 | 16:0 | t18:0 | 18:0 |
2 | 848.8067 | 848.8066 | 0.12 | C54H106NO5 | 54:1 | 18:0 | t18:0 | 18:1 |
3 | 850.8217 | 850.8222 | −0.59 | C54H108NO5 | 54:0 | 18:0 | t18:0 | 18:0 |
16:0 | t18:0 | 20:0 | ||||||
14:0 | t18:0 | 22:0 | ||||||
4 | 878.8540 | 878.8535 | 0.57 | C56H112NO5 | 56:0 | 18:0 | t18:0 | 20:0 |
16:0 | t18:0 | 22:0 | ||||||
14:0 | t18:0 | 24:0 | ||||||
5 | 906.8836 | 906.8848 | −1.32 | C58H116NO5 | 58:0 | 20:0 | t18:0 | 20:0 |
18:0 | t18:0 | 22:0 | ||||||
16:0 | t18:0 | 24:0 | ||||||
14:0 | t18:0 | 26:0 | ||||||
6 | 934.9150 | 934.9161 | −1.18 | C60H120NO5 | 60:0 | 26:0 | t18:0 | 16:0 |
24:0 | t18:0 | 18:0 | ||||||
22:0 | t18:0 | 20:0 | ||||||
20:0 | t18:0 | 22:0 | ||||||
18:0 | t18:0 | 24:0 | ||||||
16:0 | t18:0 | 26:0 | ||||||
14:0 | t18:0 | 28:0 | ||||||
7 | 962.9459 | 962.9474 | −1.66 | C62H124NO5 | 62:0 | 24:0 | t18:0 | 20:0 |
22:0 | t18:0 | 22:0 | ||||||
20:0 | t18:0 | 24:0 | ||||||
18:0 | t18:0 | 26:0 | ||||||
16:0 | t18:0 | 28:0 | ||||||
8 | 990.9778 | 990.9787 | −0.91 | C64H128NO5 | 64:0 | 24:0 | t18:0 | 22:0 |
22:0 | t18:0 | 24:0 | ||||||
18:0 | t18:0 | 28:0 | ||||||
16:0 | t18:0 | 30:0 | ||||||
9 | 1019.0125 | 1019.01 | 2.45 | C66H132NO5 | 66:0 | 26:0 | t18:0 | 22:0 |
24:0 | t18:0 | 24:0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, B.-G.; Choi, H.K.; Liu, K.-H.; Hong, S.K.; Kim, J.W.; Lee, E.O.; Park, C.S. Identification of Phytosphingosine-Based 1-O-Acylceramide in Human Stratum Corneum and Investigation of Its Role in Skin Barrier. Cosmetics 2025, 12, 47. https://doi.org/10.3390/cosmetics12020047
Kang B-G, Choi HK, Liu K-H, Hong SK, Kim JW, Lee EO, Park CS. Identification of Phytosphingosine-Based 1-O-Acylceramide in Human Stratum Corneum and Investigation of Its Role in Skin Barrier. Cosmetics. 2025; 12(2):47. https://doi.org/10.3390/cosmetics12020047
Chicago/Turabian StyleKang, Bae-Gon, Hyun Kyung Choi, Kwang-Hyeon Liu, Sung Kyu Hong, Jin Wook Kim, Eun Ok Lee, and Chang Seo Park. 2025. "Identification of Phytosphingosine-Based 1-O-Acylceramide in Human Stratum Corneum and Investigation of Its Role in Skin Barrier" Cosmetics 12, no. 2: 47. https://doi.org/10.3390/cosmetics12020047
APA StyleKang, B.-G., Choi, H. K., Liu, K.-H., Hong, S. K., Kim, J. W., Lee, E. O., & Park, C. S. (2025). Identification of Phytosphingosine-Based 1-O-Acylceramide in Human Stratum Corneum and Investigation of Its Role in Skin Barrier. Cosmetics, 12(2), 47. https://doi.org/10.3390/cosmetics12020047