Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasound-Assisted Extraction of Procyanidins
2.3. Determination of Total Phenolic Content
2.4. Determination of Total Flavonoid Content
2.5. Quantification of Procyanidin Content via HPLC
2.6. Antioxidant Analysis
2.6.1. DPPH Radical Scavenging Capacity Assay
2.6.2. Ferric-Reducing Antioxidant Potential (FRAP) Assay
2.7. Determination of Tyrosinase Inhibition Activity
2.8. Cytotoxicity in Human Skin Fibroblasts
2.9. Storage Stability Test on Crude Procyanidin Extract Powder
2.10. Moisture Content and Water Activity
2.11. Formulation of Facial Serum Containing Crude Procyanidin Extract
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effects of Extraction Conditions on Bioactive Compounds and Antioxidant Activity from GSS
3.2. Tyrosinase Inhibition Activity
3.3. Cytotoxicity of Crude Procyanidin Extract
3.4. Effects of Time and Temperature on the Stability of Crude Procyanidin Extract Powder during Storage
3.5. Evaluation of Formulated Facial Serum Products
3.6. Stability Test of Facial Serum Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOAC | Association of Official Agricultural Chemists |
BJ | human skin fibroblasts |
DMSO | dimethyl sulfoxide |
DNA | deoxyribonucleic acid |
DPPH | 2, 2-diphenyl-1-picryl-hydrazyl |
EC | Enzyme Commission number |
FRAP | ferric-reducing antioxidant power |
GSS | green soybean seeds |
HPLC | high-performance liquid chromatography |
IC50 | half-maximal inhibitory concentration |
L-DOPA | 3,4-Dihydroxy-L-phenylalanine |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
PC | procyanidin content |
ROS | reactive oxygen species |
TFC | total flavonoid content |
TPC | total phenolic content |
TPTZ | 2,4,6-Tris(2-pyridyl)-1,3,5-triazine |
UAE | ultrasound-assisted extraction |
UV | ultraviolet radiation |
References
- Khonchaisri, R.; Sumonsiri, N.; Prommajak, T.; Rachtanapun, P.; Leksawasdi, N.; Techapun, C.; Taesuwan, S.; Halee, A.; Nunta, R.; Khemacheewakul, J. Optimization of ultrasonic-assisted bioactive compound extraction from green soybean (Glycine max L.) and the effect of drying methods and storage conditions on procyanidin extract. Foods 2022, 11, 1775. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Karamać, M.; Janiak, M.; Longato, E.; Meineri, G.; Amarowicz, R.; Gai, F. Phenolic composition and antioxidant activities of soybean (Glycine max (L.) Merr.) plant during growth cycle. Agronomy 2019, 9, 153. [Google Scholar] [CrossRef]
- Mai, H.N.D.; Lan, K.P.T.; Techapun, C.; Leksawasdi, N.; Taesuwan, S.; Hanprom, N.; Sompakdee, N.; Nunta, R.; Khemacheewakul, J. Quality evaluation of butter cake prepared by substitution of wheat flour with green soybean (Glycine max L.) okara. J. Culin. Sci. Technol. 2021, 21, 606–619. [Google Scholar]
- Yusufu, M.I.; Obiegbuna, J.E. Studies on the utilization of green bean as raw material in cookies produced from wheat flour. Agric. Sci. Res. J. 2015, 5, 92–97. [Google Scholar]
- Leksawasdi, N.; Taesuwan, S.; Prommajak, T.; Techapun, C.; Khonchaisri, R.; Sittilop, N.; Halee, A.; Jantanasakulwong, K.; Phongthai, S.; Nunta, R.; et al. Ultrasonic extraction of bioactive compounds from green soybean pods and application in green soybean milk antioxidants fortification. Foods 2022, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Adamou, P.; Harkou, E.; Hafeez, S.; Manos, G.; Villa, A.; Al-Salem, S.M.; Constantinou, A.; Dimitratos, N. Recent progress on sonochemical production for the synthesis of efficient photocatalysts and the impact of reactor design. Ultrason. Sonochem. 2023, 100, 106610. [Google Scholar] [CrossRef]
- Rahaman, A.; Zeng, X.A.; Kumari, A.; Rafiq, M.; Siddeeg, A.; Manzoor, M.F.; Baloch, Z.; Ahmed, Z. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason. Sonochem. 2019, 58, 104643. [Google Scholar] [CrossRef]
- Mehta, N.; S, J.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Du, J.; Wang, T.; Yu, D. Ultrasonic-assisted extraction of grape seed procyanidins, preparation of liposomes, and evaluation of their antioxidant capacity. Ultrason. Sonochem. 2024, 105, 106856. [Google Scholar] [CrossRef]
- Hadidi, M.; Ibarz, A.; Pagan, J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chem. 2020, 309, 125786. [Google Scholar] [CrossRef]
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef] [PubMed]
- Mapunya, M.B.; Vassileva Nikolova, R.; Lall, N. Melanogenesis and antityrosinase activity of selected south african plants. Evid. Based Complement. Alternat. Med. 2012, 2013, 374017. [Google Scholar] [CrossRef]
- Kim, H.D.; Choi, H.; Abekura, F.; Park, J.Y.; Yang, W.S.; Yang, S.H.; Kim, C.H. Naturally-occurring tyrosinase inhibitors classified by enzyme kinetics and copper chelation. Int. J. Mol. Sci. 2023, 24, 8226. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Valente, R.; Souza da Costa, C.H.; da S. Gonçalves Vianez, J.L., Jr.; Santana da Costa, K.; de Molfetta, F.A.; Nahum Alves, C. Analysis of kojic acid derivatives as competitive inhibitors of tyrosinase: A molecular modeling approach. Molecules 2021, 26, 2875. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Amarowicz, R.; Troszyńska, A. Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Polish J. Food Nutr. Sci. 2003, 53, 10–15. [Google Scholar]
- Contreras-López, E.; Castañeda-Ovando, A.; Jaimez-Ordaz, J.; del Socorro Cruz-Cansino, N.; González-Olivares, L.G.; Rodríguez-Martínez, J.S.; Ramírez-Godínez, J. Release of antioxidant compounds of Zingiber officinale by ultrasound-assisted aqueous extraction and evaluation of their in vitro bioaccessibility. Appl. Sci. 2020, 10, 4987. [Google Scholar] [CrossRef]
- Chool Boo, Y. Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials. Antioxidants 2020, 9, 637. [Google Scholar] [CrossRef]
- de Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar]
- Skoczyńska, A.; Budzisz, E.; Trznadel-Grodzka, E.; Rotsztejn, H. Melanin and lipofuscin as hallmarks of skin aging. Adv. Dermatol. Allergol. Dermatologii Alergol. 2017, 34, 97. [Google Scholar] [CrossRef]
- Jin, Y.H.; Jeon, A.R.; Mah, J.H. Tyrosinase inhibitory activity of soybeans fermented with Bacillus subtilis capable of producing a phenolic glycoside, arbutin. Antioxidants 2020, 9, 1301. [Google Scholar] [CrossRef] [PubMed]
- Kuswanto, D.; Lister, I.N.E.; Girsang, E.; Nasution, A.N.; Widowati, W. Comparison of antioxidant and anti-tyrosinase activity between black soybean (Glycine max (L.) merr.) and daidzein. Bul. Farmatera 2020, 5, 163–171. [Google Scholar] [CrossRef]
- Dini, I.; Laneri, S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.S.; Grosso, C.R.F.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Marini, A.; Grether-Beck, S.; Jaenicke, T.; Weber, M.; Burki, C.; Formann, P.; Brenden, H.; Schönlau, F.; Krutmann, J. Pycnogenol effects on skin elasticity and hydration coincide with increased gene expressions of collagen type I and hyaluronic acid synthase in women. Skin Pharmacol. Physiol. 2012, 25, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Lobo, J.M.S. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Thuy, P.T.; Quan, P.M.; Duc, D.X.; Son, N.T. The antioxidative potential of procyanidin B1: DFT (density functional theory) and docking approaches. J. Mol. Model. 2022, 28, 356. [Google Scholar] [CrossRef]
- Abozed, S.S.; El-kalyoubi, M.; Abdelrashid, A.; Salama, M.F. Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Ann. Agric. Sci. 2014, 59, 63–67. [Google Scholar] [CrossRef]
- Larit, F.; León, F.; Benyahia, S.; Cutler, S.J. Total Phenolic and flavonoid content and biological activities of extracts and isolated compounds of Cytisus villosus Pourr. Biomolecules 2019, 9, 732. [Google Scholar] [CrossRef]
- Zhou, R.; Cai, W.; Xu, B. Phytochemical profiles of black and yellow soybeans as affected by roasting. Int. J. Food Prop. 2017, 20, 3179–3190. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Article, O.; Vichit, W.; Saewan, N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int. J. Pharm. Pharm. Sci. 2015, 7, 329–334. [Google Scholar]
- Ayazoglu Demir, E.; Demir, S.; Turan, I. Investigation of the cytotoxic effect of ethyl pyruvate on various cancer cell lines. KSU J. Agric. Nat. 2021, 24, 49–56. [Google Scholar] [CrossRef]
- Turan, I.; Demir, S.; Kilinc, K.; Yaman, S.O.; Misir, S.; Kara, H.; Genc, B.; Mentese, A.; Aliyazicioglu, Y.; Deger, O. Cytotoxic effect of Rosa canina extract on human colon cancer cells through repression of telomerase expression. J. Pharm. Anal. 2018, 8, 394–399. [Google Scholar] [CrossRef]
- AOAC (2000) Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; Methods 925.10, 65.17, 974.24, 992.16.
- Marlina, M.; Beandrade, M.U.; Nathalia, D.D.; Anindita, R. View of formulation test of facial serum mangosteen rind extract (Garcinia mangostana) and niacinamide. In Proceedings of the 3rd International Allied Health Students Conference (IAHSC), Singapore, 1–5 November 2023; pp. 58–62. [Google Scholar]
- Sheraz, M.A.; Ahmed, S.; Ahmad, I.; Shaikh, R.H.; Vaid, F.H.M.; Iqbal, K. Formulation and stability of ascorbic acid in topical preparations. Syst. Rev. Pharm. 2011, 2, 86–90. [Google Scholar] [CrossRef]
- Prieto, E.L. Cosmetic topical use of vitamin C. In Ascorbic Acid-Biochemistry and Functions; IntechOpen: London, UK, 2023; pp. 1–21. [Google Scholar]
- Kombathethil Ali, A.; Varghese, J. Formulation and evaluation of polyherbal face serum: Research article. Int. J. Creat. Res. Thoughts 2023, 11, 2320–2882. [Google Scholar]
- Gite, A.V.; Udapurkar, P.P.; Sanap, A.S. Formulation and development of face serum. Int. J. Creat. Res. Thoughts 2023, 11, 2320–2882. [Google Scholar]
- Biswas, A.; Dey, S.; Xiao, A.; Deng, Y.; Birhanie, Z.M.; Roy, R.; Akhter, D.; Liu, L.; Li, D. Ultrasound-assisted extraction (UAE) of antioxidant phenolics from Corchorus olitorius leaves: A response surface optimization. Chem. Biol. Technol. Agric. 2023, 10, 64. [Google Scholar] [CrossRef]
- Ilmu, J.; Pangan, T.; Sekarsari, S.; Rai Widarta, W.; Agung, A.; Ngurah, G.; Jambe, A.; Program, M.; Ilmu, S.; Pertanian, T.; et al. Pengaruh suhu dan waktu ekstraksi dengan gelombang ultrasonik terhadap aktivitas antioksidan ekstrak daun jambu biji (Psidium guajava L.). J. Ilmu Teknol. Pangan 2019, 8, 267–277. [Google Scholar]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Haslina, H.; Larasati, D.; Sani, E.Y.; Nazir, N. Sudjatinah black mangrove powder extracts with variation of temperature and length of time using ultrasound-assisted extraction (UAE). IOP Conf. Ser. Earth Environ. Sci. 2023, 1177, 012040. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Shuai, X.X.; Qiao, J.; Wei, C.B.; Ma, F.Y.; Zhang, Y.H.; Du, L.Q. Ultrasound-assisted extraction of phenolic compounds from macadamia (Macadamia integrifolia) green peel: Purification, identification and antioxidant activities. LWT 2023, 189, 115552. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Zhu, Y.Y.; Ye, X.Q.; Chen, J.C. Ultrasound-assisted extraction optimization of proanthocyanidins from kiwi (Actinidia chinensis) leaves and evaluation of its antioxidant activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef]
- Benouchenne, D.; Bellil, I.; Tachour, S.H.; Akkal, S.; Djeghim, H.; Kebaili, F.F.; Nieto, G.; Khelifi, D. Tyrosinase inhibitory ability and in vitro, in vivo acute oral and in silico toxicity evaluation of extracts obtained from Algerian Fir Needles. Plants 2022, 11, 2389. [Google Scholar] [CrossRef]
- Momtaz, S.; Mapunya, B.M.; Houghton, P.J.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008, 119, 507–512. [Google Scholar] [CrossRef]
- Bi, Y.; Lu, Y.; Yu, H.; Luo, L. Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacogn. Mag. 2019, 15, 156–163. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Pham, N.M.Q.; Van Vuong, Q.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Phytochemical retention and antioxidant capacity of xao tam phan (Paramignya trimera) root as prepared by different drying methods. Drying Tech. 2016, 34, 324–334. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Human nutrition and metabolism dietary intakes of flavonols, flavones and isoflavones by japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration 1. J. Nutr 2000, 130, 2243–2250. [Google Scholar] [CrossRef] [PubMed]
- Gębalski, J.; Graczyk, F.; Załuski, D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure–activity relationship. J. Enzyme Inhib. Med. Chem. 2022, 37, 1120–1195. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Park, J.K.; Kim, B.K.; Park, S.J.; Kim, M.K.; won Lee, C.; Choi, L.M.; Hur, J.A.; Kim, S.H.; Beom, J.; et al. Oligomeric procyanidins (OPCs) inhibit procollagen type I secretion of fibroblasts. Tissue Eng. Regen. Med. 2017, 14, 297. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.; Kulling, S.E.; Schwartz, H.; Rowland, I.; Ruefer, C.E.; Rimbach, G.; Cassidy, A.; Magee, P.; Millar, J.; Hall, W.L.; et al. Oligomeric procyanidins inhibit cell migration and modulate the expression of migration and proliferation associated genes in human umbilical vascular endothelial cells. Mol. Nutr. Food Res. 2009, 53, 266–309. [Google Scholar]
- Oak, M.H.; El Bedoui, J.; Schini-Kerth, V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem. 2005, 16, 1–8. [Google Scholar] [CrossRef]
- Faria, A.; Calhau, C.; De Freitas, V.; Mateus, N. Procyanidins as antioxidants and tumor cell growth modulators. J. Agric. Food Chem. 2006, 54, 2392–2397. [Google Scholar] [CrossRef]
- Taparia, S.S.; Khanna, A. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. Biomed. Pharmacother. 2016, 83, 130–140. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, J.Y.; Park, S.K.; Han, H.J.; Lee, K.Y.; Kim, A.N.; Kim, J.C.; Choi, S.G.; Heo, H.J. Effect of storage temperature on the antioxidant activity and catechins stability of Matcha (Camellia sinensis). Food Sci. Biotechnol. 2020, 29, 1261–1271. [Google Scholar] [CrossRef]
- Zeymer, J.S.; Corrêa, P.C.; de Oliveira, G.H.H.; de Araujo, M.E.V.; Guzzo, F.; Baptestini, F.M. Moisture sorption isotherms and hysteresis of soybean grains. Acta Sci. Agron. 2022, 45, e56615. [Google Scholar] [CrossRef]
- Deng, L.Z.; Xiong, C.H.; Pei, Y.P.; Zhu, Z.Q.; Zheng, X.; Zhang, Y.; Yang, X.H.; Liu, Z.L.; Xiao, H.W. Effects of various storage conditions on total phenolic, carotenoids, antioxidant capacity, and color of dried apricots. Food Control 2022, 136, 108846. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available technologies on improving the stability of polyphenols in food processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Ferreira, C.; Ribeiro, C.; Nunes, F.M. Effect of storage conditions on phenolic composition, vitamin C and antioxidant activity of “Golden delicious” and “Red delicious” apples. Postharvest Biol. Technol. 2024, 210, 112754. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Khanna, T.; Joshi, S. Formulation and evaluation of anti acne face serum. J. Med. Plants Stud. 2024, 12, 166–170. [Google Scholar]
- Yeskar, H.; Makde, P.; Tiware, S.A.; Shirbhate, T.M.; Thakre, S.V.; Darne, C.S.; Sable, J.B.; Warghane, K.K.; Baheti, J.R. Formulation and evaluation of a face serum containing fenugreek extract. Int. J. Basic Clin. Pharmacol. 2023, 12, 799–804. [Google Scholar] [CrossRef]
- Gyawali, R.; Gupta, R.K.; Shrestha, S.; Joshi, R.; Paudel, P.N. Formulation and evaluation of polyherbal cream containing cinnamomum Zeylanicum Blume, Glycyrrhiza glabra L and Azadirachta indica A. Juss. extracts to topical use. J. Inst. Sci. Technol. 2020, 25, 61–71. [Google Scholar] [CrossRef]
- Purva Rajdev, S.; Gaikwad, S.D.; Somvanshi, A.A.; Gunjal, S.S. Formulation and evaluation of face serum. Int. J. Adv. Res. Sci. Commun. Technol. 2022, 2, 255–259. [Google Scholar] [CrossRef]
- Lambertus, M.; Parwanto, E.; Tjahyadi, D.; Edy, H.J.; Wratsangka, R.; Guyansyah, A. Stability of Lantana camara Linn. leaf extract cream base on the level of Fe, Mg, Zn and quercetin equivalent of flavonoid. Int. J. Pharm. Res. 2021, 13, 1–18. [Google Scholar]
- Kothe, L.; Zimmermann, B.F.; Galensa, R. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chem. 2013, 141, 3656–3663. [Google Scholar] [CrossRef]
- García-Villegas, A.; Fernández-Ochoa, Á.; Alañón, M.E.; Rojas-García, A.; Arráez-Román, D.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. Bioactive compounds and potential health benefits through cosmetic applications of cherry stem extract. Int. J. Mol. Sci. 2024, 25, 3723. [Google Scholar] [CrossRef] [PubMed]
- Panontin, J.F.; Barbosa, R.d.S.; Isaac, V.; Seibert, C.S.; Scapin, E. Chemical composition, antioxidant activity and development of a facial serum formulation from the extract of Hancornia speciosa. Nat. Prod. Res. 2022, 36, 6121–6125. [Google Scholar] [CrossRef] [PubMed]
Composition | Concentration (%) |
---|---|
Deionized water | 79.66 |
Ascorbic acid | 5.0 |
Ferulic acid | 3.0 |
L-arginine | 5.0 |
Sodium hyaluronate | 0.3 |
Glycerine | 0.04 |
Polysorbate 80 | 1.0 |
Glyceryl undecylenate | 0.5 |
Glyceryl caprylate | 0.5 |
Crude procyanidin extract powder | 5.0 |
Temperature (°C) | Time (min) | Bioactive Compounds | Antioxidant Activity | |||
---|---|---|---|---|---|---|
TPC (mg GAE/g) | TFC (mg CAE/g) | Procyanidins (mg PC/g) | DPPH (μM Trolox eq/g) | FRAP (μM Trolox eq/g) | ||
15 | 10 | 28.7 ± 0.16 e | 13.4 ± 0.06 d | 6.49 ± 0.04 c | 314 ± 2.00 e | 1444 ± 1.30 c |
15 | 34.5 ± 0.21 cd | 14.9 ± 0.05 c | 7.37 ± 0.02 b | 423 ± 1.90 b | 1724 ± 10.4 b | |
20 | 38.9 ± 0.14 a | 16.5 ± 0.03 a | 8.87 ± 0.08 a | 447 ± 1.00 a | 1812 ± 4.50 a | |
25 | 10 | 32.2 ± 0.24 d | 14.2 ± 0.04 cd | 6.52 ± 0.02 c | 308 ± 1.00 f | 1316 ± 12.5 d |
15 | 35.8 ± 0.16 c | 15.7 ± 0.03 b | 7.39 ± 0.03 b | 335 ± 0.90 d | 1436 ± 20.4 c | |
20 | 36.3 ± 0.21 b | 15.4 ± 0.07 b | 7.07 ± 0.02 bc | 357 ± 0.10 c | 1443 ± 17.5 c |
Temperature (°C) | Time (Weeks) | Moisture Content (% db.) | Water Activity | TPC (mg GAE/g) | TFC (mg CAE/g) | Procyanidins (mg PC/g) | DPPH (μM Trolox eq/g) | FRAP (μM Trolox eq/g) |
---|---|---|---|---|---|---|---|---|
Control | 0 | 4.66 ± 0.05 h | 0.36 ± 0.10 g | 42.60 ± 0.10 a | 19.02 ± 0.35 a | 11.05 ± 0.01 a | 442.9 ± 3.14 a | 1818 ± 1.77 a |
25 | 2 | 5.06 ± 0.02 f | 0.36 ± 0.01 g | 41.72 ± 0.60 b | 18.40 ± 0.01 b | 10.3 ± 0.10 b | 406.2 ± 1.48 b | 1808 ± 3.92 a |
4 | 6.11 ± 0.05 b | 0.45 ± 0.01 b | 41.22 ± 0.20 bc | 18.22 ± 0.10 b | 9.69 ± 0.10 bc | 387.7 ± 1.24 d | 1749 ± 8.76 c | |
8 | 6.40 ± 0.01 a | 0.46 ± 0.01 b | 40.93 ± 0.30 cd | 17.19 ± 0.40 c | 9.37 ± 0.01 c | 372.4 ± 1.42 e | 1687 ± 3.10 d | |
12 | 6.50 ± 0.05 a | 0.49 ± 0.01 a | 38.68 ± 0.01 f | 16.07 ± 0.01 c | 9.24 ± 0.01 c | 359.8 ± 0.72 f | 1640 ± 2.86 f | |
35 | 2 | 4.82 ± 0.05 g | 0.36 ± 0.01 g | 40.51 ± 0.10 cde | 18.55 ± 0.01 b | 10.2 ± 0.01 b | 397.2 ± 0.85 c | 1794 ± 6.95 b |
4 | 5.88 ± 0.05 c | 0.39 ± 0.01 e | 36.64 ± 0.01 h | 18.36 ± 0.20 b | 9.22 ± 0.02 c | 355.2 ± 1.24 f | 1790 ± 4.08 b | |
8 | 5.99 ± 0.03 bc | 0.40 ± 0.01 d | 36.50 ± 0.10 h | 17.34 ± 0.01 c | 8.92 ± 0.01 d | 354.4 ± 1.00 f | 1668 ± 8.10 e | |
12 | 6.40 ± 0.04 a | 0.42 ± 0.01 c | 35.20 ± 0.10 i | 14.87 ± 0.10 d | 6.46 ± 0.01 f | 279.1 ± 0.83 j | 1638 ± 3.01 f | |
45 | 2 | 4.43 ± 0.12 i | 0.36 ± 0.01 g | 40.43 ± 0.10 de | 18.13 ± 0.10 b | 10.7 ± 0.02 b | 373.8 ± 0.35 e | 1784 ± 3.73 b |
4 | 5.14 ± 0.08 f | 0.36 ± 0.01 g | 39.98 ± 0.01 e | 12.83 ± 0.01 e | 9.33 ± 0.01 c | 340.5 ± 1.20 g | 1585 ± 0.87 g | |
8 | 5.43 ± 0.02 e | 0.37 ± 0.01 f | 37.42 ± 0.01 g | 11.90 ± 0.10 f | 7.40 ± 0.01 e | 339.7 ± 1.70 g | 1484 ± 2.77 h | |
12 | 5.70 ± 0.04 d | 0.39 ± 0.01 e | 30.29 ± 0.40 j | 11.50 ± 0.10 f | 5.92 ± 0.01 g | 267.7 ± 1.41 k | 1333 ± 2.96 i |
Temperature (°C) | Time (Weeks) | Physicochemical Property | Bioactive Compound | Antioxidant Activity | ||||
---|---|---|---|---|---|---|---|---|
pH | Viscosity (Pascal Seconds) | TPC (mg GAE/mL) | TFC (mg CAE/mL) | Procyanidins (mg PC/mL) | DPPH (μM Trolox eq/mL) | FRAP (μM Trolox eq/mL) | ||
Control | 0 | 6.20 ± 0.02 b | 13.4 ± 0.72 a | 1.76 ± 0.07 a | 0.80 ± 0.01 a | 0.38 ± 0.01 a | 18.8 ± 0.53 a | 89.7 ± 0.66 a |
4 | 2 | 6.21 ± 0.01 b | 13.0 ± 0.85 a | 1.58 ± 0.01 b | 0.79 ± 0.01 a | 0.36 ± 0.01 a | 18.8 ± 0.13 a | 89.4 ± 0.31 a |
4 | 6.20 ± 0.01 b | 13.0 0.93 a | 1.51 ± 0.01 b | 0.79 ± 0.01 a | 0.31 ± 0.01 bc | 18.0 ± 0.99 a | 79.4 ± 0.98 b | |
6 | 6.22 ± 0.01 b | 12.9 0.92 b | 1.38 ± 0.01 c | 0.61 ± 0.01 c | 0.31 ± 0.01 bc | 16.2 ± 0.82 c | 73.8 ± 0.36 d | |
25 | 2 | 6.23 ± 0.02 b | 12.7 0.91 b | 1.27 ± 0.01 d | 0.71 ± 0.01 b | 0.34 ± 0.01 b | 18.2 ± 0.82 a | 79.7 ± 0.47 b |
4 | 6.22 ± 0.03 b | 12.8 0.87 b | 1.03 ± 0.01 e | 0.69 ± 0.01 b | 0.30 ± 0.01 c | 17.9 ± 0.69 b | 77.3 ± 0.06 c | |
6 | 6.27 ± 0.03 a | 12.5 0.79 b | 1.01 ± 0.03 e | 0.60 ± 0.01 c | 0.28 ± 0.01 c | 17.5 ± 0.52 b | 72.9 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohntadavit, K.; Duangmano, S.; Osiriphan, M.; Leksawasdi, N.; Techapun, C.; Sumonsiri, N.; Sommano, S.R.; Rachtanapun, P.; Nunta, R.; Khemacheewakul, J. Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation. Cosmetics 2024, 11, 178. https://doi.org/10.3390/cosmetics11050178
Pohntadavit K, Duangmano S, Osiriphan M, Leksawasdi N, Techapun C, Sumonsiri N, Sommano SR, Rachtanapun P, Nunta R, Khemacheewakul J. Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation. Cosmetics. 2024; 11(5):178. https://doi.org/10.3390/cosmetics11050178
Chicago/Turabian StylePohntadavit, Kanyarat, Suwit Duangmano, Mallika Osiriphan, Noppol Leksawasdi, Charin Techapun, Nutsuda Sumonsiri, Sarana Rose Sommano, Pornchai Rachtanapun, Rojarej Nunta, and Julaluk Khemacheewakul. 2024. "Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation" Cosmetics 11, no. 5: 178. https://doi.org/10.3390/cosmetics11050178
APA StylePohntadavit, K., Duangmano, S., Osiriphan, M., Leksawasdi, N., Techapun, C., Sumonsiri, N., Sommano, S. R., Rachtanapun, P., Nunta, R., & Khemacheewakul, J. (2024). Tyrosinase Inhibitory Activity of Crude Procyanidin Extract from Green Soybean Seed and the Stability of Bioactive Compounds in an Anti-Aging Skin Care Formulation. Cosmetics, 11(5), 178. https://doi.org/10.3390/cosmetics11050178