Scalp Microbiome and Dandruff—Exploring Novel Biobased Esters
Abstract
:1. Introduction
2. Dandruff—A Fungal Skin Condition?
3. Studies on the Scalp Microbiome
4. Dandruff Control: Effects on Scalp Microbiome in Relation to In Vivo Efficacy
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Borda, L.J.; Wikramanayake, T.C. Seborrheic Dermatitis and Dandruff: A Comprehensive Review. J. Clin. Investig. Dermatol. 2015, 3, 10. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Messenger, A.G.; Tosti, A.; Todd, G.; Hordinsky, M.; Hay, R.J.; Wang, X.; Zachariae, C.; Kerr, K.M.; Henry, J.P.; et al. A comprehensive pathophysiology of dandruff and seborrheic dermatitis—Towards a more precise definition of scalp health. Acta Derm. Venereol. 2013, 93, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Dessinioti, C.; Katsambas, A. Seborrheic dermatitis: Etiology, risk factors, and treatments: Facts and controversies. Clin. Dermatol. 2013, 31, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.A.; Matheson, J.R.; Li, G.-Z.; Fei, X.-Q.; Zhu, D.; Baines, F.L. Enhanced efficacy and sensory properties of an anti-dandruff shampoo containing zinc pyrithione and climbazole. Int. J. Cosmet. Sci. 2013, 35, 78–83. [Google Scholar] [CrossRef]
- Schmidt-Rose, T.; Braren, S.; Fölster, H.; Hillemann, T.; Oltrogge, B.; Philipp, P.; Weets, G.; Fey, S. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff. Int. J. Cosmet. Sci. 2011, 33, 276–282. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Bacon, R.A.; Shah, R.; Mizoguchi, H.; Tosti, A. Therapeutic efficacy of anti-dandruff shampoos: A randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole. Int. J. Cosmet. Sci. 2013, 35, 381–387. [Google Scholar] [CrossRef]
- Market Example for the Combination of Climbazole and Salicylic acid: Henkel/Schwarzkopf Seborin Dual Effect Shampoo Anticaspa, Chile, 2011. Mintel GNPD Database. Record ID 1562280. Available online: https://www.mintel.com/products/gnpd/ (accessed on 29 August 2024).
- Market Example for the Combination of Zinc Pyrithione and Climbazole: Unilever CLEAR Men Antiforfora Shampoo Purificante, Italy, 2013. Mintel GNPD Database. Record ID 2261277. Available online: https://www.mintel.com/products/gnpd (accessed on 29 August 2024).
- Market Example for the Combination of Piroctone Olamine and Climbazole: Beiersdorf NIVEA for Men Anti-Schuppen Pure Shampoo, Germany, 2010. Mintel GNPD Database. Record ID 1403922. Available online: https://www.mintel.com/products/gnpd/ (accessed on 29 August 2024).
- Market Example for the Combination of Zinc Pyrithione and Piroctone Olamine: Wella Professionals Invigo Balance Shampoo, UK, 2018. Mintel GNPD Database. Record ID 5854667. Available online: https://www.mintel.com/products/gnpd/ (accessed on 29 August 2024).
- Market Example for the Combination of Piroctone Olamine and Sodium Salicylate: Procter & Gamble Head & Shoulders Sensitive Duschgel & Shampoo, Germany, 2022. Mintel GNPD Database. Record ID 9397368. Available online: https://www.mintel.com/products/gnpd/ (accessed on 29 August 2024).
- Malassez, L.C. Note sur le champignon de la pelade. Arch. Physiol. 1874, 11, 203–212. [Google Scholar]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia genus in skin and systemic diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef]
- Hay, R.J. Malassezia dandruff and seborrhoeic dermatitis: An overview. Br. J. Dermatol. 2011, 165 (Suppl. 2), 2–8. [Google Scholar] [CrossRef]
- Rudramurthy, S.M.; Honnavar, P.; Dogra, S.; Yegneswaran, P.P.; Handa, S.; Chakrabarti, A. Association of Malassezia species with dandruff. Indian J. Med. Res. 2014, 139, 431–437. [Google Scholar] [PubMed]
- Meray, Y.; Gençalp, D.; Güran, M. Putting it all together to understand the role of Malassezia spp. in dandruff etiology. Mycopathologia 2018, 183, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Heng, M.C.; Henderson, C.L.; Barker, D.C.; Haberfelde, G. Correlation of Pityosporum ovale density with clinical severity of seborrheic dermatitis as assessed by a simplified technique. J. Am. Acad. Dermatol. 1990, 23, 82–86. [Google Scholar] [CrossRef]
- Shuster, S. The aetiology of dandruff and the mode of action of therapeutic agents. Br. J. Dermatol. 1984, 111, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Tajima, M.; Sugita, T.; Nishokawa, A.; Tsuboi, R. Molecular analysis of Malassezia in seborrheic dermatitis patients: Comparison with other diseases and healthy subjects. J. Investig. Dermatol. 2008, 128, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Schechtman, R.C.; Midgley, G.; Hay, R.J. HIV disease and Malassezia yeasts: A quantitative study of patients presenting with seborrhoeic dermatitis. Br. J. Dermatol. 1995, 133, 694–698. [Google Scholar] [CrossRef]
- DeAngelis, Y.M.; Saunders, C.W.; Johnstone, K.R.; Reeder, N.L.; Coleman, C.G.; Kaczvinsky, J.R.; Gale, C.; Walter, R.; Mekel, M.; Lacey, M.P.; et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J. Investig. Dermatol. 2007, 127, 2138–2146. [Google Scholar] [CrossRef]
- Mayser, P. Medium chain fatty acid ethyl esters—Activation of antimicrobial effects by Malassezia enzymes. Mycoses 2015, 58, 215–219. [Google Scholar] [CrossRef]
- Mayser, P.; Schulz, S. Precipitation of free fatty acids generated by Malassezia—A possible explanation for the positive effects of lithium succinate in seborrhoeic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1384–1389. [Google Scholar] [CrossRef]
- McGinley, K.J.; Leyden, J.J.; Marples, R.R.; Kligman, A.M. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis. J. Investig. Dermatol. 1975, 64, 401–405. [Google Scholar] [CrossRef]
- Wikramanayake, T.C.; Borda, L.J.; Miteva, M.; Paus, R. Seborrheic dermatitis-Looking beyond Malassezia. Exp. Dermatol. 2019, 28, 991–1001. [Google Scholar] [CrossRef]
- Paulino, L.C. New perspectives on dandruff and seborrheic dermatitis: Lessons we learned from bacterial and fungal skin microbiota. Eur. J. Dermatol. 2017, 27, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Li, R.; Wang, R. Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review. Exp. Dermatol. 2021, 30, 1546–1553. [Google Scholar] [CrossRef]
- Clavaud, C.; Jourdain, R.; Bar-Hen, A.; Tichit, M.; Bouchier, C.; Pouradier, F.; Rawadi, C.E.; Guillot, J.; Ménard-Szczebara, F.; Breton, L.; et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE 2013, 8, e58203. [Google Scholar] [CrossRef]
- Wang, L.; Clavaud, C.; Bar-Hen, A.; Cui, M.; Gao, J.; Liu, Y.; Liu, C.; Shibagaki, N.; Guéniche, A.; Jourdain, R.; et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp. Dermatol. 2015, 24, 398–400. [Google Scholar] [CrossRef]
- Park, T.; Kim, H.J.; Myeong, N.R.; Lee, H.G.; Kwack, I.; Lee, J.; Kim, B.J.; Sul, W.J.; An, S. Collapse of human scalp microbiome network in dandruff and seborrheic dermatitis. Exp. Dermatol. 2017, 26, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Mittal, P.; Clavaud, C.; Dhakan, D.B.; Hegde, P.; Veeranagaiah, M.M.; Saha, S.; Souverain, L.; Roy, N.; Breton, L.; et al. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front. Cell Infect. Microbiol. 2018, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Grimshaw, S.G.; Smith, A.M.; Arnold, D.S.; Xu, E.; Hoptroff, M.; Murphy, B. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS ONE 2019, 14, e0225796. [Google Scholar] [CrossRef]
- Lin, Q.; Panchamukhi, A.; Li, P.; Shan, W.; Zhou, H.; Hou, L.; Chen, W. Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst. Eng. 2021, 44, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Larrondo, J.; Dawson, T.; Mcmichael, A. Scalp microbiome: A guide to better understanding scalp diseases and treatments. Arch. Dermatol. Res. 2024, 316, 495. [Google Scholar] [CrossRef]
- Meloni, M.; Balzaretti, S.; Collard, N.; Desaint, S.; Laperdrix, C. Reproducing the scalp microbiota community: Co-colonization of a 3D reconstructed human epidermis with C. acnes and M. restricta. Int. J. Cosmet. Sci. 2021, 43, 235–245. [Google Scholar] [CrossRef]
- Rippke, F.; Schreiner, V.; Doering, T.; Maibach, H.I. Stratum corneum pH in atopic dermatitis: Impact on skin barrier function and colonization with Staphylococcus aureus. Am. J. Clin. Dermatol. 2004, 5, 217–223. [Google Scholar] [CrossRef]
- Scharschmidt, T.C.; Fischbach, M.A. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech. 2013, 10, e83–e89. [Google Scholar] [CrossRef]
- Li, H.; Goh, B.N.; Teh, W.K.; Jiang, Z.; Goh, J.P.Z.; Goh, A.; Wu, G.; Hoon, S.S.; Raida, M.; Camattari, A.; et al. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J. Investig. Dermatol. 2018, 138, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Z.; Yuan, C.; Liu, X.; Yang, F.; Wang, T.; Wang, J.; Manabe, K.; Qin, O.; Wang, X.; et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci. Rep. 2016, 6, 24877. [Google Scholar] [CrossRef]
- Christensen, G.J.; Scholz, C.F.; Enghild, J.; Rohde, H.; Kilian, M.; Thürmer, A.; Brzuszkiewicz, E.; Lomholt, H.B.; Brüggemann, H. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomicbasis. BMC Genom. 2016, 17, 152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kuo, S.; Shu, M.; Yu, J.; Huang, S.; Dai, A.; Two, A.; Gallo, R.L.; Huang, C.M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 2014, 98, 411–424. [Google Scholar] [CrossRef]
- Saxena, R.; Mittal, P.; Clavaud, C.; Dhakan, D.B.; Roy, N.; Breton, L.; Misra, N.; Sharma, V.K. Longitudinal study of the scalp microbiome suggests coconut oil to enrich healthy scalp commensals. Sci. Rep. 2021, 11, 7220. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Henry, J.; Tiesman, J.P.; Parlov, M.; Bacon, R.; Charbonnea, D.; Venkataraman, A.; Locker, K.C.S.; Krigbaum, H.; Schwartz, J. Scalp microbiome composition changes and pathway evaluations due to effective treatment with Piroctone Olamine shampoo. Int. J. Cosmet. Sci. 2024, 46, 333–347. [Google Scholar] [CrossRef]
- Koch, C.; Pesaro, M.; Schmaus, G.; Mayser, P. Medium-chain fatty acid esters-Optimising their efficacy as anti-Malassezia agents. Mycoses 2020, 63, 704–710. [Google Scholar] [CrossRef]
- Koch, C.; Nordzieke, S.; Grieger, J.; Mayser, P. Medium-chain fatty acid esters are effective even in azole-resistant Malassezia pachydermatis. Mycoses 2022, 65, 1188–1193. [Google Scholar] [CrossRef]
- Genrich, F.; Koch, C.; Lange, S.; Bugdahn, N.; Schmaus, G. Next Generation dandruff control. SOFW J. 2020, 146, 8–12. [Google Scholar]
- Genrich, F.; Koch, C.; Massironi, M.; Thomaz, F. Propanediol Caprylate: Shifting the Microbiome, Sebum Levels and Classic Approach to Dandruff. Cosmet. Toilet. 2021, 136, 44–51. [Google Scholar]
- Genrich, F.; Meunier, L.; Nordzieke, S. The Green Future of Dandruff Control. Pers. Care Mag. Glob. 2022, 23, 64–68. [Google Scholar]
- Meunier, L.; Genrich, F.; Fontán Yanes, M.T. Advancing salicylic acid-based dandruff control. Euro Cosmet. 2023, 32, 3–6. [Google Scholar]
- COMMISSION REGULATION (EU) 2021/1902 of 29 October 2021 amending Annexes II, III and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council as regards the use in cosmetic products of certain substances classified as carcinogenic, mutagenic or toxic for reproduction. Off. J. Eur. Union 2021, L387, 120–125. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1902 (accessed on 29 August 2024).
- Kita, K.; Caravieri, F.; Birkel, S. Piroctone Olamine—Advancing Anti-dandruff Care & More. Efficient and safe scalp care for new formats & applications. SOFW J. 2021, 147, 26–31. [Google Scholar]
Ref. | Method (s) | Location/ Volunteers * | Results |
---|---|---|---|
[20] | sequencing ribosomal unit regions (16S for bacterial and 28S-ITS for fungal), qPCR | France/ 30 D, 19 H | Dandruff was correlated with a higher incidence of M. restricta and Staph. epidermidis and a lower incidence of C. acnes compared to the control population (p < 0.05). |
[21] | sequencing ribosomal unit regions (16S for bacterial and 28S-ITS for fungal), qPCR | China/ 32 D, 9 H | Dandruff was correlated with a higher incidence of M. restricta and Staphylococcus spp. The ratios of Malassezia to Cutibacterium and Staphylococcus to Cutibacterium were significantly higher in the dandruff volunteers. |
[22] | Next generation sequencing | Korea/28 D, 29 SD, 45 H | D/SD: higher incidence of M. restricta, Staph. spp. H: higher incidence of Cutibacterium spp., M. globosa. |
[23] | bacterial 16S rRNA and fungal ITS1 amplicon sequencing, shotgun metagenomic sequencing | India/ 70 D, 70 H | H: higher incidence of Cutibacterium acnes D: higher incidence of Staph. epidermidis A lower M. restricta to M. globosa ratio was found to be associated with a healthy scalp. |
[24] | 454 sequencing and qPCR techniques | China/ 35 D, 30 H | Dandruff was associated with greater frequencies of M. restricta and Staph. spp. compared with the healthy population (p < 0.05). |
[25] | next generation sequencing | China/ 57 SD, 53 H | Malassezia and Aspergillus were both found to be potential fungal biomarkers for SD, while Staphylococcus and Pseudomonas were found to be potential bacterial biomarkers. |
Ref. | Study | Design | Results |
---|---|---|---|
[46] | Randomized, double-blind, propanediol caprylate 0.5% (N = 27) vs. climbazole 0.5% (N = 29) vs. control (N = 26) | 3 times per week for 30 days, 3 min of incubation (rinse-off shampoo), mixed panel dry/greasy scalp | Significant reduction in absolute dandruff score for propanediol caprylate and climbazole vs. control |
[47] | Randomized, double-blind, 0.5% propanediol caprylate (N = 5) vs. control (N = 4) | 4 weeks, once daily (leave-on); microbiome analysis (d0, d28), mixed panel dry/greasy scalp | Mean dandruff score 4.81/4.53 for control, 4.95/4.45 for propanediol caprylate; propanediol caprylate = better restoration of healthy scalp microbiome |
[48] | Randomized, double-blind, propanediol caprylate 0.5% (N =12) vs. piroctone olamine 0.5% (N = 9) | 3 times per week for 28 days, 3 min of incubation (rinse-off shampoo), greasy scalp. | Statistically significant decrease vs. D0 in the adherent (propanediol caprylate p = 0.0004; piroctone olamine p = 0.0056) and non-adherent dandruff (propanediol caprylate p = 0.0050; piroctone olamine p = 0.0028) score. No significant difference between the two products |
Randomized, double-blind, propanediol caprylate 0.5% plus 0.25% piroctone olamine (N =20) vs. piroctone olamine 0.75% (N = 20) | 3 times per week for 42 days, additional rating after 63 days (rinse-off shampoo), mixed panel half dry/half greasy scalp | No significant difference in the reduction in dandruff score between the two products, but long-lasting effect for the combination (D63 vs. D42) | |
[49] | Randomized, double-blind, salicylic acid 3% (N = 22) vs. salicylic acid 2% plus 0.5% propanediol caprylate (N = 22) | 3 times per week 28 days; incubation time not specified, greasy scalp | Significant reduction for both products vs. D0, better reduction in erythema and irritation score for the combination |
[this publication] | Randomized, double-blind, propanediol caprylate 0.5% (N = 19) vs. propanediol undecylenate 0.5% (N = 20) | Once daily for 28 days, additional rating after 42 days (rinse-off shampoo), mixed panel dry/greasy scalp | Significant reduction for both products vs. D0, no significant difference between the two products, long-lasting effect for both (wash-out phase: D42 vs. D28) |
Control | Propanediol Caprylate | |||
---|---|---|---|---|
Day 0 | Day 29 | Day 0 | Day 29 | |
Other bacteria | 9.7% | 5.3% | 16.7% | 4.8% |
Cutibacterium | 30.4% | 25.9% | 19.3% | 33.3% |
Staphylococcus | 59.9% | 68.8% | 64.0% | 61.9% |
Bacterial balance Staphylococcus/ Cutibacterium | Unfavorable shift | Favorable shift |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayser, P.; Genrich, F.; Meunier, L.; Nordzieke, S. Scalp Microbiome and Dandruff—Exploring Novel Biobased Esters. Cosmetics 2024, 11, 174. https://doi.org/10.3390/cosmetics11050174
Mayser P, Genrich F, Meunier L, Nordzieke S. Scalp Microbiome and Dandruff—Exploring Novel Biobased Esters. Cosmetics. 2024; 11(5):174. https://doi.org/10.3390/cosmetics11050174
Chicago/Turabian StyleMayser, Peter, Florian Genrich, Laura Meunier, and Steffen Nordzieke. 2024. "Scalp Microbiome and Dandruff—Exploring Novel Biobased Esters" Cosmetics 11, no. 5: 174. https://doi.org/10.3390/cosmetics11050174
APA StyleMayser, P., Genrich, F., Meunier, L., & Nordzieke, S. (2024). Scalp Microbiome and Dandruff—Exploring Novel Biobased Esters. Cosmetics, 11(5), 174. https://doi.org/10.3390/cosmetics11050174