Alpha-Bisabolol-Loaded Cosmetic Micellar Solution with Cleansing and Antimicrobial Action for Facial Skin Hygiene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Test Samples
2.2.2. Accelerated Stability Testing
2.2.3. DLS
2.2.4. ELS
2.2.5. Foamability
2.2.6. Viscosimetry
2.2.7. Antimicrobial Activity
3. Results and Discussion
3.1. Visual Appearance and Physical Stability
3.2. Average Size and Size Distribution
3.3. Zeta Potential
3.4. Foamability
3.5. Viscosity
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eddin, L.B.; Jha, N.K.; Goyal, S.N.; Agrawal, Y.O.; Subramanya, S.B.; Bastaki, S.M.A.; Ojha, S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.B.; Souza, R.B.; Moraes, Â.M. Incorporation and release kinetic of alpha-bisabolol from PCL and chitosan/guar gum membranes. Braz. J. Chem. Eng. 2016, 33, 453–467. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M. A Review of the Application and Pharmacological Properties of α-Bisabolol and α-Bisabolol-Rich Oils. J. Am. Oil. Chem. Soc. 2009, 87, 1–7. [Google Scholar] [CrossRef]
- Available online: https://cosmetics.specialchem.com/inci-ingredients/bisabolol# (accessed on 10 September 2024).
- Lee, J.; Jun, H.; Jung, E.; Ha, J.; Park, D. Whitening effect of α-bisabolol in Asian women subjects. Int. J. Cos. Sci. 2010, 32, 299–303. [Google Scholar] [CrossRef]
- Available online: https://www.ewg.org/skindeep/browse/ingredients/700771-BISABOLOL/?ingredient_id=700771-BISABOLOL&page=3 (accessed on 10 September 2024).
- Christian, S.D.; Scamehorn, J.F. Solubilization in Surfactant Aggregates; CRC Press: Boca Raton, FL, USA, 2020; pp. 31–111. [Google Scholar] [CrossRef]
- Ohshima, H.; Makino, K. Colloid and Interface Science in Pharmaceutical Research and Development; Elsivier: Amsterdam, The Netherlands, 2014; pp. 1–54. [Google Scholar]
- Andrei, F. Dermatopharmacy and Cosmetology Practical Study Guide for Students of the English Section of the Faculty of Pharmacy; Victor Babes: Timisoara, Romania, 2023. [Google Scholar]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y. Cosmetic Science and Technology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Gugleva, V.; Ivanova, N.; Sotirova, Y.; Andonova, V. Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals 2021, 14, 837. [Google Scholar] [CrossRef]
- An, J.Y.; Yang, H.S.; Park, N.R.; Koo, T.-S.; Shin, B.; Lee, E.H.; Cho, S.H. Development of Polymeric Micelles of Oleanolic Acid and Evaluation of Their Clinical Efficacy. Nanoscale Res. Lett. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angeles, G.; Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, D.; et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017, 156, 86–96. [Google Scholar] [CrossRef]
- Wichit, A.; Tangsumranjit, A.; Pitaksuteepong, T.; Waranuch, N. Polymeric Micelles of PEG-PE as Carriers of All-Trans Retinoic Acid for Stability Improvement. AAPS Pharm. Sci. Tech. 2012, 13, 336–343. [Google Scholar] [CrossRef]
- Lapteva, M.; Möller, M.; Gurny, R.; Kalia, Y.N. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. Nanoscale 2015, 7, 18651–18662. [Google Scholar] [CrossRef]
- Kandekar, S.G.; del Río-Sancho, S.; Lapteva, M.; Kalia, Y.N. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale 2018, 10, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, E.; Ÿzhan, G.; Ÿzsoy, Y.; Güngör, S. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surf. B Biointerfaces 2016, 146, 692–699. [Google Scholar] [CrossRef]
- Lapteva, M.; Mondon, K.; Möller, M.; Gurny, R.; Kalia, Y.N. Polymeric Micelle Nanocarriers for the Cutaneous Delivery of Tacrolimus: A Targeted Approach for the Treatment of Psoriasis. Mol. Pharm. 2014, 11, 2989–3001. [Google Scholar] [CrossRef] [PubMed]
- Khurana, B.; Arora, D.; Narang, R.K. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J. Drug Deliv. Sci. Technol. 2020, 59, 101901. [Google Scholar] [CrossRef]
- Bachhav, Y.; Mondon, K.; Kalia, Y.; Gurny, R.; Möller, M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J. Control. Release 2011, 153, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elsalam, W.H.; El-Zahaby, S.A.; Al-Mahallawi, A.M. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv. 2018, 25, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Jarak, I.; Santos, A.; Veiga, F.; Figueiras, A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials 2021, 14, 7278. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Vasilieva, E.A.; Mirgorodskaya, A.B.; Zakharov, S.V.; Pavlov, R.V.; Kashapova, N.E.; Gaynanova, G.A. Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions. J. Mol. Liq. 2023, 370, 120923. [Google Scholar] [CrossRef]
- Chen, P. Molecular Interfacial Phenomena of Polymers and Biopolymers; Woodhead Publishing: Sawston, UK, 2005. [Google Scholar]
- Kumar, P.; Mittal, K.L. Handbook of Microemulsion Science and Technology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Karunaratne, D.N.; Pamunuwa, G.; Ranatunga, R.J.K.U. Properties and Uses of Microemulsions; InTech: London, UK, 2017. [Google Scholar]
- Mahdi, E.S.; Sattar, M.; Sakeena, M.H.F.; Abdulkarim, M.; Noor, A.M.; Abdullah, G. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des. Devel. Ther. 2011, 5, 311. [Google Scholar] [CrossRef]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef]
- Salager, J.-L.; Antón, R.; Bullón, J.; Forgiarini, A.; Marquez, R. How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics 2020, 7, 57. [Google Scholar] [CrossRef]
- Witthayapanyanon, A.; Harwell, J.H.; Sabatini, D.A. Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J. Colloid Interface Sci. 2008, 325, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Ghayour, A. A methodology for measuring the characteristic curvature of technical-grade ethoxylated nonionic surfactants: The effects of concentration and dilution. Tenside Surfact. Det. 2023, 60, 1–12. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Ramsey, J.D.; Samadi, A.; Atoufi, Z.; Yazdi, M.K.; Ganjali, M.R.; Amirabad, L.M.; Zangene, E.; Farokhi, M.; Formela, K.; et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020, 110, 37–67. [Google Scholar] [CrossRef]
- Dumortier, G.; Grossiord, J.L.; Agnely, F.; Chaumeil, J.C. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm. Res. 2006, 23, 2709–2728. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM). European Pharmacopoeia; Council of Europe 10.0: Strasbourg, France, 2019; pp. 3052–3054. [Google Scholar]
- Bodratti, A.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. [Google Scholar] [CrossRef]
- Ivanova, N.; Ermenlieva, N.; Simeonova, L.; Vilhelmova-Ilieva, N.; Bratoeva, K.; Stoyanov, G.; Andonova, V. In Situ Gelling Behavior and Biopharmaceutical Characterization of Nano-Silver-Loaded Poloxamer Matrices Designed for Nasal Drug Delivery. Gels 2024, 10, 385. [Google Scholar] [CrossRef]
- Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef]
- Cui, N.; Dai, C.-Y.; Mao, X.; Lv, X.; Gu, Y.; Lee, E.-S.; Jiang, H.-B.; Sun, Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022, 8, 360. [Google Scholar] [CrossRef]
- Sedlarikova, J.; Janalikova, M.; Egner, P.; Pleva, P. Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications. ACS Omega 2024, 9, 23209–23219. [Google Scholar] [CrossRef]
- Estanqueiro, M.; Conceição, J.; Amaral, M.H.; Santos, D.; Silva, J.B.; Lobo, J.M.S. Characterization and stability studies of emulsion systems containing pumice. Braz. J. Pharm. Sci. 2014, 50, 361–369. [Google Scholar] [CrossRef]
- Navarro-Pérez, Y.M.; Cedeño-Linares, E.; Norman-Montenegro, O.; Ruz-Sanjuan, V.; Mondeja-Rivera, Y.; Hernández-Monzón, A.M.; González-Bedia, M.M. Prediction of the physical stability and quality of O/W cosmetic emulsions using full factorial design. J. Pharm. Pharmacogn. Res. 2021, 9, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Petkova, B.; Tcholakova, S.; Denkov, N. Foamability of surfactant solutions: Interplay between adsorption and hydrodynamic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127009. [Google Scholar] [CrossRef]
- Tănase, M.A.; Soare, A.C.; Diţu, L.M.; Nistor, C.L.; Mihaescu, C.I.; Gifu, I.C.; Petcu, C.; Cinteza, L.O. Influence of the Hydrophobicity of Pluronic Micelles Encapsulating Curcumin on the Membrane Permeability and Enhancement of Photoinduced Antibacterial Activity. Pharmaceutics 2022, 14, 2137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jeon, M.; Rich, L.J.; Hong, H.; Geng, J.; Zhang, Y.; Shi, S.; Barnhart, T.E.; Alexandridis, P.; Huizinga, J.D.; et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 2014, 9, 631–638. [Google Scholar] [CrossRef]
- Mauludin, R.; Müller, R.H. Preparation and storage stability of rutin nanosuspensions. J. Pharm. Investig. 2013, 43, 395–404. [Google Scholar] [CrossRef]
- Basak, R.; Bandyopadhyay, R. Encapsulation of Hydrophobic Drugs in Pluronic F127 Micelles: Effects of Drug Hydrophobicity, Solution Temperature, and pH. Langmuir 2013, 29, 4350–4356. [Google Scholar] [CrossRef]
- Singla, P.; Chabba, S.; Mahajan, R.K. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 479–488. [Google Scholar] [CrossRef]
- Saxena, V.; Hussain, M.D. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int. J. Nanomed. 2012, 7, 713–721. [Google Scholar] [CrossRef]
- Nagy, N.Z.; Varga, Z.; Mihály, J.; Domján, A.; Fenyvesi, É.; Kiss, É. Highly Enhanced Curcumin Delivery Applying Association Type Nanostructures of Block Copolymers, Cyclodextrins and Polycyclodextrins. Polymers 2020, 12, 2167. [Google Scholar] [CrossRef]
- Vivero-Lopez, M.; Sparacino, C.; Quelle-Regaldie, A.; Sánchez, L.; Candal, E.; Barreiro-Iglesias, A.; Huete-Toral, F.; Carracedo, G.; Otero, A.; Concheiro, A.; et al. Pluronic®/casein micelles for ophthalmic delivery of resveratrol: In vitro, ex vivo, and in vivo tests. Int. J. Pharm. 2022, 628, 122281. [Google Scholar] [CrossRef] [PubMed]
- Nery Dos Santos, Q.; Teles, D.C.S.; de Araujo, G.R.S.; Lima, O.V.A.; Silva, L.A.S.; de Carvalho, R.C.V.; Carlos de Sousa, V.; Matos, S.S.; Costa, A.M.B.; Andrade-Neto, V.V.; et al. Microemulsions strongly promoted the activity of α-bisabolol against different Leishmania species and its skin permeation. Exp. Parasitol. 2024, 265, 108808. [Google Scholar] [CrossRef]
- Almeida, E.A.T.; Ferreira-Nunes, R.; Aguiar, B.R.L.; dos Reis, P.E.D.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Aqueous-based Nanoemulsion Containing (-)-α-bisabolol for Topical Treatment of Skin Burns. Curr. Cosmet. Sci. 2022, 1, e090721194664. [Google Scholar] [CrossRef]
- Kim, S.; Yu, S.; Kim, J.; Khaliq, N.U.; Choi, W.I.; Kim, H.; Sung, D. Facile Fabrication of α-Bisabolol Nanoparticles with Improved Antioxidant and Antibacterial Effects. Antioxidants 2023, 12, 207. [Google Scholar] [CrossRef]
- Malvern® Panalytical. Zetasizer Advance Series User Guide. 2022. Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/man0592en (accessed on 10 August 2024).
- Yorke, K.; Amin, S. High Performance Conditioning Shampoo with Hyaluronic Acid and Sustainable Surfactants. Cosmetics 2021, 8, 71. [Google Scholar] [CrossRef]
Code | Bisabolol Concentration, % | Poloxamer 407 Concentration, % | Method of Preparation |
---|---|---|---|
B-5 | - | 5 | Cold dissolution and dilution |
DS-5 | 0.5 | 5 | Direct solubilization |
DS-10 | 1.0 | 5 | Direct solubilization |
DS-15 | 1.5 | 5 | Direct solubilization |
FH-5 | 0.5 | 5 | Film hydration |
FH-10 | 1.0 | 5 | Film hydration |
FH-15 | 1.5 | 5 | Film hydration |
Code | Bisabolol, % | Accelerated Stability Test | Z-Average, nm ± SD | p-Value | PDI ± SD | p-Value |
---|---|---|---|---|---|---|
B-5 | - | - | 44.21 ± 2.18 | - | 0.48 ± 0.010 | - |
DS*-5 | 0.5 | before | 34.95 ± 1.64 | 0.642 | 0.39 ± 0.017 | 0.545 |
after | 34.29 ± 1.58 | 0.38 ± 0.020 | ||||
FH*-5 | 1.0 | before | 29.02 ± 0.38 | 0.523 | 0.19 ± 0.003 | 1 |
after | 28.77 ± 0.49 | 0.19 ± 0.007 | ||||
DS-10 | 1.5 | before | 109.8 ± 26.81 | 0.270 | 0.99 ± 0.004 | 0.340 |
after | 80.75 ± 28.75 | 0.94 ± 0.080 | ||||
FH-10 | 0.5 | before | 82.55 ± 3.31 | 0.116 | 0.18 ± 0.030 | 0.029 ** |
after | 73.48 ± 7.12 | 0.40 ± 0.110 | ||||
DS-15 | 1.0 | before | 127.2 ± 12.08 | 0.0044 ** | 1 ± 0.00 | 1 |
after | 192.1 ± 14.80 | 1 ± 0.00 | ||||
FH-15 | 1.5 | before | 116.5 ± 16.01 | <0.0001 ** | 0.64 ± 0.070 | 0.472 |
after | 483.4 ± 10.84 | 0.56 ± 0.160 |
Formulation Code | Zeta Potential, mV ± SD |
---|---|
B-5 | −7.07 ± 0.27 |
DS-5 | −6.56 ± 0.47 |
FH-5 | −2.70 ± 0.89 |
DS-10 | −2.89 ± 0.29 |
FH-10 | −1.82 ± 0.77 |
DS-15 | −2.72 ± 0.09 |
FH-15 | −0.34 ± 0.11 |
S. aureus | E. coli | C. albicans | ||||||
---|---|---|---|---|---|---|---|---|
MIC * | MBC | Inhibitory Zone | MIC * | MBC | Inhibitory Zone | MIC * | MFC | Inhibitory Zone |
0.5% | n.e. | n.e. | 0.25% | n.e. | 20 mm | 0.125% | 1% | 27 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, N.; Ermenlieva, N.; Andonova, V. Alpha-Bisabolol-Loaded Cosmetic Micellar Solution with Cleansing and Antimicrobial Action for Facial Skin Hygiene. Cosmetics 2024, 11, 173. https://doi.org/10.3390/cosmetics11050173
Ivanova N, Ermenlieva N, Andonova V. Alpha-Bisabolol-Loaded Cosmetic Micellar Solution with Cleansing and Antimicrobial Action for Facial Skin Hygiene. Cosmetics. 2024; 11(5):173. https://doi.org/10.3390/cosmetics11050173
Chicago/Turabian StyleIvanova, Nadezhda, Neli Ermenlieva, and Velichka Andonova. 2024. "Alpha-Bisabolol-Loaded Cosmetic Micellar Solution with Cleansing and Antimicrobial Action for Facial Skin Hygiene" Cosmetics 11, no. 5: 173. https://doi.org/10.3390/cosmetics11050173
APA StyleIvanova, N., Ermenlieva, N., & Andonova, V. (2024). Alpha-Bisabolol-Loaded Cosmetic Micellar Solution with Cleansing and Antimicrobial Action for Facial Skin Hygiene. Cosmetics, 11(5), 173. https://doi.org/10.3390/cosmetics11050173