Evaluation of Two Cosmetic Products Formulated with Essential Oil Extracted from Copal Resin Obtained in Agroforestry Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Copal Resin Collection
2.3. Formulation of Protocols and Physicochemical Analysis of Product
Microbiological, Accelerated Stability, and Irritability Tests
2.4. Product Acceptance and Effectiveness
Statistical Analysis of Dermatological Characteristics and Construction of the Random Forest Model
- Product aroma: ☐I don’t like it at all ☐I don’t like it ☐I neither like nor dislike it ☐I like it moderately ☐I like it a lot.
- Product aroma on the skin: ☐I don’t like it at all ☐I don’t like it ☐I neither like nor dislike it ☐I like it moderately ☐I like it a lot.
- Spreading of the product: ☐Does not spread at all ☐Does not spread ☐Spreads lightly ☐Spreads moderately ☐Spreads easily.
- Greasy sensation of the product: ☐No greasy sensation at all ☐No greasy sensation ☐Slight greasy sensation ☐Moderate greasy sensation ☐Greasy sensation.
- Irritation of the product: ☐I don’t feel irritation at all ☐I don’t feel irritation ☐I feel slight irritation ☐I feel moderate irritation ☐I feel irritation easily.
- Absorption of the product: ☐Does not absorb at all ☐Does not absorb ☐Absorbs lightly ☐Absorbs moderately ☐Absorbs easily.
- Skin sensation after using the product: ☐I don’t like it at all ☐I don’t like it ☐I neither like nor dislike it ☐I like it moderately ☐I like it a lot.
- Product effect on softness: ☐I don’t feel softness at all ☐I don’t feel softness ☐Feel slight softness ☐Feel moderate softness ☐Feel softness easily.
- Product effect on hydration: ☐I don’t feel hydration at all ☐I don’t feel hydration ☐Feel slight hydration ☐Feel moderate hydration ☐Feel hydration easily.
- Product effect on skin appearance: ☐I don’t feel improvement at all ☐I don’t feel improvement ☐Feel slight improvement ☐Feel moderate improvement ☐Feel improvement easily.
3. Results
3.1. Development of Protocols and Physicochemical Analysis of Products
Microbiological, Irritation, and Accelerated Stability Tests
3.2. Product Acceptance and Effectiveness
3.3. Statistical Analysis of Dermatological Characteristics and Construction of the Random Forest Model
3.3.1. Comparison of Means for Dermatological Characteristics
3.3.2. Determination of Key Dermatological Characteristics
4. Discussion
4.1. Development of Protocols and Physicochemical Analysis of Products
Microbiological, Irritability, and Accelerated Stability Tests
4.2. Product Acceptance and Effectiveness
Determination of Most Relevant Variables for Product Acceptance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapia-Tapia, E.D.C.; Reyes-Chilpa, R. Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera Y Bosques 2008, 14, 95–112. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712008000300005 (accessed on 30 November 2023). [CrossRef]
- Purata, V.S.E. Capítulo 6. Bases para el buen manejo. In Uso y Manejo de Los Copales Aromáticos: Resinas y Aceites; Purata Velarde, S.E., Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Mexico City, Mexico, 2008; pp. 27–35. [Google Scholar]
- Cruz León, A.; Salazar Martínez, L.; Campos, O.M. Antecedentes y actualidad del aprovechamiento de copal en la Sierra de Huautla, Morelos. Rev. De Geogr. Agrícola 2006, 37, 97–116. [Google Scholar]
- Purata, V.E.S.; León, C.M. Resina de copal. In La Riqueza de Los Bosques Mexicanos: Más Allá de la Madera. Experiencias de Comunidades Rurales; López, C., Chanfón, K.S., Segura, W.G., Eds.; Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT): Mexico City, Mexico, 2005; pp. 86–91. [Google Scholar]
- Gutiérrez, G.R.I. Extracción Del Aceite de Copal Y SU Aplicación en Productos Cosméticos. 2016. Available online: http://tesis.ipn.mx:8080/xmlui/handle/123456789/16950 (accessed on 30 November 2023).
- Martínez, G.M.J.; López, B.M.; Morejón, R.Z.; Rubalcaba, Y. Actividad antimicrobiana de un extracto fluido al 80% de Schinus terebinthifolius raddi (copal). Rev. Cuba. Plantas Med. 2000, 5, 23–25. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962000000100006&lng=es&nrm=iso&tlng=es (accessed on 30 November 2023).
- Linares, E.; Bye, R. El copal en México. Biodiversitas 2008, 78, 8–11. [Google Scholar]
- Alcalde, M.T. Cosmética natural y ecológica. Regulación y clasific. Offarm 2008, 27, 96–104. [Google Scholar]
- Padilla, C.E.; Flores, V.M.; García, F.J.; Urzúa, E.E.; Lugo, C.E.; Carvajal, Z.G. Cosméticos y Cosmecéuticos en México. Salud Jalisco 2018, 2, 89–95. [Google Scholar]
- Anievas, A.L. Impacto Del Certificado Ecológico en la Cosmética Española. 2019. Available online: https://repositorio.comillas.edu/xmlui/handle/11531/27781 (accessed on 30 November 2023).
- Estrella, R.M.E. Elaboración de Un Jabón Líquido a Base de Saponinas de Quinua. (Chenopodium Quinoa Willd). 2021. Available online: http://dspace.espoch.edu.ec/handle/123456789/14758 (accessed on 30 November 2023).
- Instituto Nacional de Estadística y Geografía. Anuario Estadístico Y Geográfico de Puebla 2017; Puebla. 2017. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825094973.pdf (accessed on 30 November 2023).
- Rzedowski, J. capítulo 12. Bosque tropical caducifolio. In Vegetación de México; Rzedowski, J., Ed.; Comisión Nacional Para El Conocimiento Y Uso de la Biodiversidad: Tlalpan, México, 2006. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Arboles tropicales de México. In Manual Para la Identificación de Las Principales Especies, 3rd ed.; Fondo de Cultura Económica: Mexico City, Mexico, 2005; Available online: http://www.libros.unam.mx/arboles-tropicales-de-mexico-manual-para-la-identificacion-de-las-principales-especies-9789703216437-libro.html (accessed on 30 November 2023).
- García-Núñez, R.M.; Buendía-Espinoza, J.C.; del Carmen Arrazate-Jiménez, S.; del Carmen Martínez-Ochoa, E. Effects of copal resin extraction on the diversity and composition of species in tropical deciduous forests. Sci. Rep. 2023, 13, 4199. [Google Scholar] [CrossRef]
- Armijo, C.; Vicuña, E.; Romero, P.O.; Condorhuamán, C.; Hilario, B. Modelamiento y simulación del proceso de extracción de aceites esenciales mediante la destilación por arrastre con vapor. Rev. Peru. Química E Ing. Química 2012, 15, 19–27. Available online: https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4967 (accessed on 30 November 2023).
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug. Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Cedeño, A.; Moreira, C.; Muñoz, J.; Muñoz, A.; Pillasaguay, S.; Riera, M.A. Comparación de métodos de destilación para la obtención de aceite esencial de eucalipto. Rev. Colón Cienc. Tecnol. Y Neg. 2019, 6, 1–13. Available online: https://revistas.up.ac.pa/index.php/revista_colon_ctn/article/view/472 (accessed on 30 November 2023).
- Secretaría de Salud. Norma Oficial Mexicana Nom-259-SSA1-2022, Productos Y Servicios. Buenas Prácticas de Fabricación en Productos Cosméticos. 2022. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5657034&fecha=05/07/2022#gsc.tab=0 (accessed on 30 November 2023).
- Valenzuela, G.M.; Gruszycki, M.R.; Zamora, C.P.; Nuñez, M.B.; Chiappetta, D.A.; Giménez, M.C. Formulación de productos cosméticos con aceite de semillas de Cucurbita argyrosperma C. Huber. Rev. Colomb. De Cienc. Químico—Farm. 2020, 49, 159–170. [Google Scholar] [CrossRef]
- Secretaría de Salud. Norma Oficial Mexicana Nom-089-Ssa 1-1994, Bienes Y Servicios. Métodos Para la Determinación Del Contenido Microbiano en Productos de Belleza. 1994. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4724717&fecha=04/08/1994#gsc.tab=0 (accessed on 30 November 2023).
- Secretaría de Salud. NORMA Oficial Mexicana NOM-073-SSA1-2015, Estabilidad de Fármacos Y Medicamentos, Así Como De remedios Herbolarios. 2016. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5440183&fecha=07/06/2016#gsc.tab=0 (accessed on 30 November 2023).
- Melo, A.; Moncada, P. Propuesta Documental Para la Ejecución de Pruebas de Calidad Con Miras a Establecer Estabilidad Cosmética; Universidad De Ciencias Aplicadas y Ambientales: Bogotá, Colombia, 2016; Available online: https://repository.udca.edu.co/handle/11158/492 (accessed on 30 November 2023).
- Secretaría de Salud. Norma Oficial Mexicana Nom-039-Ssa I-1993, Productos de Perfumería Y Belleza. Determinación de Los íNdices de Irritación Ocular, Primaria Dérmica Y Sensibilización. 1994. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4698349&fecha=25/05/1994#gsc.tab=0 (accessed on 30 November 2023).
- Filaire, E.; Nachat, K.R.; Laporte, C.; Harmand, M.F.; Simon, M.; Poinsot, C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int. J. Cosmet. Sci. 2022, 44, 604–613. [Google Scholar] [CrossRef]
- Severiano, P.P. ¿Qué es y cómo se utiliza la evaluación sensorial? Inter Discip. 2019, 7, 47–68. [Google Scholar] [CrossRef]
- Ross, G. A perspective on the safety of cosmetic products: A position paper of the American Council on Science and Health. Int. J. Toxicol. 2006, 25, 269–277. [Google Scholar] [CrossRef] [PubMed]
- The R Foundation. What is R? Available online: https://www.r-project.org/about.html (accessed on 30 November 2023).
- Lee, J.; Kwon, K.H. The significant value of sustainable cosmetics fragrance in the spotlight after COVID-19. J. Cosmet. Dermatol. 2022, 21, 6540–6548. [Google Scholar] [CrossRef]
- Batres, C.; Kramer, S.S.; DeAngelis, C.G.; Russell, R. Examining the “cosmetics placebo effect”. PLoS ONE 2019, 14, e0210238. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.C.; Lin, J.S. Consumers’ Perception of Corporate Social Responsibility in the United States and China: A Study of Female Cosmetics Consumers. Int. J. Strateg. Commun. 2013, 7, 43–64. [Google Scholar] [CrossRef]
- Marie, C.; Cabut, S.; Vendittelli, F.; Sauvant, R.M.P. Changes in Cosmetics Use during Pregnancy and Risk Perception by Women. Int. J. Environ. Res. Public Health 2016, 13, 383. [Google Scholar] [CrossRef]
- Hunt, K.A.; Fate, J.; Dodds, B. Cultural and Social Influences On the Perception of Beauty: A Case Analysis of the Cosmetics Industry. J. Bus. Case Stud. (JBCS) 2011, 7, 5–23. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Arpaci, A.; Malowerschnig, B.; Sass, O.; Vacik, H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl. Geogr. 2014, 53, 258–270. [Google Scholar] [CrossRef]
- Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol Inf. 2017, 39, 32–44. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. Available online: https://cran.r-project.org/doc/Rnews/ (accessed on 30 November 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.r-project.org/ (accessed on 30 November 2023).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. In Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Percept Psychophys 1971, 9, 40–50. [Google Scholar] [CrossRef]
- Schmidt, A.; Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of full waveform lidar data in the wadden sea. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1614–1618. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Pochet, A. News on cosmetic product regulation. Ann Dermatol Venereol 2007, 134, 46–54. [Google Scholar] [CrossRef]
- Sarma, P.; Kumar, H.; Medhi, B. Cosmetovigilance in India: Need of the day. Indian J. Pharmacol. 2017, 49, 341–343. [Google Scholar] [CrossRef]
- Pauwels, M.; Rogiers, V. Safety evaluation of cosmetics in the EU: Reality and challenges for the toxicologist. Toxicol. Lett. 2004, 151, 7–17. [Google Scholar] [CrossRef]
- Almeida, A.; Sarmento, B.; Rodrigues, F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. Int. J. Pharm. 2017, 519, 178–185. [Google Scholar] [CrossRef]
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M.; El-Dahiyat, F.; Bisgwa, J.; Jamshed, S.; Shourrab, H.Y. Development and Delphi validation of instrument for the preparation of a GMP audit of a cosmetic contract manufacturer in the UAE. Sci. Rep. 2022, 12, 11265. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.M.; Lewis, K.M.; Spence, S.; Sadrieh, N. Regulation of Cosmetics in the United States. Dermatol. Clin. 2022, 40, 307–318. [Google Scholar] [CrossRef]
- Tayupanta, T.M. La Investigación en La Cosmética Natural; ABYA-YALA, Ecuador. 2015, p. 106. Available online: http://dspace.ups.edu.ec/handle/123456789/19015 (accessed on 30 November 2023).
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Valarezo, E.; Fábrega, M.J.; Rodríguez, L.M.J.; Sosa, L.; Calpena, A.C.; Mallandrich, M. Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. Plants 2022, 11, 3104. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Nema, N.K.; Maity, N.; Sarkar, B.K. Phytochemical and therapeutic potential of cucumber. Fitoterapia 2013, 84, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Spanidi, E.; Athanasopoulou, S.; Liakopoulou, A.; Chaidou, A.; Hatziantoniou, S.; Gardikis, K. Royal Jelly Components Encapsulation in a Controlled Release System-Skin Functionality, and Biochemical Activity for Skin Applications. Pharmaceuticals 2022, 15, 907. [Google Scholar] [CrossRef]
- Uthaibutra, V.; Kaewkod, T.; Prapawilai, P.; Pandith, H.; Tragoolpua, Y. Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. Molecules 2023, 28, 996. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.J.; Bálsamo, E.C.; Machado, F.R.; Poetini, M.R.; Bortolotto, V.C.; Araújo, S.M.; Londero, L.; Boeira, S.P.; Sehn, C.P.; de Gomes, M.G.; et al. Anti-inflammatory effect of Arnica montana in a UVB radiation-induced skin-burn model in mice. Cutan Ocul. Toxicol. 2020, 39, 126–133. [Google Scholar] [CrossRef]
- Sherban, A.; Wang, J.V.; Geronemus, R.G. Growing role for arnica in cosmetic dermatology: Lose the bruise. J. Cosmet. Dermatol. 2021, 20, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, K.; Manse, Y.; Yoneda, A.; Takeda, S.; Shimizu, N.; Yamada, W.; Morikawa, T.; Shimoda, H. Anti-melanogenic effects of glucosylceramides and elasticamide derived from rice oil by-products in melanoma cells, melanocytes, and human skin. J. Food Biochem. 2022, 46, e14353. [Google Scholar] [CrossRef]
- Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, F.; Nejatbakhsh, F. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence. Avicenna J. Phytomed. 2017, 7, 206. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511972/ (accessed on 29 October 2023). [PubMed]
- Rigo, L.A.; da Silva, C.R.; de Oliveira, S.M.; Cabreira, T.N.; da Silva, C.d.B.; Ferreira, J.; Beck, R.C. Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur. J. Pharm. Biopharm. 2015, 93, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.L. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. J. Investig. Dermatol. 2017, 137, 1213–1214. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Araviiskaia, E.; Berardesca, E.; Bieber, T.; Gontijo, G.; Sanchez, V.M.; Marrot, L.; Chuberre, B.; Dreno, B. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1496–1505. [Google Scholar] [CrossRef]
- Verdier, S.S.; Bonté, F. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Lanzziano, A.P.A.; Mora, H.C.E. Efecto de las fragancias en el desempeño sensorial de productos cosméticos tipo champú. Rev. Colomb. Cienc. Quim. Farm 2013, 42, 260–283. [Google Scholar]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural Oils for Skin-Barrier Repair: Ancient Compounds Now Backed by Modern Science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef]
- Batres, C.; Porcheron, A.; Latreille, J.; Roche, M.; Morizot, F.; Russell, R. Cosmetics increase skin evenness: Evidence from perceptual and physical measures. Ski. Res. Technol. 2019, 25, 672–676. [Google Scholar] [CrossRef]
Interpretation | Cohen’s d (t-Test) | r (Wilcoxon Signed-Rank Test) |
---|---|---|
No effect | 0.00 to <0.20 | 0.00 to <0.10 |
Small effect | 0.20 to <0.50 | 0.10 to <0.30 |
Moderate effect | 0.50 to <0.80 | 0.30 to <0.50 |
Large effect | ≥0.80 | ≥0.50 |
Parameter | Batches | ||||
---|---|---|---|---|---|
G2802231 | G0103232 | G0203233 | G13032023 | GN16032023 GB16032023 | |
Characteristic Odor | Compliance | Compliance | Compliance | Compliance | Compliance |
Color (light brown) | Compliance | Compliance | Compliance | Compliance | Compliance |
pH (6.5–7.5) | 6.5 | 6.74 | 6.7 | 6.7 | 6.60 6.58 |
Viscosity (cP) 60,000–75,000 | 70,000 | 70,020 | 70,060 | 70,000 | 70,010 70,020 |
Parameter | Batches | ||||
---|---|---|---|---|---|
C2802231 | C0103232 | C0203233 | C13032023 | CN16032023 CB16032023 | |
Characteristic Odor | Compliance | Compliance | Compliance | Compliance | Compliance |
Color (white) | Compliance | Compliance | Compliance | Compliance | Compliance |
pH (6.5–7) | 6.51 | 6.53 | 6.52 | 6.51 | 6.68 6.61 |
Viscosity (cP) 60,000–75,000 | 65,010 | 65,030 | 65,000 | 65,020 | 65,010 65,030 |
Culture Medium Used | Batches | Incubation Temperature | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient Agar (NA) | C13032023 | 30 °C ± 2 | ||||||||||||||||||
Potato dextrose agar (SPD) | C13032023 | 25 °C ± 2 | ||||||||||||||||||
A. Aerobic Mesophiles (AN) | ||||||||||||||||||||
Date | 25 September 2023 | 26 September 2023 | 29 September 2023 | |||||||||||||||||
Day→ Sample ↓ | 1 | 2 | 5 | |||||||||||||||||
M1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
M2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
B. Fungi and Yeasts (APD) | ||||||||||||||||||||
Date | 25 September 2023 | 26 September 2023 | 29 September 2023 | 03 October 2023 | ||||||||||||||||
Day→ Sample ↓ | 1 | 2 | 5 | 7 | ||||||||||||||||
M1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
M2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Culture Medium Used | Batches | Incubation Temperature | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient Agar (NA) | G13032023 | 30 °C ± 2 | ||||||||||||||||||
Potato dextrose agar (SPD) | G13032023 | 25 °C ± 2 | ||||||||||||||||||
A. Aerobic Mesophiles (AN) | ||||||||||||||||||||
Date | 25 September 2023 | 26 September 2023 | 29 September 2023 | |||||||||||||||||
Day→ Sample ↓ | 1 | 2 | 5 | |||||||||||||||||
M1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
M2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
B. Fungi and Yeasts (APD) | ||||||||||||||||||||
Date | 25 September 2023 | 26 September 2023 | 29 September 2023 | 3 October 2023 | ||||||||||||||||
Day→ Sample ↓ | 1 | 2 | 5 | 7 | ||||||||||||||||
M1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
M2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Face Cream | Body Gel | ||
---|---|---|---|
Average—day 3 | 0.075 | Average—day 3 | 0.025 |
Average—day 5 | 0.05 | Average—day 5 | 0 |
Average—day 7 | 0.075 | Average—day 7 | 0 |
Final average | 0.067 | Final average | 0.0083 |
Interpretation | Suitable for human use | Interpretation | Suitable for human use |
Monitoring of Body Gel’s Physicochemical Parameters during Accelerated Stability Testing. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Batches | G2802231 | G0103232 | G0203233 | |||||||||
Test→ Sample ↓ | Odor | Color | pH | Viscosity * | Odor | Color | pH | Viscosity * | Odor | Color | pH | Viscosity * |
18 May 2023 | C | Ca | 6.50 | 70,000 | C | Ca | 6.74 | 70,020 | C | Ca | 6.70 | 70,060 |
25 May 2023 | C | Ca | 6.51 | 70,020 | C | Ca | 6.70 | 70,000 | C | Ca | 6.70 | 70,050 |
1 June 2023 | C | Ca | 6.52 | 70,000 | C | Ca | 6.72 | 70,030 | C | Ca | 6.72 | 70,065 |
8 June 2023 | C | Ca | 6.50 | 70,030 | C | Ca | 6.70 | 70,000 | C | Ca | 6.71 | 70,000 |
19 June 2023 | C | Ca | 6.50 | 70,000 | C | Ca | 6.73 | 70,010 | C | Ca | 6.72 | 70,040 |
19 July 2023 | C | Ca | 6.53 | 70,010 | C | Ca | 6.73 | 70,000 | C | Ca | 6.74 | 70,000 |
18 August 2023 | C | Ca | 6.50 | 70,050 | C | Ca | 6.72 | 70,020 | C | Ca | 6.70 | 70,050 |
Monitoring of Facial Cream’s Physicochemical Parameters during Accelerated Stability Testing. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Batches | C2802231 | C0103232 | C0203233 | |||||||||
Test→ Sample ↓ | Odor | Color | pH | Viscosity * | Odor | Color | pH | Viscosity * | Odor | Color | pH | Viscosity * |
18 May 2023 | C | B | 6.51 | 65,000 | C | B | 6.53 | 65,030 | C | B | 6.52 | 65,010 |
25 May 2023 | C | B | 6.50 | 65,010 | C | B | 6.53 | 65,050 | C | B | 6.52 | 65,010 |
1 June 2023 | C | B | 6.52 | 65,000 | C | B | 6.52 | 65,010 | C | B | 6.52 | 65,025 |
8 June 2023 | C | B | 6.52 | 65,030 | C | B | 6.50 | 65,050 | C | B | 6.50 | 65,000 |
19 June 2023 | C | B | 6.50 | 65,050 | C | B | 6.53 | 65,010 | C | B | 6.50 | 65,030 |
19 July 2023 | C | B | 6.51 | 65,010 | C | B | 6.52 | 65,000 | C | B | 6.51 | 65,000 |
18 August 2023 | C | B | 6.52 | 65,050 | C | B | 6.52 | 65,020 | C | B | 6.50 | 65,020 |
Face Cream | Persons | |||
---|---|---|---|---|
Number | Percentage | |||
Yes | No | Yes | No | |
Cosmetic use | 40 | 20 | 67% | 33% |
Use of the product correctly | 44 | 16 | 73% | 27% |
Improved hydration | 54 | 6 | 90% | 10% |
Improved elasticity | 30 | 30 | 50% | 50% |
Improved oiliness | 32 | 28 | 53% | 47% |
Improved smoothness | 54 | 6 | 90% | 10% |
Improved appearance | 46 | 14 | 77% | 23% |
Potential customers | 56 | 4 | 93% | 7% |
Natural | Commercial | |||
The choice between natural and commercial cosmetics | 54 | 6 | 90% | 10% |
Body Gel | Persons | |||
---|---|---|---|---|
Number | Percentage | |||
Yes | No | Yes | No | |
Cosmetic use | 40 | 20 | 67% | 33% |
Use of the product correctly | 44 | 16 | 73% | 27% |
Improved hydration | 40 | 20 | 67% | 33% |
Improved elasticity | 44 | 16 | 73% | 27% |
Improved oiliness | 54 | 6 | 90% | 10% |
Improved smoothness | 30 | 30 | 50% | 50% |
Improved appearance | 32 | 28 | 53% | 47% |
Potential customers | 56 | 4 | 93% | 7% |
Natural | Commercial | |||
The choice between natural and commercial cosmetics | 54 | 6 | 90% | 10% |
Contrast | Hand | Face | ||||
---|---|---|---|---|---|---|
Left | Right | |||||
r/d | Interpretation | r/d | Interpretation | r/d | Interpretation | |
Hydration: with and without product | 0.62 W | Large effect | 0.72 W | Large effect | 0.58 W | Large effect |
Hydration: after one month of use with and without product | 0.80 W | Large effect | 0.69 W | Large effect | 0.80 W | Large effect |
Hydration: without vs. without product after one month of use | 0.53 W | Large effect | 0.75 W | Large effect | 0.56 W | Large effect |
Oil percentage: with and without product | 0.23 W | Small effect | 0.15 W | Small effect | 0.25 W | Small effect |
Oil percentage per month of use: with and without product | 0.35 W | Moderate effect | 0.47 W | Moderate effect | 0.37 W | Moderate effect |
Oil percentage per month of use: without vs. without product at one month of use | 0.45 W | Moderate effect | 0.36 W | Moderate effect | 0.32 t | Small effect |
Elasticity: with vs. without product | 0.65 W | Large effect | 0.63 W | Large effect | 0.59 W | Large effect |
Elasticity at one month of use: with vs. without product | 0.73 W | Large effect | 0.63 W | Large effect | 0.83 W | Large effect |
Elasticity: without vs. without product at one month of use | 0.04 W | No effect | 0.25 W | Small | 0.67 W | Large effect |
Training Database | Good | Regular | Bad |
---|---|---|---|
Good | 37 | 2 | 0 |
Regular | 0 | 3 | 0 |
Bad | 0 | 0 | 0 |
Validation Database | Good | Regular | Bad |
Good | 15 | 3 | 0 |
Regular | 0 | 0 | 0 |
Bad | 0 | 0 | 0 |
Training Database | Good | Regular | Bad |
---|---|---|---|
Good | 37 | 3 | 0 |
Regular | 0 | 2 | 0 |
Bad | 0 | 0 | 0 |
Validation Database | Good | Regular | Bad |
Good | 15 | 3 | 0 |
Regular | 0 | 0 | 0 |
Bad | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymundo-Rodríguez, J.; Buendía-Espinoza, J.C.; García-Núñez, R.M.; Martínez-Ochoa, E.d.C. Evaluation of Two Cosmetic Products Formulated with Essential Oil Extracted from Copal Resin Obtained in Agroforestry Systems. Cosmetics 2024, 11, 169. https://doi.org/10.3390/cosmetics11050169
Raymundo-Rodríguez J, Buendía-Espinoza JC, García-Núñez RM, Martínez-Ochoa EdC. Evaluation of Two Cosmetic Products Formulated with Essential Oil Extracted from Copal Resin Obtained in Agroforestry Systems. Cosmetics. 2024; 11(5):169. https://doi.org/10.3390/cosmetics11050169
Chicago/Turabian StyleRaymundo-Rodríguez, Jorge, Julio César Buendía-Espinoza, Rosa María García-Núñez, and Elisa del Carmen Martínez-Ochoa. 2024. "Evaluation of Two Cosmetic Products Formulated with Essential Oil Extracted from Copal Resin Obtained in Agroforestry Systems" Cosmetics 11, no. 5: 169. https://doi.org/10.3390/cosmetics11050169
APA StyleRaymundo-Rodríguez, J., Buendía-Espinoza, J. C., García-Núñez, R. M., & Martínez-Ochoa, E. d. C. (2024). Evaluation of Two Cosmetic Products Formulated with Essential Oil Extracted from Copal Resin Obtained in Agroforestry Systems. Cosmetics, 11(5), 169. https://doi.org/10.3390/cosmetics11050169