Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions Containing Citronella Oil and Caffeic Acid Phenethyl Ester (CAPE)
2.1.1. Preparation of Pure Xanthan Gum Emulsion
2.1.2. Emulsion Containing Citronella Essential Oil
2.1.3. Solution Containing CAPE
2.1.4. Artificial Saliva
2.2. Microdilution Assays in Broth for Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
2.3. Biofilm Assay
2.3.1. Experimental Groups
2.3.2. Strain, Growth Condition, Biofilm Formation Assay
2.4. Ex Vivo Study of the Irritation Potential of the Solutions: Chorioallantoic Membrane Test of Chicken Eggs
2.5. Antioxidant Activity
2.5.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.5.2. DPPH-Scavenging Assay
2.6. Statistical Analysis
3. Results
3.1. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
3.2. Biofilm Assay
3.3. Assay of the Chorioallantoic Membrane of Chicken Embryo Egg (HET-CAM)
3.4. Antioxidant Potential
3.4.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.4.2. 1,1-Diphenyl-2-picrylhydrazil Radical (DPPH) Scavenging Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denning, D.W. Global Incidence and Mortality of Severe Fungal Disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Milho, C.; Liberal, Â.; Silva, J.; Fonseca, C.; Barbosa, A.; Ferreira, I.C.F.R.; Alves, M.J.; Barros, L. Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics 2021, 10, 1142. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Javed, F.; Samaranayake, L.P.; Romanos, G.E. Treatment of Oral Fungal Infections Using Antimicrobial Photodynamic Therapy: A Systematic Review of Currently Available Evidence. Photochem. Photobiol. Sci. 2014, 13, 726–734. [Google Scholar] [CrossRef]
- Kreulen, I.A.M.; de Jonge, W.J.; van den Wijngaard, R.M.; van Thiel, I.A.M. Candida spp. in Human Intestinal Health and Disease: More than a Gut Feeling. Mycopathologia 2023, 188, 845–862. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Mechanism of Candida Pathogenesis: Revisiting the Vital Drivers. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1797–1819. [Google Scholar] [CrossRef]
- Staniszewska, M. Virulence Factors in Candida Species. Curr. Protein Pept. Sci. 2020, 21, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Janus, M.M.; Willems, H.M.E.; Krom, B.P. Candida albicans in Multispecies Oral Communities; A Keystone Commensal? Adv. Exp. Med. Biol. 2016, 931, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef]
- Perea, S.; López-Ribot, J.L.; Kirkpatrick, W.R.; McAtee, R.K.; Santillán, R.A.; Martínez, M.; Calabrese, D.; Sanglard, D.; Patterson, T.F. Prevalence of Molecular Mechanisms of Resistance to Azole Antifungal Agents in Candida albicans Strains Displaying High-Level Fluconazole Resistance Isolated from Human Immunodeficiency Virus-Infected Patients. Antimicrob. Agents Chemother. 2001, 45, 2676–2684. [Google Scholar] [CrossRef]
- Berretta, A.A.; de Castro, P.A.; Cavalheiro, A.H.; Fortes, V.S.; Bom, V.P.; Nascimento, A.P.; Marquele-Oliveira, F.; Pedrazzi, V.; Ramalho, L.N.Z.; Goldman, G.H. Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection. Evid. Based Complement. Altern. Med. 2013, 2013, 641480. [Google Scholar] [CrossRef]
- Brito, L.C.F.; Dias, L.M.F.; Pereira, G.S.S.; Alves, N.B.; Rocha, M.d.S.; Junior, J.F.d.S.; Barros, V.C.; Muratori, M.C.S. Analysis of the Chemical Composition, Antifungal Activity and Larvicidal Action against Aedes Aegypti Larvae of the Essential Oil Cymbopogon nardus. Res. Soc. Dev. 2021, 10, e543101321452. [Google Scholar] [CrossRef]
- Kusumaningrum, H.P.; Zainuri, M.; Endrawati, H.; Purbajanti, E.D. Characterization of Citronella Grass Essential Oil of Cymbopogon winterianus from Batang Region, Indonesia. J. Phys. Conf. Ser. 2020, 1524, 012057. [Google Scholar] [CrossRef]
- Nakahara, K.; Alzoreky, N.S.; Yoshihashi, T.; Nguyen, H.T.T.; Trakoontivakorn, G. Chemical Composition and Antifungal Activity of Essential Oil from Cymbopogon nardus (Citronella Grass). JARQ 2013, 37, 249–252. [Google Scholar] [CrossRef]
- Wei, L.S.; Wee, W. Chemical Composition and Antimicrobial Activity of Cymbopogon nardus Citronella Essential Oil against Systemic Bacteria of Aquatic Animals. Iran. J. Microbiol. 2013, 5, 147–152. [Google Scholar]
- Guandalini Cunha, B.; Duque, C.; Sampaio Caiaffa, K.; Massunari, L.; Araguê Catanoze, I.; Dos Santos, D.M.; de Oliveira, S.H.P.; Guiotti, A.M. Cytotoxicity and Antimicrobial Effects of Citronella Oil (Cymbopogon nardus) and Commercial Mouthwashes on S. Aureus and C. Albicans Biofilms in Prosthetic Materials. Arch. Oral Biol. 2020, 109, 104577. [Google Scholar] [CrossRef]
- Guiotti, A.M.; Cunha, B.G.; Paulini, M.B.; Goiato, M.C.; Dos Santos, D.M.; Duque, C.; Caiaffa, K.S.; Brandini, D.A.; Narciso De Oliveira, D.T.; Brizzotti, N.S.; et al. Antimicrobial Activity of Conventional and Plant-Extract Disinfectant Solutions on Microbial Biofilms on a Maxillofacial Polymer Surface. J. Prosthet. Dent. 2016, 116, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-Y.; Ju, X.-C.; Li, Y.; Zeng, P.-M.; Wu, J.; Zhou, Y.-Y.; Shen, L.-B.; Dong, J.; Chen, Y.-J.; Luo, Z.-G. Generation of Vascularized Brain Organoids to Study Neurovascular Interactions. eLife 2022, 11, e76707. [Google Scholar] [CrossRef]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic Acid Phenethyl Ester, a Promising Component of Propolis with a Plethora of Biological Activities: A Review on Its Anti-Inflammatory, Neuroprotective, Hepatoprotective, and Cardioprotective Effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef]
- Ayenew, K.D.; Sewale, Y.; Amare, Y.E.; Ayalew, A. Acute and Subacute Toxicity Study of Essential Oil of Cymbopogon Martini in Mice. J. Toxicol. 2022, 2022, 1995578. [Google Scholar] [CrossRef] [PubMed]
- Mittal, P.; Gokhale, S.T.; Manjunath, S.; Al-Qahtani, S.M.; Magbol, M.A.; Nagate, R.R.; Tikare, S.; Chaturvedi, S.; Agarwal, A.; Venkataram, V. Comparative Evaluation of Locally Administered 2% Gel Fabricated from Lemongrass Polymer and 10% Doxycycline Hyclate Gel as an Adjunct to Scaling and Root Planing in the Treatment of Chronic Periodontitis-A Randomized Controlled Trial. Polymers 2022, 14, 2766. [Google Scholar] [CrossRef]
- Paracatu, L.C.; Faria, C.M.Q.G.; Quinello, C.; Rennó, C.; Palmeira, P.; Zeraik, M.L.; da Fonseca, L.M.; Ximenes, V.F. Caffeic Acid Phenethyl Ester: Consequences of Its Hydrophobicity in the Oxidative Functions and Cytokine Release by Leukocytes. Evid. -Based Complement. Altern. Med. 2014, 2014, e793629. [Google Scholar] [CrossRef] [PubMed]
- Michaluart, P.; Masferrer, J.L.; Carothers, A.M.; Subbaramaiah, K.; Zweifel, B.S.; Koboldt, C.; Mestre, J.R.; Grunberger, D.; Sacks, P.G.; Tanabe, T.; et al. Inhibitory Effects of Caffeic Acid Phenethyl Ester on the Activity and Expression of Cyclooxygenase-2 in Human Oral Epithelial Cells and in a Rat Model of Inflammation. Cancer Res. 1999, 59, 2347–2352. [Google Scholar] [PubMed]
- Bjørklund, G.; Storchylo, O.; Peana, M.; Hangan, T.; Lysiuk, R.; Lenchyk, L.; Koshovyi, O.; Antonyak, H.; Hudz, N.; Chirumbolo, S. Caffeic Acid Phenethyl Ester: A Potential Therapeutic Cancer Agent? Curr. Med. Chem. 2024, 31, 6760–6774. [Google Scholar] [CrossRef] [PubMed]
- Kazancioglu, H.O.; Bereket, M.C.; Ezirganli, S.; Aydin, M.S.; Aksakalli, S. Effects of Caffeic Acid Phenethyl Ester on Wound Healing in Calvarial Defects. Acta Odontol. Scand. 2015, 73, 21–27. [Google Scholar] [CrossRef]
- Vasconcelos, D.N.d.; Lima, A.N.; Philot, E.A.; Scott, A.L.; Boza, I.A.F.; Souza, A.R.d.; Morgon, N.H.; Ximenes, V.F. Methyl Divanillate: Redox Properties and Binding Affinity with Albumin of an Antioxidant and Potential NADPH Oxidase Inhibitor. RSC Adv. 2019, 9, 19983–19992. [Google Scholar] [CrossRef]
- Mazo, G.d.S.; Fracasso, J.A.R.; da Costa, L.T.S.; Farias Ximenes, V.; Zoppe, N.A.; Viel, A.M.; Guarnier, L.P.; Silva, B.d.C.; de Almeida, L.V.C.; dos Santos, L. Development of an Antioxidant, Anti-Aging, and Photoprotective Phytocosmetic from Discarded Agave sisalana Perrine Roots. Cosmetics 2024, 11, 104. [Google Scholar] [CrossRef]
- De Toledo, L.G.; Ramos, M.A.D.S.; Spósito, L.; Castilho, E.M.; Pavan, F.R.; Lopes, É.D.O.; Zocolo, G.J.; Silva, F.A.N.; Soares, T.H.; Dos Santos, A.G.; et al. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species. Int. J. Mol. Sci. 2016, 17, 1252. [Google Scholar] [CrossRef]
- de Barros, P.P.; Rossoni, R.D.; Garcia, M.T.; Kaminski, V.d.L.; Loures, F.V.; Fuchs, B.B.; Mylonakis, E.; Junqueira, J.C. The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Front. Cell Infect. Microbiol. 2021, 11, 700305. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Filho, B.P.D. Screening of Some Plants Used in the Brazilian Folk Medicine for the Treatment of Infectious Diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Anokwah, D.; Asante-Kwatia, E.; Asante, J.; Obeng-Mensah, D.; Danquah, C.A.; Amponsah, I.K.; Ameyaw, E.O.; Biney, R.P.; Obese, E.; Oberer, L.; et al. Antibacterial, Resistance Modulation, Anti-Biofilm Formation, and Efflux Pump Inhibition Properties of Loeseneriella africana (Willd.) N. Halle (Celastraceae) Stem Extract and Its Constituents. Microorganisms 2023, 12, 7. [Google Scholar] [CrossRef]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef]
- Almeida, L.D.F.D.D.; Paula, J.F.D.; Almeida, R.V.D.D.; Williams, D.W.; Hebling, J.; Cavalcanti, Y.W. Efficacy of Citronella and Cinnamon Essential Oils on Candida albicans Biofilms. Acta Odontol. Scand. 2016, 74, 393–398. [Google Scholar] [CrossRef]
- Riquelme, N.; Robert, P.; Troncoso, E.; Arancibia, C. Influence of the Particle Size and Hydrocolloid Type on Lipid Digestion of Thickened Emulsions. Food Funct. 2020, 11, 5955–5964. [Google Scholar] [CrossRef] [PubMed]
- Espert, M.; Salvador, A.; Sanz, T. Rheological and Microstructural Behaviour of Xanthan Gum and Xanthan Gum-Tween 80 Emulsions during in vitro Digestion. Food Hydrocoll. 2019, 95, 454–461. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Fatima, Z.; Hameed, S. Citronellal-Induced Disruption of Membrane Homeostasis in Candida albicans and Attenuation of Its Virulence Attributes. Rev. Soc. Bras. Med. Trop. 2016, 49, 465–472. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, Y.; Wang, Z.; Li, L.; Zheng, Y.; Häkkinen, L.; Haapasalo, M. In Vitro Cytotoxicity Evaluation of a Novel Root Repair Material. J. Endod. 2013, 39, 478–483. [Google Scholar] [CrossRef]
- Shahina, Z.; Al Homsi, R.; Price, J.D.W.; Whiteway, M.; Sultana, T.; Dahms, T.E.S. Rosemary Essential Oil and Its Components 1,8-Cineole and α-Pinene Induce ROS-Dependent Lethality and ROS-Independent Virulence Inhibition in Candida albicans. PLoS ONE 2022, 17, e0277097. [Google Scholar] [CrossRef]
- Ahmad, A.; Viljoen, A. The in Vitro Antimicrobial Activity of Cymbopogon Essential Oil (Lemon Grass) and Its Interaction with Silver Ions. Phytomedicine 2015, 22, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Alfarrayeh, I.; Pollák, E.; Czéh, Á.; Vida, A.; Das, S.; Papp, G. Antifungal and Anti-Biofilm Effects of Caffeic Acid Phenethyl Ester on Different Candida Species. Antibiotics 2021, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, K.; Hang, C. Caffeic Acid Phenethyl Ester Synergistically Enhances the Antifungal Activity of Fluconazole against Resistant Candida albicans. Phytomedicine 2018, 40, 55–58. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Malik, A.; Ahmad, I. Anti-Candidal Activity of Essential Oils Alone and in Combination with Amphotericin B or Fluconazole against Multi-Drug Resistant Isolates of Candida albicans. Med. Mycol. 2012, 50, 33–42. [Google Scholar] [CrossRef]
- Noreen, S.; Sumrra, S.H.; Chohan, Z.H.; Mustafa, G.; Imran, M. Synthesis, Characterization, Molecular Docking and Network Pharmacology of Bioactive Metallic Sulfonamide-Isatin Ligands against Promising Drug Targets. J. Mol. Struct. 2023, 1277, 134780. [Google Scholar] [CrossRef]
- Rivero, M.N.; Lenze, M.; Izaguirre, M.; Pérez Damonte, S.H.; Aguilar, A.; Wikinski, S.; Gutiérrez, M.L. Comparison between HET-CAM protocols and a product use clinical study for eye irritation evaluation of personal care products including cosmetics according to their surfactant composition. Food Chem. Toxicol. 2021, 153, 112229. [Google Scholar] [CrossRef] [PubMed]
- Steiling, W.; Bracher, M.; Courtellemont, P.; de Silva, O. The HET-CAM, a Useful In Vitro Assay for Assessing the Eye Irritation Properties of Cosmetic Formulations and Ingredients. Toxicol Vitr. 1999, 13, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Bagley, D.M.; Waters, D.; Kong, B.M. Development of a 10-Day Chorioallantoic Membrane Vascular Assay as an Alternative to the Draize Rabbit Eye Irritation Test. Food Chem. Toxicol. 1994, 32, 1155–1160. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Sumrra, S.H.; Mushtaq, F.; Ahmad, F.; Hussain, R.; Zafar, W.; Imran, M.; Zafar, M.N. Coordination Behavior, Structural, Statistical and Theoretical Investigation of Biologically Active Metal-Based Isatin Compounds. Chem. Pap. 2022, 76, 3705–3727. [Google Scholar] [CrossRef]
- Otan Özden, F.; Lütfioğlu, M.; Demir, E.; Bilgici, B. Antioxidant Effect of Caffeic Acid Phenethyl Ester in Experimentally Induced Periodontitis. Clin. Oral. Investig. 2021, 25, 4959–4966. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Coulibaly, A.Y.; Djigma, F.W.; Nagalo, B.M.; Baron, S.; Figueredo, G.; Lobaccaro, J.-M.A.; Simpore, J. Chemical Composition, Antioxidant, Anti-Inflammatory and Antiproliferative Activities of the Essential Oil of Cymbopogon nardus, a Plant Used in Traditional Medicine. Biomol. Concepts 2020, 11, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-J.; Lim, H.W.; Kim, K.; Kim, K.-M.; Cho, S.; Chae, S.-W. Effect of Caffeic Acid Phenethyl Ester (CAPE) on H2O2 Induced Oxidative and Inflammatory Responses in Human Middle Ear Epithelial Cells. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 675–679. [Google Scholar] [CrossRef] [PubMed]
Groups | Treatments |
---|---|
NC | NEGATIVE CONTROL |
PC | POSITIVE CONTROL (0.12% CHLORHEXIDINE) |
CGX | XANTHAN GUM CONTROL |
CGD | CAPE CONTROL (XANTHAN GUM + DMSO) |
CITRO I | Citronella Essential Oil 5 mg/mL (10× CFM) |
CITRO II | Citronella Essential Oil 2.5 mg/mL (5× CFM) |
CITRO III | Citronella Essential Oil 1.25 mg/mL (2.5× CFM) |
CAPE I | CAPE 0.31 mg/mL (10× CFM) |
CAPE II | CAPE 0.15 mg/mL (5× CFM) |
CAPE III | CAPE 0.0775 mg/mL (2.5× CFM) |
CAPE I + CTRO I | CAPE (0.31 mg/mL) + CITRO (5 mg/mL) |
CAPE II + CITRO II | CAPE (0.15 mg/mL) + CITRO (2.5 mg/mL) |
CAPE III + CITRO III | CAPE (0.0775 mg/mL) + CITRO (1.25 mg/mL) |
CAPE IV + CITRO IV | CAPE (0.038 mg/mL) + CITRO (0.625 mg/mL) |
Groups | Treatments |
---|---|
NC | Negative control (0.9% physiological saline solution) |
PC | Positive control (0.12% chlorhexidine) |
PC2 | Positive control 2 (0.1N sodium hydroxide) |
CGX | Xanthan gum control |
CGD | CAPE control (xanthan gum and DMSO) |
CITRO II | Citronella 2.5 mg/mL (5× MFC) |
CITRO III | Citronella 1.25 mg/mL (2.5× MFC) |
CAPE II | CAPE 0.15 mg/mL (5× CFM) |
CAPE III + CITRO III | CAPE (0.0775 mg/mL) + CITRO (1.25 mg/mL) |
CAPE IV + CITRO IV | CAPE (0.038 mg/mL) + CITRO (0.625 mg/mL) |
Effects | Scores | ||
---|---|---|---|
Less than 30 s | Between 30 and 60 s | Between 60 and 300 s | |
Hyperemia | 5 | 3 | 1 |
Bleeding | 7 | 5 | 3 |
Coagulation | 9 | 7 | 5 |
Final Classification of the Degree of Irritation of the Solutions Based on Irritative Phenomena | Mean of Grading Values |
---|---|
Non-irritant (NI) | 0.0–0.99 |
Slight irritant (SI) | 1.0–4.99 |
Moderate irritant (MI) | 5.0–8.99 |
Highly irritating (HI) | 9.0–21 |
Treatments | Hours | MIC | MFC |
---|---|---|---|
Citronella | 24 h | 0.25 mg/mL | 0.5 mg/mL |
48 h | 0.25 mg/mL | 0.5 g/mL | |
CAPE | 24 h | 0.0156 mg/mL | 0.031 mg/mL |
48 h | 0.0156 mg/mL | 0.031 mg/mL |
Treatments | Grade Average | Final Rating |
---|---|---|
NC | 0.00 | NI |
PC | 0.00 | NI |
PC2 | 21.00 | HI |
CGX | 0.00 | NI |
CGD | 1.0 * | SI |
CITRO II | 0.33 | NI |
CITRO III | 0.00 | NI |
CAPE II | 0.00 | NI |
CAPE III + CITRO III | 1.0 * | SI |
CAPE IV + CITRO IV | 0.33 | NI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolim, P.A.d.S.; Catanoze, I.A.; Fracasso, J.A.R.; Barbosa, D.B.; dos Santos, L.; Ximenes, V.F.; Guiotti, A.M. Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). Cosmetics 2024, 11, 162. https://doi.org/10.3390/cosmetics11050162
Rolim PAdS, Catanoze IA, Fracasso JAR, Barbosa DB, dos Santos L, Ximenes VF, Guiotti AM. Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). Cosmetics. 2024; 11(5):162. https://doi.org/10.3390/cosmetics11050162
Chicago/Turabian StyleRolim, Pedro Antônio de Souza, Isabela Araguê Catanoze, Julia Amanda Rodrigues Fracasso, Debora Barros Barbosa, Lucineia dos Santos, Valdecir Farias Ximenes, and Aimée Maria Guiotti. 2024. "Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE)" Cosmetics 11, no. 5: 162. https://doi.org/10.3390/cosmetics11050162
APA StyleRolim, P. A. d. S., Catanoze, I. A., Fracasso, J. A. R., Barbosa, D. B., dos Santos, L., Ximenes, V. F., & Guiotti, A. M. (2024). Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). Cosmetics, 11(5), 162. https://doi.org/10.3390/cosmetics11050162