Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products
Abstract
:1. Introduction
2. Nanotechnology
3. Nanotechnology in Skincare Products
4. Nanomaterials Used in Skincare Products
4.1. Liposomes in Personal Care Products
4.2. Nanoemulsions in Personal Care Products
4.3. Lipid Nanoparticles in Personal Care Products
4.4. Nanoparticles in Personal Care Products
4.5. Nanocapsules in Personal Care Products
4.6. Fullerenes in Personal Care Products
4.7. Nanocrystals in Personal Care Products
4.8. Niosomes in Personal Care Products
4.9. Dendrimers in Personal Care Products
4.10. Clay Minerals in Personal Care Products
4.11. Cubosomes in Personal Care Products
4.12. Nanospheres in Personal Care Products
5. Unique Features of Nanomaterials in Skincare Products
5.1. Key Features of Solid Nanoparticles in Personal Care Products
5.2. Key Features of Lipid Nanoparticles in Personal Care Products
5.3. Key Features of Liposomes in Personal Care Products
5.4. Key Features of Nanoemulsions in Personal Care Products
5.5. Key Features of Dendrimers in Personal Care Products
5.6. Key Features of Niosomes in Personal Care Products
5.7. Key Features of Cubosomes in Personal Care Products
5.8. Key Features of Nanocapsules in Personal Care Products
5.9. Key Features of Nanocrystals in Personal Care Products
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, L.M.; Dewan, K.; Bronaugh, R.L. Nanotechnology in cosmetics. Food Chem. Toxicol. 2015, 85, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Yadwade, R.; Gharpure, S.; Ankamwar, B. Nanotechnology in cosmetics pros and cons. Nano Express 2021, 2, 022003. [Google Scholar] [CrossRef]
- Raj, S.; Jose, S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sivasankar, M.; Kumar, B.P. Role of Nanoparticles in Drug Delivery System. Int. J. Res. Pharm. Biomed. Sci. 2010, 1, 41–66. [Google Scholar]
- Taylor, P.; Singh, P.; Nanda, A. Nanotechnology in cosmetics: A boon or. Toxicol. Environ. Chem. 2012, 94, 1467–1479. [Google Scholar] [CrossRef]
- Hameed, A.; Fatima, G.R.; Malik, K.; Muqadas, A.; Fazal-ur-Rehman, M. Scope of Nanotechnology in Cosmetics: Dermatology and Skin Care Products. J. Med. Chem. Sci. 2019, 2, 6–16. [Google Scholar] [CrossRef]
- Miyazaki, K.; Islam, N. Nanotechnology systems of innovation—An analysis of industry and academia research activities. Technovation 2007, 27, 661–675. [Google Scholar] [CrossRef]
- Gupta, L.R.; Gupta, K.C. Role of Nanotechnology in Skin Remedies. Photocarcinogenesis Photoprotection 2018, 13, 141–157. [Google Scholar] [CrossRef]
- Robinson, P.R.; Hsu, C.S. Introduction to Petroleum Technology; Springer Handbooks; Springer: Cham, Switzerland, 2017; PartF1; pp. 1–83. [Google Scholar] [CrossRef]
- Baril, M.B.; Franco, G.F.; Viana, R.S.; Zanin, S.M.W. Nanotechnology applied to cosmetics. Visão Acad. 2012, 13, 45–54. [Google Scholar]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Scieuzo, C.; Hahn, T.; Zibek, S.; Salvia, R.; Falabella, P. Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics 2021, 8, 40. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.V.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Materials Today: Proceedings Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Meloa, A.; Amadeua, M.S.; Lancellottia, M.; de Hollandaa, L.M.; Machado, D. The Role of Nanomaterials in Cosmetics: National and International Legislative Aspects. Química Nova 2015, 38, 599–603. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 28, ISBN 9780128135860. [Google Scholar]
- Gorai, S. Nanotechnology in Cosmetics. Beats Nat. Sci. 2014, 1, 1–7. [Google Scholar]
- Robertson, T.A.; Sanchez, W.Y.; Roberts, M.S. Are Commercially Available Nanoparticles Safe When Applied to the Skin? J. Biomed. Nanotechnol. 2010, 6, 452–468. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Lee, J.E.; Jin, S.M.; Lee, J.H.; Lee, I.S.; Yang, I.; Kim, J.; Kim, S.K.; Cho, M.; et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew. Chem. 2006, 45, 7918–7922. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Mohd. Setapar, S.H.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Mohamad Ibrahim, M.N. Role of nanotechnology for design and development of cosmeceutical: Application in makeup and skin care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef]
- Schäfer-korting, M.; Mehnert, W.; Korting, H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 2007, 59, 427–443. [Google Scholar] [CrossRef]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Joana, A.D.; Pereira-silva, M.; Veiga, F.; Ribeiro, A.; Cláudia, A.; Morais, F.; et al. Cosmetic formulations Acceptuscrt. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef]
- Külkamp, I.C.; Paese, K.; Guterres, S.S.; Pohlmann, A.R. Stabilization of lipoic acid via encapsulation in polymeric nanocapsules designed for cutaneous application. Química Nova. São Paulo 2009, 32, 2078–2084. [Google Scholar] [CrossRef]
- Morales, C.; Prado, A.; Matos, D.; De Paula, E.; Henrique, A.; Fernandes, L. Benzocaine loaded biodegradable poly-(d,l-lactide-co-glycolide) nanocapsules: Factorial design and characterization. Mater. Sci. Eng. B 2009, 165, 243–246. [Google Scholar] [CrossRef]
- Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 117739280700200002. [Google Scholar] [CrossRef]
- Poletto, F.S.; Beck, R.C.R.; Guterres, S.S.; Pohlmann, A.R. Polymeric Nanocapsules: Concepts and Applications. In Nanocosmetics and Nanomedicines: New Approaches for Skin Care; Springer: Berlin/Heidelberg, Germany, 2011; pp. 49–68. [Google Scholar]
- Sharma, S.; Sarangdevot, K. Nanoemulsions For Cosmetics. Int. J. Adv. Res. Pharm. Bio Sci. 2012, 2, 408–415. [Google Scholar]
- Ahmad, U.; Ahmad, Z.; Khan, A.A.; Akhtar, J.; Singh, S.P.; Ahmad, F.J. Strategies in Development and Delivery of Nanotechnology Based Cosmetic Products. Drug Res. 2018, 68, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Andonova, V.; Penkov, D.; Katsarov, P. “For ” and “Against ” the use of nanostructures in cosmetic. Medicine 2013, 3, 41–45. [Google Scholar]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Progress in Materials Science Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Ekpa, D.; Ekpa, D.; Otobong, T. Nanotechnology in Cosmetics: Basics, Current Trends and Safety Concerns—A Review. Adv. Nanoparticles 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Abla, M.J.; Singh, N.D.; Banga, A.K. Role of Nanotechnology in Skin Delivery of Drugs. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res. 2010, 27, 1746–1749. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Cohen, P.R.; Nasir, A. Nanotechnology and dermatology: Part II—Risks of nanotechnology. Clin. Dermatol. 2010, 28, 581–588. [Google Scholar] [CrossRef]
- Maycos, I.; Ravasio, S. Patent Application Publication (10). International Publication No. WO 2007/003658 A1, 20 May 2007. [Google Scholar]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A. Nanoemulsion: Process selection and application in cosmetics—A review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef]
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, R635. [Google Scholar] [CrossRef]
- Simonnet, J.; Alloret, F.L. Nanoemulsions: A new vehicle for skincare products. Adv. Colloid Interface Sci. 2004, 108, 145–149. [Google Scholar] [CrossRef]
- Otosan, F. Nanoemulsions in Cosmetics “Nanoemulsions in Cosmetics” Sinan Özgün Sinan Özgün. 2014. Available online: https://www.researchgate.net/publication/235890223_Nanoemulsions_in_Cosmetics (accessed on 3 March 2024).
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef]
- Nohynek, G.J. Safety of Nanotechnology in Sunscreens and Personal Care Products. J. Appl. Cosmetol. 2011, 25, 17–25. [Google Scholar]
- Abdelwahab, S. Tamoxifen drug loading solid lipid nanoparticles prepared by hot high- pressure homogenization techniques Tamoxifen Drug Loading Solid Lipid Nanoparticles Prepared by Hot High Pressure Homogenization Techniques. Am. J. Pharmacol. Toxicol. 2008, 3, 219–224. [Google Scholar] [CrossRef]
- Maignan, J.; Dodin, C. Patent Application Publication (10). International Publication No. WO 99/32076, 5 March 1999. [Google Scholar]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Villalobos, R. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: The synergistic interaction between organic and inorganic sunscreens at nanoscale. Int. J. Pharm. 2006, 322, 161–170. [Google Scholar] [CrossRef]
- Abdullaeva, Z. Nanomaterials in Daily Life: Compounds, Synthesis, Processing and Commercialization; Springer: Cham, Switzerland, 2017; pp. 1–149. [Google Scholar] [CrossRef]
- Johnston, J.H.; Burridge, K.A.; Kelly, F.M.; Small, A.C. Nanogold and Nanosilver Wool: New Products for High Value Fashion Apparel and Functional Textiles Nanogold and Nanosilver Wool: New Products for High Value Fashion Apparel and Functional Textiles. Nanotechnol. 2010 Adv. Mater. CNTs Part. Film. Compos. 2015, 1, 792–795. [Google Scholar]
- Demming, A.; Brongersma, M.; Kim, D.S.; Demming, A.; Demming, A. Nanotechnology under the skin. Nanotechnology 2011, 22, 260201. [Google Scholar] [CrossRef] [PubMed]
- Teerasumran, P.; Velliou, E.; Bai, S.; Cai, Q. Deodorants and antiperspirants: New trends in their active agents and testing methods. Int. J. Cosmet. Sci. 2023, 45, 426–443. [Google Scholar] [CrossRef]
- Ku, I.C.; Jose, A. Influence of nanoencapsulation on the sensory properties of cosmetic formulations containing lipoic acid. Int. J. Cosmet. Sci. 2013, 35, 105–111. [Google Scholar] [CrossRef]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef]
- Vettor, M.; Bourgeois, S.; Fessi, H.; Pelletier, J.; Perugini, P.; Pavanetto, F.; Bolzinger, M.A. Skin absorption studies of octyl-methoxycinnamate loaded poly (D,L-lactide) nanoparticles: Estimation of the UV filter distribution and release behaviour in skin layers. J. Microencapsul. 2010, 27, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.J.; Shin, K.; Lee, H.; Nam, J.; Jung, J.; Ryu, J.; Han, J.; Suh, K.; Kim, Y.; Shim, J.; et al. Non-invasive Transdermal Delivery Route Using Electrostatically Interactive Biocompatible Nanocapsules. Adv. Mater. 2010, 22, 739–743. [Google Scholar] [CrossRef]
- Barre, G. Biodegradable polymer nanocapsules containing a sunscreen agent: Preparation and photoprotection. Eur. J. Pharm. Biopharm. 2001, 52, 191–195. [Google Scholar]
- Montenegro, L. Nanocarriers for skin delivery of cosmetic antioxidants. J. Pharm. Pharmacogn. Res. 2014, 2, 73–92. [Google Scholar] [CrossRef]
- Zhou, Z. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents. Pharmaceutics 2013, 5, 525–541. [Google Scholar] [CrossRef]
- Lens, M. Use of Fullerenes in Cosmetics. Recent Pat. Biotechnol. 2009, 3, 118–123. [Google Scholar] [CrossRef]
- Ping, Z.; Hua, Q.; Qing, G.; Bing, A. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. [Google Scholar] [CrossRef]
- Fumelli, C.; Marconi, A.; Salvioli, S.; Straface, E.; Malorni, W.; Maria, A.; Pellicciari, R.; Schettini, G.; Giannetti, A.; Monti, D.; et al. Carboxyfullerenes Protect Human Keratinocytes from. J. Investig. Dermatol. 2000, 115, 835–841. [Google Scholar] [CrossRef]
- Arif, T. Nanomedicine & Biotherapeutic Discovery Therapeutic and Diagnostic Applications of Nanotechnology in Dermatology and Cosmetics. J. Nanomed. Biother. Discov. 2015, 5, 1. [Google Scholar] [CrossRef]
- Petersen, R. Nanocrystals for Use in Topicalcosmetc Formulations and Method of Production Thereof. U.S. Patent No. 9,114,077, 25 August 2015. [Google Scholar]
- Chauhan, A.; Patil, C.; Jain, P.; Kulhari, H. 14—Dendrimer-Based Marketed Formulations and Miscellaneous Applications in Cosmetics, Veterinary, and Agriculture; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128145272. [Google Scholar]
- Cortés, I.M.; de Melo Barbosa, R.; García-Villén, F.; Ramírez, I.M.; Massaro, M.; Riela, S.; López-Galindo, A.; Viseras, C.; Sánchez-Espejo, R. Technological study of kaolinitic clays from Fms. Escucha and Utrillas to be used in dermo-pharmaceutical products. Appl. Clay Sci. 2024, 255, 107422. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Sainz-Díaz, C.I.; Perioli, L.; Viseras, C. Theoretical study of retinol, niacinamide and glycolic acid with halloysite clay mineral as active ingredients for topical skin care formulations. Molecules 2021, 26, 4392. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in cosmetics and personal-care products. Clays Clay Miner. 2021, 69, 561–575. [Google Scholar] [CrossRef]
- Visscher, M.O.; Spicer, P. Bicontinuous cubic liquid crystalline phase and cubosome personal care delivery systems. Pers. Care Deliv. Syst. Formul. 2003, 13, 243–247. [Google Scholar]
- Garg, G.; Araf, S.S.; Araf, S.S. Cubosomes: An Overview. Biol. Pharm. Bull. 2007, 30, 350–353. [Google Scholar] [CrossRef]
- Ulbrich, W.; Lamprecht, A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. R. Soc. Interface 2010, 7, S55–S66. [Google Scholar] [CrossRef]
- Castranova, V. Overview of Current Toxicological Knowledge of Engineered Nanoparticles. J. Occup. Environ. Med. 2011, 53, 14–17. [Google Scholar] [CrossRef]
- Hilton, L. Regenerative Skin Care Realities. Dermatol. Times 2021, 2, 32. [Google Scholar]
- Gajbhiye, S.; Sakharwade, S. Silver Nanoparticles in Cosmetics 2. Mechanism of Action of Silver Nanoparticles 3. Surface Area of Nanoparticles. J. Cosmet. Dermatol. Sci. Appl. 2016, 6, 48–53. [Google Scholar] [CrossRef]
- Mukherji, S.; Ruparelia, J.; Agnihotri, S. Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi. In Nano-Antimicrobials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 225–251. [Google Scholar] [CrossRef]
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Burda, C.; Chen, X.; Narayanan, R.; El-sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef]
- Dransfield, G.P. Inorganic sunscreens. Radiat. Prot. Dosim. 2000, 91, 271–273. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef]
- Salvioni, L.; Galbiati, E.; Collico, V.; Alessio, G.; Corsi, F.; Tortora, P.; Prosperi, D.; Colombo, M. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int. J. Nanomed. 2017, 12, 2517–2530. [Google Scholar] [CrossRef]
- Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm. 2005, 296, 44–54. [Google Scholar] [CrossRef]
- Ben, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A. Colloids and Surfaces B: Biointerfaces Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 2020, 189, 110855. [Google Scholar] [CrossRef]
- Radtke, M.; Wissing, S.A. S olid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, 131–155. [Google Scholar]
- Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-Based Cosmeceuticals. Int. Sch. Res. Not. 2018, 2014, 843687. [Google Scholar] [CrossRef] [PubMed]
- Humbert, P. Agache’s Measuring the Skin; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319323817. [Google Scholar]
- Gohla, S.H.; Jenning, V.; Gysler, A.; Scha, M. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 2000, 49, 211–218. [Google Scholar]
- Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Wissing, S.A.; Mu, R.H.; Manthei, L.; Mayer, C. Structural Characterization of Q10-Loaded Solid Lipid Nanoparticles by NMR spectroscopy. Pharm. Res. 2004, 21, 400–405. [Google Scholar] [CrossRef]
- MuÈller, R.H.; MaÈder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—A Review of the State of the Art; Elsvier: Amsterdam, The Netherlands, 2000; Volume 50, pp. 1–63. [Google Scholar]
- Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004, 56, 675–711. [Google Scholar] [CrossRef]
- Kalia, Y.N.; Guy, R.H.; Fessi, H. Enhancement of Topical Delivery from Biodegradable Nanoparticles. Pharm. Res. 2004, 21, 1818–1825. [Google Scholar]
- Hope, M.J.; Kitson, C.N. Liposomes: A perspective for dermatologists. Dermatol. Clin. 1993, 11, 143–154. [Google Scholar] [CrossRef]
- Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol. 2010, 27, 247–259. [Google Scholar] [CrossRef]
- Huber, B.; Burfeindt, J. Nanotechnology in Cosmetics. In Nanocosmetics: From Ideas to Products; Springer: Cham, Switzerland, 2019; pp. 17–25. [Google Scholar]
- Kaur, I.; Agrawal, R. Nanotechnology: A New Paradigm in Cosmeceuticals. Recent Pat. Drug Deliv. Formul. 2008, 1, 171–182. [Google Scholar] [CrossRef]
- Patel, R.P.; Joshi, J.R. Patel and Joshi. An overview on nanoemulsion: A novel approach. Int. J. Pharm. Sci. Res. 2012, 3, 4640–4650. [Google Scholar]
- Fred, Z.; Esther, B.; Daniel, S.; Christina, L.; Franz, S. Preparation and Properties of Coenzyme Q10 Nanoemulsions. Cosmet. Sci. Technol. 2006, 304, 40–46. [Google Scholar]
- Özgün, S. Nanoemulsions in Cosmetics. Anadolu Univ. 2013, 1, 3–11. [Google Scholar]
- Izquierdo, P.; Esquena, J.; Tadros, T.F.; Dederen, C.; Garcia, M.J.; Azemar, N.; Solans, C. Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Temperature Method. Langmuir 2002, 18, 26–30. [Google Scholar] [CrossRef]
- Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm. 2004, 280, 241–251. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M. Micelles and Nanoemulsions. Nanocosmetics Ideas Prod. 2019, 6, 47–72. [Google Scholar]
- Gupta, A.; Burak Eral, H.; Hatton, T.A.; Doyle, P.S. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2016, 3, 10715–10722. [Google Scholar] [CrossRef]
- Niska, K.; Zielinska, E.; Radomski, M.W.; Inkielewicz-stepniak, I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 2017, 295, 38–51. [Google Scholar] [CrossRef]
- Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a Topical Resveratrol Formulation for Com-mercial Applications Using Dendrimer Nanotechnology. Molecules 2017, 22, 137. [Google Scholar] [CrossRef]
- Iimura, T.; Furukawa, H. (12) Patent Application Publication (10). U.S. Patent No. US 2012/0263662 A1, 3 February 2009. [Google Scholar]
- Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomed. 2015, 10, 4797–4813. [Google Scholar] [CrossRef]
- Chandu, V.P.; Arunachalam, A.; Jeganath, S.; Yamini, K.; Tharangini, K.; Chaitanya, G. Niosomes: A Novel Drug Delivery System. Int. J. Nov. Trends Pharm. Sci. 2012, 3618, 15. [Google Scholar]
- Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar] [CrossRef]
- Santander-Ortega, M.J.; Lozano-López, M.V.; Bastos-González, D.; Peula-García, J.M.; Ortega-Vinuesa, J.L. Novel core-shell lipid-chitosan and lipid-poloxamer nanocapsules: Stability by hydration forces. Colloid Polym. Sci. 2010, 288, 159–172. [Google Scholar] [CrossRef]
- Karakoti, A.; Singh, S.; Dowding, J.M.; Seal, S.; Self, W.T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432. [Google Scholar] [CrossRef]
- Pyo, S.M.; Meinke, M.; Keck, C.M. Rutin—Increased Antioxidant Activity and Skin Penetration by Nanocrystal Technology. Cosmetics 2015, 3, 9. [Google Scholar] [CrossRef]
- Al Shaal, L.; Müller, R.H.; Shegokar, R. SmartCrystal combination technology—Scale up from lab to pilot scale and long term stability. Pharmazie 2010, 65, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Vincent, N.; Ramya Devi, D.; Vedha Hari, B.N. Progress in psoriasis therapy via novel drug delivery systems. Dermatology Reports 2014, 6, 15–19. [Google Scholar] [CrossRef]
- Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World 2014, 7, 72–77. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Cross, S.E.; Innes, B.; Roberts, M.S.; Tsuzuki, T.; Robertson, T.A.; McCormick, P. Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 2007, 20, 148–154. [Google Scholar] [CrossRef]
- Newman, M.D.; Stotland, M.; Ellis, J.I. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Durand, L.; Habran, N.; Henschel, V.; Amighi, K. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles. J. Microencapsul. 2010, 27, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Padamwar, M.N.; Pokharkar, V.B. Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability. Int. J. Pharm. 2006, 320, 37–44. [Google Scholar] [CrossRef] [PubMed]
Nanomaterials | Personal Care Products | Specific Properties of Nanomaterials | References |
---|---|---|---|
Nanoemulsions | Nano-based gel Deodorants Sunscreens Shampoos Lotions Nail Polishes Conditioners Hair Serums | Improve the effectiveness of products As a delivery system Promote quick penetration Active transport of active ingredients Skin hydration | [6,41,42] |
Lipid nanoparticles | Nano repair cream Lotions Moisturizer Anti-wrinkle creams Sunscreen | Permits direct proximity to the skin Enhance skin permeability minimal toxicity Improve the shelf life of the finished product Improve bioavailability and site-specific action, The desired degree of occlusion Consequent skin hydration active ingredient stabilization | [30,43,69] |
Nanoparticle | Sunscreen Anti-aging creams | Transparency than large particles Higher degrees of penetration Immediate effect on skin moisture | [6,32,47] |
Nanocapsule | Hydrogel Anti-aging creams Anti-acne drug Lip balms UV filters | Improve quality and effectiveness Increase the physiochemical stability of ingredients Stronger antibacterial efficacy Able to deliver targeted tissue or cells The active ingredient is shielded from potentially hazardous external influences | [33,52,54] |
Fullerenes | Sunscreen Anti-aging creams Anti-wrinkle creams Eye gels Moisturizer | Antioxidant activity Penetration in the skin Able to transport biomolecules Anti-radical oxygen species (ROS) scavenging abilities | [57,58,59] |
Nanocrystals | Toothpaste Anti-aging cream Sun protection cream | Increased membrane penetration Greater adhesion A higher concentration of the active ingredients synthesized Strongest antioxidant (neutralizing) activity | [31,62,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathnasinghe, N.L.; Kaushani, K.G.; Rajapakshe, P.S.; De Silva, A.; Jayasinghe, R.A.; Liyanage, R.N.; Tissera, N.D.; Wijesena, R.N.; Priyadarshana, G. Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products. Cosmetics 2024, 11, 152. https://doi.org/10.3390/cosmetics11050152
Rathnasinghe NL, Kaushani KG, Rajapakshe PS, De Silva A, Jayasinghe RA, Liyanage RN, Tissera ND, Wijesena RN, Priyadarshana G. Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products. Cosmetics. 2024; 11(5):152. https://doi.org/10.3390/cosmetics11050152
Chicago/Turabian StyleRathnasinghe, Nimasha L., Kotuwegoda G. Kaushani, Praveena S. Rajapakshe, Awanthi De Silva, Randika A. Jayasinghe, Renuka N. Liyanage, Nadeeka D. Tissera, Ruchira N. Wijesena, and Gayan Priyadarshana. 2024. "Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products" Cosmetics 11, no. 5: 152. https://doi.org/10.3390/cosmetics11050152
APA StyleRathnasinghe, N. L., Kaushani, K. G., Rajapakshe, P. S., De Silva, A., Jayasinghe, R. A., Liyanage, R. N., Tissera, N. D., Wijesena, R. N., & Priyadarshana, G. (2024). Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products. Cosmetics, 11(5), 152. https://doi.org/10.3390/cosmetics11050152