Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Studied Formulations
Rheological Behavior
Accelerated Stability Studies
Texture Profile
2.3. Casuistic and Methods
2.3.1. Clinical Study Design
2.3.2. Sensory Analysis
2.3.3. Instrumental Measurements
Stratum Corneum Water Content
Transepidermal Water Loss
Dermis Thickness and Echogenicity
Morphological and Structural Skin Characteristics
2.4. Statistical Analysis
3. Results
3.1. Formulation Development
3.2. Clinical Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Natural Skin Care Products Market Size, Share & Trends Analysis Report by Type (Mass, Premium), by Product (Facial Care, Body Care), by End-use (Men, Women), by Distribution Channel, by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/natural-skin-care-products-market (accessed on 21 February 2023).
- Kaur, I.P.; Kapila, M.; Agrawal, R. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res. Rev. 2007, 6, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.E. Mechanisms of aging and development-A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech. Ageing Dev. 2018, 172, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Chien, A.L.; Kang, S. Photoaging. Dermatol. Clin. 2014, 32, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily photoprotection to prevent photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 2008, 58, S133–S138. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, L.; Maia Campos, P.M.B.G.; Bordini Zanin, R.; Noronha Favaro, L. Development of multifunctional sunscreens: Evaluation of Physico-mechanical and film-forming properties. Int. J. Pharm. 2023, 635, 122705. [Google Scholar] [PubMed]
- Infante, V.H.P.; Leite, M.G.A.; Maia Campos, P.M.B.G. Film-Forming Properties of Topical Formulations for Skin and Hair: In Vivo and In Vitro Studies Using Biophysical and Imaging Techniques. AAPS PharmSciTech. 2022, 24, 29. [Google Scholar] [CrossRef]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Gayathri, S.; Bhaskar, J.P.; Krishnan, V.; Balamurugan, K. Analyzing the Synergistic Effects of Antioxidants in Combating Photoaging Using Model Nematode, Caenorhabditis elegans. Photochem. Photobiol. 2020, 96, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Jagdeo, J.; Kurtti, A.; Hernandez, S.; Akers, N.; Peterson, S. Novel Vitamin C and E and Green Tea Polyphenols Combination Serum Improves Photoaged Facial Skin. J. Drugs Dermatol. 2021, 20, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.; Maia Campos, P.M.B.G. Development and photoprotective effect of a sunscreen containing the antioxidants Spirulina and dimethylmethoxy chromanol on sun-induced skin damage. Eur. J. Pharm. Sci. 2017, 104, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, D.; Shahidi, F. Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem. 2018, 245, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-Y.; Sun, Y.-X.; Shahidi, F. Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters. J. Funct. Foods 2017, 37, 66–73. [Google Scholar] [CrossRef]
- Dauber, C.; Parente, E.; Zucca, M.P.; Gámbaro, A.; Vieitez, I. Olea europea and By-Products: Extraction Methods and Cosmetic Applications. Cosmetics 2023, 10, 112. [Google Scholar] [CrossRef]
- D’Angelo Costa, G.M.; Maia Campos, P.M.B.G. Efficacy of topical antioxidants in the skin hyperpigmentation control: A clinical study by reflectance confocal microscopy. J. Cosmet. Dermatol. 2021, 20, 538–545. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Maddiboyina, B.; Vanamamalai, H.K.; Roy, H.; Ramaiah Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023, 63, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Corauce Neto, D.; Camargo, F.B., Jr.; Maia Campos, P.M.B.G. Spirulina Containing Cosmetic Composition and Cosmetic Treatment Method. U.S. Patent 20140023676A1, 23 January 2014. [Google Scholar]
- John, A.J.U.K.; Galdo, F.D.; Gush, R.; Worsley, P.R. An evaluation of mechanical and biophysical skin parameters at different body locations. Skin Res. Technol. 2023, 29, e13292. [Google Scholar] [CrossRef] [PubMed]
- Dasgeb, B.; Kainerstorfer, J.; Mehregan, D.; Van Vreede, A.; Gandjbakhche, A. An introduction to primary skin imaging. Int. J. Dermatol. 2013, 52, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Huang, N. Rheological Characterization of Pharmaceutical and Cosmetic Formulations for Cutaneous Applications. Curr. Pharm. Des. 2019, 25, 2349–2363. [Google Scholar] [CrossRef] [PubMed]
- Cosmetics Europe: Guidelines on Stability Testing of Cosmetic Products. 2004. Available online: http://www.cosmeticseurope.eu/files/5914/6407/8121/Guidelines_on_Stability_Testing_of_Cosmetics_CE-CTFA_-_2004.pdf (accessed on 23 April 2020).
- Savary, G.; Grisel, M.; Picard, C. Impact of emollients on the spreading properties of cosmetic products: A combined sensory and instrumental characterization. Colloids Surf. B Biointerfaces 2013, 102, 371–378. [Google Scholar] [CrossRef] [PubMed]
- The International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use (ICH). Integrated Addendum to ICH E6(R1): Guideline for Good Clinical Practice E6(R2). 2016. Available online: https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf (accessed on 23 June 2020).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Calixto, L.S.; Infante, V.H.P.; Maia Campos, P.M.B.G. Design and Characterization of Topical Formulations: Correlations Between Instrumental and Sensorial Measurements. AAPS PharmSciTech. 2018, 19, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Maia Campos, P.M.B.G.; D’Angelo Costa, G.M. Evaluation of the influence of the application of a cosmetic formulation on the skin morphological characteristics by Reflectance Confocal Microscopy. Biomed. Biopharm. Res. 2022, 19, 410–423. [Google Scholar]
- Infante, V.H.; Maia Campos, P.M.B.G. Application of a Reflectance Confocal Microscopy Imaging Analysis Score for the Evaluation of Non-Melanogenic Changes in Male Photoaged Skin. Photochem. Photobiol. 2023, 99, 993–1002. [Google Scholar] [CrossRef]
- Ali, S.M.; Yosipovitch, G. Skin pH: From basic science to basic skin care. Acta Derm. Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Nishad, J. Chapter 5—Stability of plant extracts. In Plant Extracts: Applications in the Food Industry; Mir, S.A., Manickavasagan, A., Shah, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 89–126. [Google Scholar] [CrossRef]
- Haytoglu, N.S.; Gurel, M.S.; Erdemir, A.; Falay, T.; Dolgun, A.; Haytoglu, T.G. Assessment of skin photoaging with reflectance confocal microscopy. Skin Res. Technol. 2014, 20, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Ezz El-Din Ibrahim, M.; Alqurashi, R.M.; Alfaraj, F.Y. Antioxidant Activity of Moringa oleifera and Olive Olea europaea L. Leaf Powders and Extracts on Quality and Oxidation Stability of Chicken Burgers. Antioxidants 2022, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Delsin, S.; Mercurio, D.; Fossa, M.M.; Maia Campos, P.M.B.G. Clinical Efficacy of Dermocosmetic Formulations Containing Spirulina Extract on Young and Mature Skin: Effects on the Skin Hydrolipidic Barrier and Structural Properties. Clin. Pharmacol. Biopharm. 2015, 4, 144. [Google Scholar] [CrossRef]
- Manfredini, M.; Mazzaglia, G.; Ciardo, S.; Simonazzi, S.; Farnetani, F.; Longo, C.; Pellacani, G. Does skin hydration influence keratinocyte biology? In vivo evaluation of microscopic skin changes induced by moisturizers by means of reflectance confocal microscopy. Skin Res. Technol. 2013, 19, 299–307. [Google Scholar] [CrossRef]
- Bağcı, I.S.; Ruini, C.; Niesert, A.C.; Horváth, O.N.; Berking, C.; Ruzicka, T.; von Braunmühl, T. Effects of Short-Term Moisturizer Application in Different Ethnic Skin Types: Noninvasive Assessment with Optical Coherence Tomography and Reflectance Confocal Microscopy. Skin Pharmacol. Physiol. 2018, 31, 125–133. [Google Scholar] [CrossRef]
INCI Name | Trade Name | Company Name | City | Country |
---|---|---|---|---|
Helianthus Annuus (Sunflower) Seed Oil (and) Polyacrylic Acid (and) Xylityl Sesquicaprylate (and) Glyceryl Stearate (and) Euphorbia Cerifera (Candellila) Wax (and) Sodium Hydroxide | Emulfeel® SGP | ChemyUnion® | Sorocaba | Brazil |
Helianthus Annuus Seed Oil (Sunflower) | - | GreenTech® | São Paulo | Brazil |
BHT (Butylated hydroxytoluene) | - | Synth® | Diadema | Brazil |
Vegetable Glycerin Technical Grade | - | Synth® | Diadema | Brazil |
Xanthan Gum | Keltrol® | CP Kelco® | Atlanta | United States |
EDTA disodium | - | Synth® | Diadema | Brazil |
Spirulina sp. dried extract obtained using biotechnological processes | - | Ourofino® | Cravinhos | Brazil |
Olea europea (Olive) Fruit extract; Glycerin; Water (Aqua) | HyidrOlive® | Cobiosa® | Espanha | Brazil |
Sodium Metabisulfite (SMBS) | - | Synth® | Diadema | Brazil |
Equipment | Trade Name | Model | Company Name | City | Country |
---|---|---|---|---|---|
Analytical balance | - | AD3300/BEL classe II | Marte® | Santa Rita do Sapucaí | Brazil |
Reverse osmosis | - | OS10LX | Gehaka® | São Paulo | Brazil |
Cone and plate rheometer | - | DV-III RV | AMETEK Brookfield® | Middleboro | United States |
Centrifuge | - | CE 800 | Centrilab® | São Paulo | Brazil |
Oven at 37 °C | - | CZ | Olidef® | Ribeirão Preto | Brazil |
Oven with photoperiod and thermoperiod—(45 °C) | - | EL202/3 | Eletrolab® | São Paulo | Brazil |
pH meter | - | MPA-210—solution electrode SC06 | Tecnopon® | Piracicaba | Brazil |
Texture Analyzer | - | TA.XT/Plus | Stable Micro Systems® | Godalming | England |
Skin Hydration Measurement Instrument | Corneometer® | CM 825 | Courage-Khazaka® | Köln | Germany |
Transepidermal Water Loss Measurement Instrument | Tewameter® | TM 300 | Courage-Khazaka® | Köln | Germany |
20 MHz ultrasound | Dermascan® | C | Cortex® | Hadsund | Denmark |
Reflectance Confocal Microscopy | Vivascope® | 1500 | Lucid® | Rochester | United States |
INCI Name | (% w/w) | |||||||
---|---|---|---|---|---|---|---|---|
Phases | F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
Helianthus Annuus (Sunflower) Seed Oil (and) Polyacrylic Acid (and) Xylityl Sesquicaprylate (and) Glyceryl Stearate (and) Euphorbia Cerifera (Candellila) Wax (and) Sodium Hydroxide | A | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Helianthus Annuus Seed Oil (Sunflower) | A | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
BHT (Butylated hydroxytoluene) | A | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Vegetable Glycerin Technical Grade | B | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Xanthan Gum | B | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
EDTA disodium | B | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Spirulina sp. dried extract obtained using biotechnological processes | D | - | - | - | - | 0.1 | 0.1 | - |
Olive extract | D | 0.5 | 0.5 | 0.2 | 0.2 | 0.5 | 0.2 | - |
Sodium Metabisulfite (SMBS) | B | - | 0.1 | - | 0.1 | 0.1 | 0.1 | - |
Xylityl Sesquicaprylate (and) Caprylyl Glycol | C | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Aqua | B | 85.05 | 84.95 | 85.35 | 85.35 | 84.85 | 85.25 | 85.55 |
Citric Acid Solution (1:10) | E | pH 5.5 | pH 5.5 | pH 5.5 | pH 5.5 | pH 5.5 | pH 5.5 | pH 5.5 |
Groups (Mean ± Standard Deviation) | p-Values | |||||
---|---|---|---|---|---|---|
Score | G1–F7 (n = 9) | G2–F6 (n = 8) | G1–F7 | G2–F6 | ||
T0 | T12w | T0 | T12w | |||
Stratum corneum Brightness | 1.6 ± 0.4 | 2.2 ± 0.5 | 1.1 ± 0.7 | 2.7 ± 0.3 | p < 0.05 | p < 0.05 |
Skin Surface Homogeneity | 0.3 ± 0.3 | 0.1 ± 0.1 | 0.3 ± 0.4 | 0.2 ± 0.3 | NS | NS |
Furrows Morphology | 0.0 ± 0.1 | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | NS | NS |
Stratum corneum Quality | 2.9 ± 0.3 | 3.3 ± 0.7 | 3.0 ± 0.1 | 4.1 ± 0.7 | NS | p < 0.05 |
Interkeratinocyte Brightness | 1.1 ± 0.5 | 1.1 ± 0.5 | 1.0 ± 0.5 | 1.9 ± 0.6 | NS | p < 0.05 |
Stratum granulosum Quality | 2.4 ± 0.6 | 2.3 ± 0.5 | 2.7 ± 0.2 | 3.6 ± 0.4 | NS | p < 0.05 |
Skin Hyperpigmentation | 0.4 ± 0.6 | 0.6 ± 0.6 | 0.3 ± 0.6 | 0.6 ± 0.3 | NS | NS |
Dermal–Epidermal Junction Quality | 1.3 ± 0.5 | 1.3 ± 0.5 | 1.1 ± 0.2 | 1.1 ± 0.2 | NS | NS |
Papillary Collagen Quality | 2.3 ± 0.7 | 2.0 ± 0.6 | 2.0 ± 0.5 | 2.8 ± 0.7 | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelo Costa, G.M.; Maia Campos, P.M.B.G. Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies. Cosmetics 2024, 11, 68. https://doi.org/10.3390/cosmetics11030068
D’Angelo Costa GM, Maia Campos PMBG. Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies. Cosmetics. 2024; 11(3):68. https://doi.org/10.3390/cosmetics11030068
Chicago/Turabian StyleD’Angelo Costa, Gabriela Maria, and Patricia Maria Berardo Gonçalves Maia Campos. 2024. "Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies" Cosmetics 11, no. 3: 68. https://doi.org/10.3390/cosmetics11030068
APA StyleD’Angelo Costa, G. M., & Maia Campos, P. M. B. G. (2024). Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies. Cosmetics, 11(3), 68. https://doi.org/10.3390/cosmetics11030068