Fluorescent Light Energy (FLE) Generated through Red LED Light and a Natural Photoconverter Gel as a New, Non-Invasive Approach for Facial Age Control: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescent Light Energy (FLE) System
2.2. Testing Methods of the Clinical Study
2.3. Endpoints
2.4. Analysis and Assessment of the Skin
2.5. Ethics Statement
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ablon, G. Phototherapy with Light Emitting Diodes: Treating a Broad Range of Medical and Aesthetic Conditions in Dermatology. J. Clin. Aesthet. Dermatol. 2018, 11, 21–27. [Google Scholar] [PubMed]
- American Society of Plastic Surgeons Release. 2018 Plastic Surgery Statistics Report. Available online: https://www.plasticsurgery.org/documents/News/Statistics/2018/plastic-surgery-statistics-full-report-2018.pdf (accessed on 11 October 2022).
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar] [PubMed]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef]
- Edge, D.; Schødt, M.; Nielsen, M.C.E. Biophotonic Therapy Induced Photobiomodulation. In Technology in Practical Dermatology; Fimiani, M., Rubegni, P., Cinotti, E., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Edge, D.; Mellergaard, M.; Dam-Hansen, C.; Corell, D.D.; Jaworska, J.; Scapagnini, G.; Nielsen, M.C.E. Fluorescent Light Energy: The Future for Treating Inflammatory Skin Conditions? J. Clin. Aesthet. Dermatol. 2019, 12, E61–E68. [Google Scholar] [PubMed]
- Ding, J.; Mellergaard, M.; Zhu, Z.; Kwan, P.; Edge, D.; Ma, Z.; Hebert, L.; Alrobaiea, S.; Iwasaki, T.; Nielsen, M.; et al. Fluorescent light energy modulates healing in skin grafted mouse model. Open Med. 2021, 16, 1240–1255. [Google Scholar] [CrossRef]
- Farber, S.E.; Epps, M.T.; Brown, E.; Krochonis, J.; McConville, R.; Codner, M.A. A review of nonsurgical facial rejuvenation. Plast. Aesthet. Res. 2020, 7, 72. [Google Scholar] [CrossRef]
- Ferroni, L.; Zago, M.; Patergnani, S.; Campbell, S.E.; Hébert, L.; Nielsen, M.; Scarpa, C.; Bassetto, F.; Pinton, P.; Zavan, B. Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. J. Clin. Med. 2020, 9, 559. [Google Scholar] [CrossRef]
- Gerber, P.A.; Scarcella, G.; Edge, D.; Nielsen, M.C.E. Biophotonic pretreatment enhances the targeting of senile lentigines with a 694 nm QS-ruby laser. Photodermatol. Photoimmunol. Photomed. 2020, 36, 159–160. [Google Scholar] [CrossRef]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu Gurhan, I. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef]
- Hashmi, J.T.; Huang, Y.Y.; Sharma, S.K.; Kurup, D.B.; De Taboada, L.; Carroll, J.D.; Hamblin, M.R. Effect of pulsing in low-level light therapy. Lasers Surg. Med. 2010, 42, 450–466. [Google Scholar] [CrossRef]
- Henseler, H. Validation of the Visia® Camera System for skin analysis through assessment of the correlations among the three offered measurements—The percentile, feature count and absolute score—As well as the three capture perspectives, from the left, front and right. GMS Interdiscip. Plast. Reconstr. Surg DGPW 2022, 11, Doc04. [Google Scholar] [PubMed]
- Kurtti, A.; Nguyen, J.K.; Weedon, J.; Mamalis, A.; Lai, Y.; Masub, N.; Geisler, A.; Siegel, D.M.; Jagdeo, J.R. Light emitting diode-red light for reduction of post-surgical scarring: Results from a dose-ranging, split-face, randomized controlled trial. J. Biophotonics 2021, 14, e202100073. [Google Scholar] [CrossRef] [PubMed]
- Jalili, A. Chromophore gel-assisted phototherapy. J. für. Ästhetische Chir. 2018, 20, 1–5. [Google Scholar] [CrossRef]
- Mellergaard, M.; Fauverghe, S.; Scarpa, C.; Pozner, V.L.; Skov, S.; Hebert, L.; Nielsen, M.; Bassetto, F.; Téot, L. Evaluation of Fluorescent Light Energy for the Treatment of Acute Second-degree Burns. Mil. Med. 2021, 186, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Migliardi, R.; Tofani, F.; Donati, L. Non-invasive peri-orbital rejuvenation: Radiofrequency dual radiowave energy source (rf) and light emission diode system (LED). Orbit 2009, 28, 214–218. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.Y.; Lee, Y.C. Utilization of light-emitting diodes for skin therapy: Systematic review and meta-analysis. Photodermatol. Photoimmunol. Photomed. 2022, 12841. [Google Scholar] [CrossRef]
- Nikolis, A.; Bernstein, S.; Kinney, B.; Scuderi, N.; Rastogi, S.; Sampalis, J.S. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of KLOX-001 gel formulation with KLOX light-emitting diode light on facial rejuvenation. Clin. Cosmet. Investig. Dermatol. 2016, 13, 115–125. [Google Scholar] [CrossRef]
- Oh, P.S.; Jeong, H.J. Therapeutic application of light emitting diode: Photo-oncomic approach. J. Photochem. Photobiol. B 2019, 192, 1–7. [Google Scholar] [CrossRef]
- Olinski, L.E.; Lin, E.M.; Oancea, E. Illuminating insights into opsin 3 function in the skin. Adv. Biol. Regul. 2020, 75, 100668. [Google Scholar] [CrossRef]
- Quinlan, D.J.; Ghanem, A.M.; Hassan, H. Topical growth factors and home-based microneedling for facial skin rejuvenation. J. Cosmet. Dermatol. 2022, 21, 3469–3478. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Scarcella, G.; Gerber, P.A.; Edge, D.; Nielsen, M.C.E. Effective removal of solar lentigines by combination of pre- and post-fluorescent light energy treatment with picosecond laser treatment. Clin. Case Rep. 2020, 8, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Scarcella, G.; Dethlefsen, M.W.; Nielsen, M.C.E. Treatment of solar lentigines using a combination of picosecond laser and biophotonic treatment. Clin. Case Rep. 2018, 6, 1868–1870. [Google Scholar] [CrossRef]
- Sommer, A.P. Revisiting the Photon/Cell Interaction Mechanism in Low-Level Light Therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, H.; Brenaut, E.; Nowak, E.; Misery, L. Efficacy and Tolerability of Phototherapy with Light-Emitting Diodes for Sensitive Skin: A Pilot Study. Front. Med. 2020, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Castagna, D.A.; Fortinguerra, S.; Buriani, A.; Scapagnini, G.; Willcox, D.C. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Mar. Drugs 2021, 19, 293. [Google Scholar] [CrossRef]
- Suh, S.; Choi, E.H.; Atanaskova Mesinkovska, N. The expression of opsins in the human skin and its implications for photobiomodulation: A Systematic Review. Photodermatol. Photoimmunol. Photomed. 2020, 36, 329–338. [Google Scholar] [CrossRef]
- Wunsch, A.; Matuschka, K. A controlled trial to determine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase. Photomed. Laser Surg. 2014, 32, 93–100. [Google Scholar] [CrossRef]
Pt. n. | Sex | Age | Fitzpatrick Skin Type |
---|---|---|---|
1 | F | 45 | II |
2 | F | 30 | III |
3 | F | 31 | III |
4 | F | 65 | III |
5 | F | 59 | V |
6 | F | 57 | II |
7 | F | 62 | II |
8 | F | 43 | III |
Wrinkles | ||||
---|---|---|---|---|
Patient no. | Before/After | Feature | Score | Percentile |
Patient 1 | Before | 22 | 17,637 | 61 |
After | 7 | 4486 | 92 | |
% | −68.2 | −74.6 | 50.8 | |
Patient 2 | Before | 13 | 13,946 | 48 |
After | 19 | 5365 | 80 | |
% | 46.2 | −61.5 | 66.7 | |
Patient 3 | Before | 23 | 8031 | 71 |
After | 16 | 7023 | 71 | |
% | −30.4 | −12.6 | 0.0 | |
Patient 4 | Before | 22 | 36,500 | 55 |
After | 16 | 30,127 | 65 | |
% | −27.3 | −17.5 | 18.2 | |
Patient 5 | Before | 26 | 44,234 | 34 |
After | 17 | 11,192 | 87 | |
% | −34.6 | −74.7 | 155.9 | |
Patient 6 | Before | 11 | 42,271 | 34 |
After | 17 | 33,576 | 47 | |
% | 54.5 | −20.6 | 38.2 | |
Patient 7 | Before | 15 | 16,950 | 81 |
After | 13 | 13,312 | 86 | |
% | −13.3 | −21.5 | 6.2 | |
Patient 8 | Before | 17 | 25,656 | 40 |
After | 11 | 28,474 | 35 | |
% | −35.3 | 11.0 | −12.5 | |
Average before | 17 | 22,803 | 47 | |
Average after | 13 | 14,839 | 63 | |
% | −22.1 | −34.9 | 32.8 |
Patient n. | Before/After | Texture | Red Areas | Trueskin Age |
---|---|---|---|---|
Patient 1 | Before | 229 | 122 | 49 |
After | 269 | 88 | 35 | |
% | 17.5 | −27.9 | −28.6 | |
Patient 2 | Before | 1045 | 265 | n.d. |
After | 931 | 203 | n.d. | |
% | −10.9 | −23.4 | 0.0 | |
Patient 3 | Before | 715 | 189 | n.d. |
After | 717 | 178 | n.d. | |
% | 0.3 | −5.8 | 0.0 | |
Patient 4 | Before | 1627 | 208 | n.d. |
After | 1455 | 166 | n.d. | |
% | −10.6 | −20.2 | 0.0 | |
Patient 5 | Before | 1177 | 160 | 63 |
After | 1269 | 119 | 49 | |
% | 7.8 | −25.6 | −22.2 | |
Patient 6 | Before | 640 | 189 | 67 |
After | 612 | 183 | 59 | |
% | −4.4 | −3.2 | −11.9 | |
Patient 7 | Before | 1336 | 252 | 62 |
After | 1667 | 315 | 55 | |
% | 24.8 | 25.0 | −11.3 | |
Patient 8 | Before | 945 | 135 | n.d. |
After | 1428 | 190 | n.d. | |
% | 51.1 | 40.7 | 0.0 | |
Average before | 857 | 169 | 48 | |
Average after | 928 | 160 | 40 | |
% | 8.2 | −5.1 | −17.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarcella, G.; Tardugno, R.; Crupi, P.; Muraglia, M.; Clodoveo, M.L.; Corbo, F. Fluorescent Light Energy (FLE) Generated through Red LED Light and a Natural Photoconverter Gel as a New, Non-Invasive Approach for Facial Age Control: A Pilot Study. Cosmetics 2023, 10, 74. https://doi.org/10.3390/cosmetics10030074
Scarcella G, Tardugno R, Crupi P, Muraglia M, Clodoveo ML, Corbo F. Fluorescent Light Energy (FLE) Generated through Red LED Light and a Natural Photoconverter Gel as a New, Non-Invasive Approach for Facial Age Control: A Pilot Study. Cosmetics. 2023; 10(3):74. https://doi.org/10.3390/cosmetics10030074
Chicago/Turabian StyleScarcella, Giuseppe, Roberta Tardugno, Pasquale Crupi, Marilena Muraglia, Maria Lisa Clodoveo, and Filomena Corbo. 2023. "Fluorescent Light Energy (FLE) Generated through Red LED Light and a Natural Photoconverter Gel as a New, Non-Invasive Approach for Facial Age Control: A Pilot Study" Cosmetics 10, no. 3: 74. https://doi.org/10.3390/cosmetics10030074
APA StyleScarcella, G., Tardugno, R., Crupi, P., Muraglia, M., Clodoveo, M. L., & Corbo, F. (2023). Fluorescent Light Energy (FLE) Generated through Red LED Light and a Natural Photoconverter Gel as a New, Non-Invasive Approach for Facial Age Control: A Pilot Study. Cosmetics, 10(3), 74. https://doi.org/10.3390/cosmetics10030074