In Silico Evaluation of the Antioxidant, Anti-Inflammatory, and Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ligand Preparation
2.2. In Silico Pharmacokinetics
2.3. In Silico Target Prediction
2.4. Molecular Docking Studies
2.5. Protein–Protein Interaction Analysis
2.6. Protein–Ligand Molecular Dynamics Simulation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aftel, M. Essence and Alchemy: A Book of Perfume; Macmillan: London, UK, 2002. [Google Scholar]
- Drouet, S.; Garros, L.; Hano, C.; Tungmunnithum, D.; Renouard, S.; Hagège, D.; Maunit, B.; Lainé, E. A critical view of different botanical, molecular, and chemical techniques used in authentication of plant materials for cosmetic applications. Cosmetics 2018, 5, 30. [Google Scholar] [CrossRef]
- Gamage, D.G.N.D.; Dharmadasa, R.M.; Abeysinghe, D.C.; Wijesekara, R.G.S.; Prathapasinghe, G.A.; Someya, T. Global perspective of plant-based cosmetic industry and possible contribution of Sri Lanka to the development of herbal cosmetics. Evid.-Based Complement. Altern. Med. 2022, 2022, 9940548. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Ndhlovu, P.T.; Mooki, O.; Mbeng, W.O.; Aremu, A.O. Plant species used for cosmetic and cosmeceutical purposes by the Vhavenda women in Vhembe District Municipality, Limpopo, South Africa. South Afr. J. Bot. 2019, 122, 422–431. [Google Scholar] [CrossRef]
- Pieroni, A.; Quave, C.L.; Villanelli, M.L.; Mangino, P.; Sabbatini, G.; Santini, L.; Boccetti, T.; Profili, M.; Ciccioli, T.; Rampa, L.G. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J. Ethnopharmacol. 2004, 91, 331–344. [Google Scholar] [CrossRef]
- Fred-Jaiyesimi, A.; Ajibesin, K.K.; Tolulope, O.; Gbemisola, O. Ethnobotanical studies of folklore phytocosmetics of South West Nigeria. Pharm. Biol. 2015, 53, 313–318. [Google Scholar] [CrossRef]
- Fedoung, E.F.; Zra, T.; Biyegue, C.F.N.; Bissoue, A.N.; Baraye, S.; Tsabang, N. Herbal cosmetics knowledge of Arab-Choa and Kotoko ethnic groups in the semi-arid areas of far north Cameroon: Ethnobotanical assessment and phytochemical review. Cosmetics 2018, 5, 31. [Google Scholar] [CrossRef]
- Plainfossé, H.; Burger, P.; Azoulay, S.; Landreau, A.; Verger-Dubois, G.; Fernandez, X. Development of a natural anti-age ingredient based on Quercus pubescens Willd. leaves extract—A case study. Cosmetics 2018, 5, 15. [Google Scholar] [CrossRef]
- Mechqoq, H.; Hourfane, S.; Yaagoubi, M.E.; Hamdaoui, A.E.; Msanda, F.; Almeida, J.R.G.d.S.; Rocha, J.M.; Aouad, N.E. Phytochemical screening, and in vitro evaluation of the antioxidant and dermocosmetic activities of four Moroccan plants: Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia. Cosmetics 2022, 9, 94. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, A.; Kaur, J.; Kumari, S.; Garg, M.; Sindhu, R.K.; Rahman, M.H.; Akhtar, M.F.; Tagde, P.; Najda, A.; et al. Bioactive-Based Cosmeceuticals: An update on emerging trends. Molecules 2022, 27, 828. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Piacente, S. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and their constituents as active cosmeceutical ingredients. Cosmetics 2022, 9, 7. [Google Scholar] [CrossRef]
- Vanitha, M.; Soundhari, C. Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti-tyrosinase activity. Int. J. ChemTech Res. 2017, 10, 1156–1167. [Google Scholar]
- Wang, C.; Chen, L.; Xu, C.; Shi, J.; Chen, S.; Tan, M.; Chen, J.; Zou, L.; Chen, C.; Liu, Z.; et al. A comprehensive review for phytochemical, pharmacological, and biosynthesis studies on Glycyrrhiza spp. Am. J. Chin. Med. 2020, 48, 17–45. [Google Scholar] [CrossRef]
- Husain, I.; Bala, K.; Khan, I.A.; Khan, S.I. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (Glycyrrhiza sp.). Food Front. 2021, 2, 449–485. [Google Scholar] [CrossRef]
- Simmler, C.; Pauli, G.F.; Chen, S.N. Phytochemistry and biological properties of glabridin. Fitoterapia 2013, 90, 160–184. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, D.M.; Ammar, N.M.; Abd El-Alim, S.H.; El-anssary, A.A. Transdermal microemulsions of Glycyrrhiza glabra L.: Characterization, stability and evaluation of antioxidant potential. Drug Deliv. 2014, 21, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Caddeo, C.; Manca, M.L.; Casu, L.; Latorre, A.C.; Díez-Sales, O.; Ruiz-Saurí, A.; Bacchetta, G.; Fadda, A.M.; Manconi, M. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohydr. Polym. 2015, 134, 657–663. [Google Scholar] [CrossRef]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A new exploration of licorice metabolome. Food Chem. 2017, 221, 959–968. [Google Scholar] [CrossRef]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Baurin, N.; Arnoult, E.; Scior, T.; Do, Q.T.; Bernard, P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J. Ethnopharmacol. 2002, 82, 155–158. [Google Scholar] [CrossRef]
- Madden, J.C.; Enoch, S.J.; Paini, A.; Cronin, M.T.D. A review of in silico tools as alternatives to animal testing: Principles, resources and applications. Altern. Lab. Anim. 2020, 48, 146–172. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Rathman, J.F.; Richarz, A.N.; Yang, C. A review of in silico toxicology approaches to support the safety assessment of cosmetics-related materials. Comput. Toxicol. 2022, 21, 100213. [Google Scholar] [CrossRef]
- Hasan, K.; Ara, I.; Mondal, M.S.A.; Kabir, Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021, 7, e07240. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Chen, C.-C.; Huang, C.-W.; Chang, Y.-C. Evaluating molecular properties involved in transport of small molecules in Stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules 2018, 23, 911. [Google Scholar] [CrossRef]
- Fatoki, T.; Chukwuejim, S.; Ibraheem, O.; Oke, C.; Ejimadu, B.; Olaoye, I.; Oyegbenro, O.; Salami, T.; Basorun, R.; Oluwadare, O.; et al. Harmine and 7,8-dihydroxyflavone synergistically suitable for amyotrophic lateral sclerosis management: An insilico study. Res. Results Pharmacol. 2022, 8, 49–61. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Ciganovic, P.K.; Tomczyk, J.M.; Koncic, M.Z. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Huang, Y.; Shinohara, Y.; Caylor, M.L.; Pashikanti, S.; Xu, D. ezCADD: A rapid 2D/3D visualization-enabled web modeling environment for democratizing computer-aided drug design. J. Chem. Inf. Model. 2019, 59, 18–24. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Molecular dynamics—Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing—SC’06, Tampa, FL, USA, 11–17 November 2006. [Google Scholar]
- Schrödinger Release 2023-1. Desmond molecular dynamics system, D.E. Shaw research, New York, NY, 2021. Maestro-Desmond interoperability tools, Schrodinger LLC, New York, NY, 2021. Available online: https://www.schrodinger.com/products/desmond (accessed on 25 February 2023).
- Jawarkar, R.D.; Sharma, P.; Jain, N.; Gandhi, A.; Mukerjee, N.; Al-Mutairi, A.A.; Zaki, M.E.A.; Al-Hussain, S.A.; Samad, A.; Masand, V.H.; et al. QSAR, molecular docking, MD simulation and MMGBSA calculations approaches to recognize concealed pharmacophoric features requisite for the optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads. Molecules 2022, 27, 4951. [Google Scholar] [CrossRef]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Schrödinger Resources: What Do All the Prime MM-GBSA Energy Properties Mean? Available online: www.schrodinger.com/kb/1875 (accessed on 6 March 2023).
- Zhang, X.; Perez-Sanchez, H.; Lightstone, F.C. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin. Curr. Top. Med. Chem. 2017, 17, 1631–1639. [Google Scholar] [CrossRef]
- Marks, A. Herbal extracts in cosmetics. Agro-Food-Ind. Hi-Tech. 1997, 8, 28–31. [Google Scholar]
- Aburjai, T.; Natsheh, F.M. Plants Used in Cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef]
- Tuli, H.S.; Garg, V.K.; Mehta, J.K.; Kaur, G.; Mohapatra, R.K.; Dhama, K.; Sak, K.; Kumar, A.; Varol, M.; Aggarwal, D.; et al. Licorice (Glycyrrhiza glabra L.)-derived phytochemicals target multiple signaling pathways to confer oncopreventive and oncotherapeutic effects. OncoTarg. Ther. 2022, 15, 1419–1448. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, Y.; Zhang, Z.; Hou, J.; Tian, S.; Liu, Y. The anti-diabetic activity of licorice, a widely used Chinese herb. J. Ethnopharmacol. 2020, 263, 113216. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.M.; Prescott, S.M. Can licorice lick colon cancer? J. Clin. Investig. 2009, 119, 760–763. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Xu, J.; Yao, B.; Yin, H.; Cai, Q.; Shrubsole, M.J.; Chen, X.; Kon, V.; Zheng, W.; Pozzi, A.; et al. Inhibition of 11-β-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. J. Clin. Investig. 2009, 119, 876–885. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Derm.-Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef]
- Debelle, L.; Tamburro, A.M. Elastin: Molecular description and function. Int. J. Biochem. Cell Biol. 1999, 31, 261–272. [Google Scholar] [CrossRef]
- Roy, A.; Sahu, R.K.; Matlam, M.; Deshmukh, V.K.; Dwivedi, J.; Jha, A.K. In vitro techniques to assess the proficiency of skin care cosmetic formulations. Pharmacogn. Rev. 2013, 7, 97–106. [Google Scholar] [PubMed]
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef]
- Fatoki, T.H.; Ibraheem, O.; Adeseko, C.J.; Afolabi, B.L.; Momodu, D.U.; Sanni, D.M.; Enibukun, J.M.; Ogunyemi, I.O.; Adeoye, A.O.; Ugboko, H.U.; et al. Melanogenesis, its regulatory process, and insights on biomedical, biotechnological, and pharmacological potentials of melanin as antiviral biochemical. Bioint Res. Appl. Chem. 2021, 11, 11969–11984. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Xie, X.-Y.; Deng, Y.; Yang, H.-Q.; Du, X.-S.; Liu, P.; Du, Y. Licorice zinc suppresses melanogenesis via inhibiting the activation of P38/MAPK and JNK signaling pathway in C57BL/6J mice skin. Acta Cirúrgica Bras. 2022, 37, e371002. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, R.; Sulabh, G.; Singh, P.; Kumar, J.; Singh, V.K.; Ojha, K.K. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. Adv. Tradit. Med. 2022, 23, 1–19. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, X.; Xu, Z.; Dong, N.; Zou, S.; Shen, X.; Huang, J. Development of a new colorimetric assay for lipoxygenase activity. Anal. Biochem. 2013, 441, 162–168. [Google Scholar] [CrossRef]
- Rakhmini, A.; Ilyas, F.S.; Muchtar, S.V.; Patellongi, I.J.; Djawad, K.; Alam, G. Comparison of 10%, 20% and 40% licorice extract cream as skin lightening agent. Int. J. Med. Rev. Case Rep. 2018, 2, 131–135. [Google Scholar]
- Saini, G.; Dalal, V.; Gupta, D.N.; Sharma, N.; Kumar, P.; Sharma, A.K. A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Mol. Simul. 2021, 47, 510–525. [Google Scholar] [CrossRef]
SN | Compounds | Predicted ADME Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MW | TPSA | Log P | ESOL Log S | GIA | BBB | P-gp | BS | Log Kp (cm/s) | ||
1 | 1-Methoxyficifolinol | 422.51 | 68.15 | 4.97 | −6.27 | High | No | Yes | 0.55 | −4.54 |
2 | 1-Methoxyphaseollin | 352.38 | 57.15 | 3.37 | −4.52 | High | Yes | Yes | 0.55 | −5.94 |
3 | Alpha terpineol | 154.25 | 20.23 | 2.58 | −2.87 | High | Yes | No | 0.55 | −4.83 |
4 | Dihydrostilbene | 182.26 | 0 | 4.11 | −4.42 | Low | Yes | No | 0.55 | −4.01 |
5 | Furfuraldehyde | 96.08 | 30.21 | 0.69 | −1.16 | High | Yes | No | 0.55 | −6.60 |
6 | Geraniol | 154.25 | 20.23 | 2.78 | −2.78 | High | Yes | No | 0.55 | −4.71 |
7 | Glabrene | 322.35 | 58.92 | 3.36 | −4.44 | High | Yes | Yes | 0.55 | −5.68 |
8 | Glabridin | 324.37 | 58.92 | 3.45 | −4.61 | High | Yes | Yes | 0.55 | −5.52 |
9 | Glabrocoumarone A | 308.33 | 62.83 | 3.56 | −4.81 | High | Yes | Yes | 0.55 | −5.20 |
10 | Glabrocoumarone B | 308.33 | 62.83 | 3.62 | −4.81 | High | Yes | Yes | 0.55 | −5.20 |
11 | Glisoflavone | 368.38 | 100.13 | 3.34 | −4.82 | High | No | No | 0.55 | −5.70 |
12 | Glucoliquiritin apioside | 712.65 | 283.98 | −2.21 | −2.11 | Low | No | No | 0.17 | −12.52 |
13 | Glycycoumarin | 368.38 | 100.13 | 3.53 | −5.06 | High | No | No | 0.55 | −5.44 |
14 | Glycyrrhetinic acid | 470.68 | 74.6 | 5.17 | −6.15 | High | No | Yes | 0.85 | −5.27 |
15 | Glycyrrhizin | 822.93 | 267.04 | 1.55 | −6.24 | Low | No | Yes | 0.11 | −9.33 |
16 | Hispaglabridin A | 392.49 | 58.92 | 4.93 | −6.05 | High | Yes | No | 0.55 | −4.56 |
17 | Hispaglabridin B | 390.47 | 47.92 | 4.69 | −5.76 | High | Yes | Yes | 0.55 | −5.01 |
18 | Isoangustone A | 422.47 | 111.13 | 4.59 | −6.39 | Low | No | No | 0.55 | −4.50 |
19 | Isoliquiritigenin | 256.25 | 77.76 | 2.37 | −3.7 | High | Yes | No | 0.55 | −5.61 |
20 | Isoliquiritin | 418.39 | 156.91 | 0.64 | −3.01 | Low | No | Yes | 0.55 | −8.09 |
21 | Kanzonol R | 370.44 | 68.15 | 4.04 | −5.18 | High | Yes | No | 0.55 | −5.13 |
22 | Licochalcone A | 338.4 | 66.76 | 3.93 | −4.98 | High | Yes | No | 0.55 | −4.89 |
23 | Licocoumarin | 406.47 | 90.9 | 5.07 | −6.41 | High | No | No | 0.55 | −4.29 |
24 | Licoflavanone | 340.37 | 86.99 | 3.33 | −4.91 | High | No | No | 0.55 | −5.22 |
25 | Licopyranocoumarin | 384.38 | 109.36 | 2.69 | −4.17 | High | No | Yes | 0.55 | −6.70 |
26 | Licoriphenone | 372.41 | 96.22 | 3.36 | −4.89 | High | No | No | 0.55 | −5.33 |
27 | Licuraside | 550.51 | 215.83 | −0.37 | −2.98 | Low | No | Yes | 0.17 | −9.55 |
28 | Liquiritigenin | 256.25 | 66.76 | 2.07 | −3.28 | High | Yes | Yes | 0.55 | −6.23 |
29 | Liquiritin | 418.39 | 145.91 | 0.4 | −2.71 | Low | No | Yes | 0.55 | −8.58 |
30 | Liquiritin apioside | 550.51 | 204.83 | −0.82 | −2.5 | Low | No | Yes | 0.17 | −10.25 |
31 | Pinocembrin | 256.25 | 66.76 | 2.26 | −3.64 | High | Yes | No | 0.55 | −5.82 |
32 | Prenyllicoflavone A | 390.47 | 70.67 | 5.19 | −6.32 | High | No | No | 0.55 | −4.19 |
33 | Semilicoisoflavone B | 352.34 | 100.13 | 2.96 | −4.68 | High | No | No | 0.55 | −5.90 |
34 | Shinflavanone | 390.47 | 55.76 | 4.8 | −5.77 | High | Yes | No | 0.55 | −4.85 |
35 | Shinpterocarpin | 322.35 | 47.92 | 3.35 | −4.45 | High | Yes | Yes | 0.55 | −5.74 |
36 | Sitosterol | 414.71 | 20.23 | 7.19 | −7.9 | Low | No | No | 0.55 | −2.20 |
37 | Stigmasterol | 412.69 | 20.23 | 6.97 | −7.46 | Low | No | No | 0.55 | −2.74 |
SN | Selected Skin Permeant Compounds (Ligands) | Probability Percentage of the Predicted Targets | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | ||
1 | Furfuraldehyde | |||||||||||||||||
2 | Glucoliquiritin apioside | 40 | ||||||||||||||||
3 | Glycyrrhizin | 80 | ||||||||||||||||
4 | Isoliquiritin | 30 | 10 | 10 | 10 | 10 | ||||||||||||
5 | Licopyranocoumarin | 15 | 15 | 15 | ||||||||||||||
6 | Licuraside | 20 | 10 | 10 | 10 | |||||||||||||
7 | Liquiritigenin | 100 | 40 | 50 | 50 | 50 | 50 | 30 | 25 | |||||||||
8 | Liquiritin | 20 | 10 | 10 | 10 | 10 | 10 | 10 | ||||||||||
9 | Liquiritin apioside | 40 | 10 | 10 | 10 | 10 | 10 |
SN | Molecular Target | Binding Affinity (kcal.mol−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | S1 | S2 | S3 | ||
1 | Superoxide dismutase (PDB ID: 3HFF) | −3.542 | −7.322 | −7.051 | −6.424 | −5.572 | −7.192 | −6.074 | −6.871 | −6.598 | −4.889 | −6.178 | ND |
2 | Glutathione peroxidase (PDB ID: 2F8A) | −3.215 | −7.979 | −8.409 | −7.504 | −6.195 | −7.443 | −6.508 | −7.228 | −7.457 | −4.225 | −6.192 | ND |
3 | 11B-Hydroxysteroid dehydrogenase 1 (PDB ID: 4YYZ) | −3.589 | −10.900 | −8.245 | −9.553 | −5.880 | −7.419 | −7.061 | −7.451 | −6.746 | −4.933 | −7.533 | ND |
4 | Lipoxygenase (PDB ID: 3V92) | −4.002 | −8.639 | −8.979 | −8.013 | −7.646 | −8.051 | −6.910 | −8.372 | −8.262 | −5.340 | −8.450 | ND |
5 | Cyclo-oxygenase (PDB ID: 5KIR) | −3.725 | −9.163 | −9.427 | −7.560 | −7.736 | −8.523 | −8.035 | −8.565 | −8.549 | −5.488 | −7.310 | ND |
6 | Inducible nitric oxide synthase (PDB ID: 4CX7) | −4.314 | −9.350 | −10.510 | −7.728 | −6.911 | −9.398 | −9.840 | −8.427 | −7.888 | −4.700 | −7.763 | ND |
7 | Tyrosinase (PDB ID: AF-P14679-F1) | −4.509 | −8.608 | −8.768 | −6.748 | −6.772 | −7.206 | −7.595 | −7.160 | −7.557 | −5.593 | −7.406 | ND |
8 | Collagenase (PDB ID: 5UWL) | −4.459 | −9.055 | −8.988 | −8.757 | −8.057 | −8.621 | −6.682 | −9.988 | −9.977 | −5.344 | −9.744 | −13.110 |
9 | Hyaluronidase (PDB ID: 2PE4) | −3.746 | −9.964 | −9.134 | −7.583 | −6.757 | −8.530 | −7.680 | −8.648 | −8.347 | −4.889 | −7.498 | −15.980 |
10 | Elastase (PDB ID: AF-Q9UNI1-F1) | −3.048 | −8.555 | −10.100 | −6.302 | −7.027 | −7.091 | −6.494 | −8.482 | −7.783 | −4.650 | −6.958 | ND |
Simulation Time (ns) | MMGBSA ΔGbind (kcal.mol−1) | |||||||
---|---|---|---|---|---|---|---|---|
Total | Coulomb | Covalent | Hbond | Lipo | Packing | Solv_GB | vdW | |
0 | −73.731 | −31.134 | 10.734 | −3.577 | −28.205 | −1.405 | 42.9483 | −63.092 |
100 | −43.085 | −17.557 | 3.282 | −1.427 | −21.377 | −1.731 | 42.215 | −46.489 |
Simulation Time (ns) | MMGBSA ΔGbind (kcal.mol−1) | |||||||
---|---|---|---|---|---|---|---|---|
Total | Coulomb | Covalent | Hbond | Lipo | Packing | Solv_GB | vdW | |
0 | −91.602 | −63.587 | 4.493 | −4.137 | −20.914 | 0 | 64.420 | −71.877 |
100 | −74.874 | −43.562 | 5.739 | −3.412 | −17.844 | 0 | 47.694 | −63.489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatoki, T.H.; Ajiboye, B.O.; Aremu, A.O. In Silico Evaluation of the Antioxidant, Anti-Inflammatory, and Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.). Cosmetics 2023, 10, 69. https://doi.org/10.3390/cosmetics10030069
Fatoki TH, Ajiboye BO, Aremu AO. In Silico Evaluation of the Antioxidant, Anti-Inflammatory, and Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.). Cosmetics. 2023; 10(3):69. https://doi.org/10.3390/cosmetics10030069
Chicago/Turabian StyleFatoki, Toluwase Hezekiah, Basiru Olaitan Ajiboye, and Adeyemi Oladapo Aremu. 2023. "In Silico Evaluation of the Antioxidant, Anti-Inflammatory, and Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.)" Cosmetics 10, no. 3: 69. https://doi.org/10.3390/cosmetics10030069
APA StyleFatoki, T. H., Ajiboye, B. O., & Aremu, A. O. (2023). In Silico Evaluation of the Antioxidant, Anti-Inflammatory, and Dermatocosmetic Activities of Phytoconstituents in Licorice (Glycyrrhiza glabra L.). Cosmetics, 10(3), 69. https://doi.org/10.3390/cosmetics10030069