Influence of Titanium Dioxide Particle Size on the Photostability of the Chemical UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in a Microemulsion
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Microemulsion Preparation
2.2.2. Photostability Studies
2.2.3. Dark Adsorption Studies
2.2.4. HPLC Analysis
3. Results and Discussion
3.1. Dark Adsorption Studies
3.2. Photostability Studies
Entry | UV-filter combination | % Recovery ± SD | |
---|---|---|---|
BMDM | OC | ||
1 | BMDM | 3.81 ± 1.15 | – |
2 | BMDM + coated TiO2 | 3.43 ± 0.83 | – |
3 | BMDM + micro-TiO2 | 2.05 ± 0.73 | – |
4 | BMDM + nano-TiO2 | 0.00 * | – |
5 | OC | – | 98.54 ± 2.35 |
6 | OC + coated TiO2 | – | 99.98 ± 4.26 |
7 | OC + micro-TiO2 | – | 96.71 ± 2.78 |
8 | OC + nano-TiO2 | – | 88.33 ± 0.77 |
9 | BMDM + OC | 16.08 ± 2.04 | 101.57 ± 1.37 |
10 | BMDM + OC + coated TiO2 | 16.00 ± 1.32 | 98.23 ± 5.97 |
11 | BMDM + OC + micro-TiO2 | 12.59 ± 3.13 | 94.98 ± 1.96 |
12 | BMDM + OC + nano-TiO2 | 0.64 ± 0.52* | 92.45 ± 3.86 |
3.2.1. Direct Photolysis
3.2.2. TiO2 Photocatalysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kullavanijaya, P.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol. 2005, 52, 937–958. [Google Scholar] [CrossRef]
- Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B.D. Photostability of sunscreens. J. Photochem. Photobiol. C 2012, 13, 91–110. [Google Scholar] [CrossRef]
- Butt, S.T.; Christensen, T. Toxicity and phototoxicity of chemical sun filters. Radiat. Prot. Dosim. 2000, 91, 283–286. [Google Scholar] [CrossRef]
- Karlsson, I.; Hillerstrom, L.; Stenfeldt, A.L.; Martensson, J.; Borje, A. Photodegradation of dibenzoylmethanes: Potential cause of photocontact allergy to sunscreens. Chem. Res. Toxicol. 2009, 22, 1881–1892. [Google Scholar] [CrossRef]
- Guidance for Industry: Q1B Photostability Testing of New Drug Substances and Products. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073373.pdf (accessed on 20 January 2014).
- Therapeutic Goods Administration. Australian Regulatory Guidelines for Sunscreens, Version 1.0. Available online: http://www.tga.gov.au/industry/sunscreens-args.htm#.Uu7SSj2SykN (accessed on 20 January 2014).
- U.S. Department of Health and Human Services. Food and Drug Administration, Labeling and Effectiveness Testing: Sunscreen Drug Products for Over-the-Counter Human Use. Available online: http://www.gpo.gov/fdsys/pkg/FR-2011–06–17/pdf/2011–14766.pdf (accessed on 20 January 2014).
- Wang, S.Q.; Balagula, Y.; Osterwalder, U. Photoprotection: A review of the current and future technologies. Dermatol. Ther. 2010, 23, 31–47. [Google Scholar] [CrossRef]
- Lewicka, Z.A.; Yu, W.W.; Oliva, B.L.; Contreras, E.Q.; Colvin, V.L. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol. A 2013, 263, 24–33. [Google Scholar] [CrossRef]
- Kockler, J.; Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Photochemical and photocatalytic degradation of diclofenac and amoxicillin using natural and simulated sunlight. J. Sustain. Sci. Manag. 2012, 7, 23–29. [Google Scholar]
- Buchalska, M.; Kras, G.; Oszajca, M.; Lasocha, W.; Macyk, W. Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions. J. Photochem. Photobiol. A 2010, 213, 158–163. [Google Scholar] [CrossRef]
- Carlotti, M.E.; Ugazio, E.; Sapino, S.; Fenoglio, I.; Greco, G.; Fubini, B. Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radic. Res. 2009, 43, 312–322. [Google Scholar] [CrossRef]
- Tiano, L.; Armeni, T.; Venditti, E.; Barucca, G.; Mincarelli, L.; Damiani, E. Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Radic. Biol. Med. 2010, 49, 408–415. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA), Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=230972 (accessed on 31 April 2014).
- Miyoshi Kasei, I. Sunscreen Materials. Available online: http://www.miyoshikaseigroup.com/products/sunscreen-materials/ultrafine-titanium-dioxide (accessed on 31 April 2014).
- Sensient® Cosmetic Technologies. Cosmetic Ingredients, UV-Filters. Available online: http://www.sensient-cosmetics.com/pageLibre000105cf.aspx (accessed on 4 June 2014).
- European Commission Regulation No. 1223/2009 of the European Parliament and the Council of 30 November 2009 on Cosmetic Products. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:EN:PDF (accessed on 23 January 2014).
- Rampaul, A.; Parkin, I.P.; Cramer, L.P. Damaging and protective properties of inorganic components of sunscreens applied to cultured human skin cells. J. Photochem. Photobiol. A 2007, 191, 138–148. [Google Scholar] [CrossRef]
- Australian Government—Bureau of Meteorology, Six-Monthly Solar Exposure for Australia. Available online: http://www.bom.gov.au/jsp/awap/solar/archive.jsp?map=solarave&colour=colour&map=solarave&year=2014&month=3&period=6month&area=nat (accessed on 31 April 2014).
- Damiani, E.; Astolfi, P.; Giesinger, J.; Ehlis, T.; Herzog, B.; Greci, L.; Baschong, W. Assessment of the photo-degradation of UV-filters and radical-induced peroxidation in cosmetic sunscreen formulations. Free Radic. Res. 2010, 44, 304–312. [Google Scholar] [CrossRef]
- Puglia, C.; Damiani, E.; Offerta, A.; Rizza, L.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: Characterization, in vitro penetration and photostability studies. Eur. J. Pharm. Sci. 2014, 51, 211–217. [Google Scholar] [CrossRef]
- Seite, S.; Moyal, D.; Richard, S.; de Rigal, J.; Leveque, J.L.; Hourseau, C.; Fourtanier, A. Mexoryl (R) SX: A broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J. Photochem. Photobiol. B 1998, 44, 69–76. [Google Scholar] [CrossRef]
- Damiani, E.; Rosati, L.; Castagna, R.; Carloni, P.; Greci, L. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation. J. Photochem. Photobiol. B 2006, 82, 204–213. [Google Scholar] [CrossRef]
- Tarras-Wahlberg, N.; Stenhagen, G.; Larko, O.; Rosen, A.; Wennberg, A.M.; Wennerstrom, O. Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J. Invest. Dermatol. 1999, 113, 547–553. [Google Scholar] [CrossRef]
- Gonzalez, H.; Tarras-Wahlberg, N.; Stromdahl, B.; Juzeniene, A.; Moan, J.; Larko, O.; Rosen, A.; Wennberg, A.-M. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007, 7. [Google Scholar] [CrossRef]
- Maier, H.; Schauberger, G.; Brunnhofer, K.; Honigsmann, H. Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation. J. Invest. Dermatol. 2001, 117, 256–262. [Google Scholar] [CrossRef]
- Albertini, B.; Mezzena, M.; Passerini, N.; Rodriguez, L.; Scalia, S. Evaluation of spray congealing as technique for the preparation of highly loaded solid lipid microparticles containing the sunscreen agent, avobenzone. J. Pharm. Sci. 2009, 98, 2759–2769. [Google Scholar] [CrossRef]
- Montenegro, L.; Carbone, C.; Puglisi, G. Vehicle effects on in vitro release and skin permeation of octylmethoxycinnamate from microemulsions. Int. J. Pharm. 2011, 405, 162–168. [Google Scholar] [CrossRef]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Khan, Z.I.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Emerging role of microemulsions in cosmetics. Recent Pat. Drug Deliv. Formul. 2008, 2, 275–289. [Google Scholar]
- Kockler, J.; Motti, C.A.; Robertson, S.; Oelgemöller, M.; Glass, B.D. HPLC method for the simultaneous determination of the UV-filters butyl methoxy dibenzoylmethane and octocrylene in the presence of their photodegradants. Chromatographia 2013, 76, 1721–1727. [Google Scholar] [CrossRef]
- Thomas, A.G.; Syres, K.L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207–4217. [Google Scholar] [CrossRef]
- Dondi, D.; Albini, A.; Serpone, N. Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection. Photochem. Photobiol. Sci. 2006, 5, 835–843. [Google Scholar] [CrossRef]
- Deflandre, A.; Lang, G. Photostability assessment of sunscreens—benzylidene camphor and debenzoylmethane derivatives. Int. J. Cosmet. Sci. 1988, 10, 53–62. [Google Scholar] [CrossRef]
- Bonda, G. Research pathways to photostable sunscreens. Cosmet. Toil. 2008, 123, 49–60. [Google Scholar]
- Lhiaubet-Vallet, V.; Marin, M.; Jimenez, O.; Gorchs, O.; Trullas, C.; Miranda, M.A. Filter-filter interactions. Photostabilization, triplet quenching and reactivity with singlet oxygen. Photochem. Photobiol. Sci. 2010, 9, 552–558. [Google Scholar] [CrossRef]
- Shaath, N.A. Ultraviolet filters. Photochem. Photobiol. Sci. 2010, 9, 464–469. [Google Scholar] [CrossRef]
- Huong, S.P.; Rocher, E.; Fourneron, J.D.; Charles, L.; Monnier, V.; Bun, H.; Andrieu, V. Photoreactivity of the sunscreen butyl methoxy dibenzoylmethane (DBM) under various experimental conditions. J. Photochem. Photobiol. A 2008, 196, 106–112. [Google Scholar] [CrossRef]
- Roscher, N.M.; Lindemann, M.K.O.; Kong, S.B.; Cho, C.G.; Jiang, P. Photodecomposition of several compounds commonly used as sunscreen agents. J. Photochem. Photobiol. A 1994, 80, 417–421. [Google Scholar] [CrossRef]
- Schwack, W.; Rudolph, T. Photochemistry of dibenzoyl methane UVA filters. Part 1. J. Photochem. Photobiol. B 1995, 28, 229–234. [Google Scholar] [CrossRef]
- Kikuchi, A.; Oguchi-Fujiyama, N.; Miyazawa, K.; Yagi, M. Triplet-triplet energy transfer from a UVA absorber butyl methoxy dibenzoylmethane to UVB absorbers. Photochem. Photobiol. 2014, 90, 511–516. [Google Scholar] [CrossRef]
- Gonzenbach, H.; Hill, T.J.; Truscott, T.G. The triplet energy levels of UVA and UVB sunscreens. J. Photochem. Photobiol. B 1992, 16, 377–379. [Google Scholar] [CrossRef]
- Kikuchi, A.; Oguchi, N.; Yagi, M. Optical and electron paramagnetic resonance studies of the excited states of 4-tert-butyl-4'-methoxydibenzoylmethane and 4-tert-butyl-4'-methoxydibenzoylpropane. J. Phys. Chem. A 2009, 113, 13492–13497. [Google Scholar] [CrossRef]
- Sayre, R.M.; Dowdy, J.C.; Gerwig, A.J.; Shields, W.J.; Lloyd, R.V. Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem. Photobiol. 2005, 81, 452–456. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Mills, A.; LeHunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Konaka, R.; Kasahara, E.; Dunlap, W.C.; Yamamoto, Y.; Chien, K.C.; Inoue, M. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic. Biol. Med. 1999, 27, 294–300. [Google Scholar] [CrossRef]
- Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C 2012, 13, 224–245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.B.; Wang, C.C.; Zakaria, R.; Ying, J.Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
- Wahi, R.K.; Yu, W.W.; Liu, Y.P.; Mejia, M.L.; Falkner, J.C.; Nolte, W.; Colvin, V.L. Photodegradation of congo red catalyzed by nanosized TiO2. J. Mol. Catal. A 2005, 242, 48–56. [Google Scholar] [CrossRef]
- Labille, J.; Feng, J.; Botta, C.; Borschneck, D.; Sammut, M.; Cabie, M.; Auffan, M.; Rose, J.; Bottero, J.-Y. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 2010, 158, 3482–3489. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B.D. Influence of Titanium Dioxide Particle Size on the Photostability of the Chemical UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in a Microemulsion. Cosmetics 2014, 1, 128-139. https://doi.org/10.3390/cosmetics1020128
Kockler J, Oelgemöller M, Robertson S, Glass BD. Influence of Titanium Dioxide Particle Size on the Photostability of the Chemical UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in a Microemulsion. Cosmetics. 2014; 1(2):128-139. https://doi.org/10.3390/cosmetics1020128
Chicago/Turabian StyleKockler, Jutta, Michael Oelgemöller, Sherryl Robertson, and Beverley D. Glass. 2014. "Influence of Titanium Dioxide Particle Size on the Photostability of the Chemical UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in a Microemulsion" Cosmetics 1, no. 2: 128-139. https://doi.org/10.3390/cosmetics1020128
APA StyleKockler, J., Oelgemöller, M., Robertson, S., & Glass, B. D. (2014). Influence of Titanium Dioxide Particle Size on the Photostability of the Chemical UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in a Microemulsion. Cosmetics, 1(2), 128-139. https://doi.org/10.3390/cosmetics1020128