An Assessment of Potential Resources for Biomass Energy in Nigeria
Abstract
:1. Introduction
2. Geographical Location and Demography of Nigeria
3. Energy Situation in Nigeria
4. Biomass Resources in Nigeria
4.1. Wood and Woody Biomass
4.2. Herbaceous Biomass
4.2.1. Agricultural Residues
Cassava
Cocoa
Coconut
Coffee
Cowpea
Fruits and Vegetables
Groundnut
Maize
Millet
Oil Palm
Plantain
Potato
Rice
Sorghum
Soybean
Sugarcane
Wheat
Yam
4.2.2. Energy Crops
4.3. Aquatic Biomass
4.4. Animal and Human Waste
4.5. Municipal Solid Waste
5. Overview of Biomass Conversion Technologies in Nigeria
5.1. Physical or Mechanical Conversion
5.2. Thermochemical Conversion
5.3. Biochemical Conversion
6. Energy Potential of Biomass in Nigeria
7. Renewable Energy Policy
8. Implication of Biomass Resource Development
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdallah, S.M.; Bressers, H.; Clancy, J.S. Energy reforms in the developing world: Sustainable development compromised? Int. J. Sustain. Energy Plann. Manag. 2015, 5, 41–56. [Google Scholar]
- Lior, N. Sustainable energy development (May 2011) with some game-changers. Energy 2012, 40, 3–18. [Google Scholar] [CrossRef]
- Lior, N. Sustainable energy development: The present (2011) situation and possible paths to the future. Energy 2012, 43, 174–191. [Google Scholar] [CrossRef]
- Abolhosseini, S.; Heshmati, A.; Altmann, J. A Review of Renewable Energy Supply and Energy Efficiency Technologies; IZA Institute for the Study of Labour Economics: Bonn, Germany, 2014. [Google Scholar]
- Hussain, J.; Hassan, S. Global energy transition and the role of energy mix in creating energy crisis in Pakistan. Pak. J. Hum. Soc. Sci. 2019, 7, 219–232. [Google Scholar]
- Ismail, S.; Ojolo, S.; Orisaleye, J.; Olusegun, F. Design of an office table solar-DC powered fan. J. Emerg. Trends Eng. Appl. Sci. 2014, 5, 1–5. [Google Scholar]
- Orisaleye, J.I.; Ogbonnaya, M.; Ogundare, A.A.; Ismail, S.O. Development and performance evaluation of a natural draft mixed-type solar dryer for agricultural products. J. Sci. Technol. 2018, 10, 18–24. [Google Scholar] [CrossRef]
- Ismail, S.; Ojolo, S.; Orisaleye, J.; Alogbo, A. Design and development of a dual solar water purifier. Int. J. Adv. Sci. Eng. Technol. Res. 2013, 2, 8–17. [Google Scholar]
- Orisaleye, J.; Ismail, S.; Ogbonnaya, M.; Ogundare, A. Development and performance evaluation of a solar water still. Acta Tech. Corvininesis Bull. Eng. 2018, 11, 91–96. [Google Scholar]
- Piebalgs, A. Renewable Energy: Potential and Benefits for Developing Countries. In Proceedings of the Conference organized by the European Office of the Konrad-Adenauer-Stiftung and the EastWest Institute, Brussels, Belgium, 28 February 2007; pp. 21–26. [Google Scholar]
- Osiolo, H.H. Green Energy and Its Impact on Employment and Economic Growth; Paper 19; United Nations University Institute for Natural Resources in Africa (UNU-INRA): Accra, Ghana, 2016. [Google Scholar]
- Tun, M.M.; Juchelkova, D.; Win, M.M.; Thu, A.M.; Puchor, T. Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources 2019, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Tun, M.M.; Juchelková, D. Biomass sources and energy potential for energy sector in Myanmar: An outlook. Resources 2019, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Vernyuy Wirba, A.; Muhammad-Sukki, F.; Mas’ud, I.A.; Munir, A.B.; Md Yunus, N. An assessment of renewable energy readiness in Africa: Case study of Nigeria and Cameroon. Renew. Sustain. Energy Rev. 2015, 51, 775–784. [Google Scholar] [CrossRef]
- Ajayi, O.O. Assessment of utilization of wind energy resources in Nigeria. Energy Policy 2009, 37, 750–753. [Google Scholar] [CrossRef]
- Keles, S.; Bilgen, S.; Kaygusuz, K. Biomass energy source in developing countries. J. Eng. Res. Appl. Sci. 2017, 6, 566–576. [Google Scholar]
- Gujba, H.; Mulugetta, Y.; Azapagic, A. The household cooking sector in Nigeria: Environmental and economic sustainability assessment. Resources 2015, 4, 412–433. [Google Scholar] [CrossRef] [Green Version]
- Grubb, M. Kyoto and the future of international climate change responses: From here to where? Int. Rev. Environ. Strateg. 2004, 5, 15–38. [Google Scholar]
- Summit, C.A. Report of the Secretary-General on the 2019 Climate Action Summit and the way forward in 2020; United Nations: New York, NY, USA, 2019. [Google Scholar]
- KPMG Global Sustainability Institute. In Proceedings of the COP25: Key Outcomes of the 25th UN Climate Conference—Find Out What Was Agreed as COP25 and What This Means For Business, Madrid, Spain, 2–13 December 2019; KPMG Global Sustainability Institute: Amstellvenn, The Netherlands, 2019.
- Sambo, A.S. Nigeria’s long term energy demand outlook to 2030. J. Energy PolicyRes. Dev. 2011, 1, 1–17. [Google Scholar]
- United Nations (UN). Nigeria, Map No. 4228, Rev.1. Available online: www.un.org/gis (accessed on 8 June 2019).
- Akuru, U.B.; Okoro, O.I. A Prediction on Nigeria’s oil depletion based on Hubbert’s Model and the need for renewable energy. ISRN Renew. Energy 2011, 2011, 285649. [Google Scholar] [CrossRef] [Green Version]
- PricewaterhouseCoopers. Assessing the Impact of Gas Flaring on the Nigerian Economy; PricewaterhouseCoopers Limited (PwC): Abuja, Nigeria, 2019. [Google Scholar]
- Oyedepo, S.O. Efficient energy utilization as a tool for sustainable development in Nigeria. Int. J. Energy Environ. Eng. 2012, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Oyedepo, S.O. Energy and sustainable development in Nigeria: The way forward. Energy Sustain. Soc. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Naibbi, A.I.; Healey, R.G. Nothern Nigeria’s dependence on fuelwood: Insights from nationwide cooking fuel distribution data. Int. J. Hum. Soc. Sci. 2013, 3, 160–173. [Google Scholar]
- Ezema, I.C.; Olotuah, A.O.; Fagbenle, O.I. Evaluation of energy use in public housing in Lagos, Nigeria: Prospects for renewable energy sources. Int. J. Renew. Energy Dev. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Ojolo, S.J.; Orisaleye, J.I.; Ismail, S.O.; Abolarin, S.M. Technical potential of biomass energy in Nigeria. Ife J. Technol. 2012, 21, 60–65. [Google Scholar]
- Okeke, E.M. Analysis of renewable energy potentials in Nigeria for national development. Int. J. Eng. Res. Rev. 2016, 4, 15–19. [Google Scholar]
- Japan International Cooperation Agency (JICA). The Project for Master Plan Study on National Power System Development in the Federal Republic of Nigeria; Federal Ministry of Power, Works and Housing: Abuja, Nigeria, 2019. [Google Scholar]
- International Energy Agency (IEA). Key stats for Nigeria. Available online: iea.org/countries/Nigeria (accessed on 22 October 2019).
- Oyedepo, S.O. Energy in perspective of sustainable development in Nigeria. Sustain. Energy 2013, 1, 14–25. [Google Scholar]
- Atanda, I.W.; Peter, M.E.; Yasiru, A.O. Energy crisis in Nigeria: Evidence form Lagos State. Ovidius Univ. Ann. Econ. Sci. Ser. 2017, 17, 23–28. [Google Scholar]
- Akhator, P.E.; Obanor, A.I.; Sadjere, E.G. Electricity situation and potential development in Nigeria using off-grid green energy solutions. J. Appl. Sci. Environ. Manag. 2019, 23, 527–537. [Google Scholar] [CrossRef]
- Maren, I.B.; Agontu, J.A.; Mangai, M.M. Energy security in Nigeria: Challenges and way forward. Int. J. Eng. Sci. Invent. 2013, 2, 1–6. [Google Scholar]
- Rural Electrification Agency (REA). Energy Database. Available online: database.rea.gov.ng (accessed on 22 October 2019).
- Sa’ad, S.; Bugaje, I.M. Biomass consumption in Nigeria: Trends and policy issues. J. Agric. Sustain. 2016, 9, 127–157. [Google Scholar]
- Sokan-Adeaga, A.A.; Ana, G.R.E.E. A comprehensive review of biomass resources and biofuel production in Nigeria: Potential and prospects. Rev. Environ. Health 2015, 30. [Google Scholar] [CrossRef]
- Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C. Biomass. In Bioenergy Systems for the Future; Dalena, F., Basile, A., Rossi, C., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–42. [Google Scholar] [CrossRef]
- Martín, C.; López, Y.; Plasencia, Y.; Hernández, E. Characterization of agricultural and agro-industrial residues as raw materials for ethanol production. Chem. Biochem. Eng. Q. 2006, 20, 443–447. [Google Scholar]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 22, 962–979. [Google Scholar] [CrossRef]
- Shelly, J.R. Woody Biomass: What Is It-What Do We Do with It? Woody Biomass Factsheet; Department of Agriculture: Washington, DC, USA, 2011. [Google Scholar]
- Orimoogunje, O.O.I.; Ekanade, O.; Adesina, F.A. Land use changes and forest reserve management in a changing environment: South-western Nigeria experience. J. Geogr. Reg. Plan. 2009, 2, 283–290. [Google Scholar]
- Imasuen, O.I.; Oshodi, J.N.; Onyeobi, T.U.S. Protected areas for environmental sustainability in Nigeria. J. Appl. Sci. Environ. Manag. 2013, 17, 53–58. [Google Scholar]
- Ladan, S.I. Forests and forest reserves as security threats in Northern Nigeria. Eur. Sci. J. 2014, 10, 120–142. [Google Scholar]
- Aigbe, H.I.; Oluku, S.O. Depleting forest resources of Nigeria and its impact on climate. J. Agric. Soc. Res. 2012, 12, 1–6. [Google Scholar]
- Igu, N.I.; Nzoiwu, C.P.; Anyaeze, E.U. Biodiversity and carbon potentials of a Nigerian forest reserve: Insights from the Niger Basin. J. Environ. Prot. 2017, 8, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.J.; Fasina, O. Biomass resources and bioenergy potentials in Nigeria. Afr. J. Agric. Res. 2013, 8, 4975–4989. [Google Scholar]
- Zalfar, S. Biomass as Renewable Energy Resource. Available online: bioenergyconsult.com/tag/forestry-residues (accessed on 30 October 2019).
- Ogunrinde, O.S.; Owoyemi, J.M. Sustainable Management of Nigerian Forest Through Efficient Recovery of Harvesting Residues. Int. J. Sci. Res. Multi. Stud. 2016, 2, 1–6. [Google Scholar]
- Food and Agricultural Organization of the United Nations (FAO). Energy Conservation in The Mechanical Forest Industries. FAO Forestry Paper 93. Available online: fao.org/3/t0269e/t0269e08.htm (accessed on 30 October 2019).
- Ogunwusi, A.A. Wood waste generation in the forest industry in Nigeria and prospects for its industrial utilization. Civ. Environ. Res. 2014, 6, 62–69. [Google Scholar]
- FAOSTAT. Forest Production and Trade for Nigeria. Available online: fao.org/faostat/en/#data/FO (accessed on 26 October 2019).
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues—Generation, Utilization and Availability. In Proceedings of the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January 1997. [Google Scholar]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Jekayinfa, S.O.; Scholz, V. Estimation of possible energy contributions of crop residues in Nigeria. Int. J. Energy Technol. Policy 2013, 9, 93–109. [Google Scholar] [CrossRef]
- Cáceres, K.R.; Patiño, F.R.B.; Duarte, J.A.A.; Kafarov, V. Assessment of the energy potential of agricultural residues in non-interconnected zones of Colombia: Case study of Chocó and Putumayo. Chem. Eng. Trans. 2016, 50, 349–354. [Google Scholar]
- Jekayinfa, S.O.; Scholz, V. Potential availability of energetically usable crop residues in Nigeria. Energy Sources Part A 2009, 31, 687–697. [Google Scholar] [CrossRef]
- Seglah, P.A.; Wang, Y.; Wang, H.; Bi, Y. Estimation and efficient utilization of straw resources in Ghana. Sustainability 2019, 11, 4172. [Google Scholar] [CrossRef] [Green Version]
- Echebiri, R.N.; Edaba, M.E.I. Production and utilization of cassava in Nigeria: Prospects for food security and infant nutrition. Prod. Agric. Technol. 2008, 4, 38–52. [Google Scholar]
- Taiwo, K.A. Utilization Potentials of Cassava in Nigeria: The domestic and industrial products. Food Rev. Int. 2006, 22, 29–42. [Google Scholar] [CrossRef]
- Wossen, T.; Alene, A.; Abdoulaye, T.; Feleke, S.; Rabbi, I.Y.; Manyong, V. Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in Nigeria. J. Agric. Econ. 2018, 70, 392–407. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Cassava (Manihot esculenta). In Safety Assessment of Transgenic Organisms in the Environment, OECD Consensus Documents, Harmonisation of Regulatory Oversight in Biotechnology; OECD Publishing: Paris, France, 2016; Volume 6. [Google Scholar]
- Asante-Pok, A. Analysis of Incentives and Disincentives for Cassava in Nigeria. In Technical Note Series, Monitoring African Food and Agricultural Policies; FAO: Rome, Italy, 2013. [Google Scholar]
- Olukanni, D.; Olatunji, T. Cassava waste management and biogas generation potential in selected Local Government Areas in Ogun State, Nigeria. Recycle 2018, 3, 58. [Google Scholar] [CrossRef]
- Ozoegwu, C.G.; Eze, C.; Onwosi, C.O.; Mgbemene, C.A.; Ozor, P.A. Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies. Renew. Sustain. Energy Rev. 2017, 72, 625–638. [Google Scholar] [CrossRef]
- Graffham, A.; Naziri, D.; Sergeant, A.; Sanni, L.; Abayomi, L.; Siwoku, B. Market Opportunities for Cassava in Nigeria. Cassava: Adding Value for Africa; Natural Resources Institute, University of Greenwich: Greenwich, UK, 2013. [Google Scholar]
- Pothiraj, C.; Arun, A.; Eyini, M. Simultaneous saccharification and fermentation of cassava waste for ethanol production. Biofuel Res. J. 2015, 2, 196–202. [Google Scholar] [CrossRef]
- Ubalua, A.O. Cassava wastes: Treatment options and value addition alternatives. Afr. J. Biotechnol. 2007, 6, 2065–2073. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Ibeto, C.N.; Ezeoha, S.L.; Ogbuagu, N.J. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energy 2015, 83, 745–752. [Google Scholar] [CrossRef]
- Veiga, J.P.S.; Valle, T.L.; Feltran, J.C.; Bizzo, W.A. Characterization and productivity of cassava waste and its use as an energy source. Renew. Energy 2016, 93, 691–699. [Google Scholar] [CrossRef]
- Jekayinfa, S.O.; Scholz, V. Laboratory scale preparation of biogas from cassava tubers, cassava peels, and palm kernel oil residues. Energy Sources Part A 2013, 35, 2022–2032. [Google Scholar] [CrossRef]
- Amao, O.D.; Oni, O.; Adeoye, I. Competitiveness of cocoa-based farming household in Nigeria. J. Dev. Agric. Econ. 2015, 7, 80–84. [Google Scholar] [CrossRef]
- Hamzat, R.A.; Olaiya, A.O.; Sanusi, R.A.; Adedeji, A.R. State of Cocoa Growing, Quality and Research in Nigeria: Need for Intervention. In Proceedings of the Biannual Partnership Programme of the World Cocoa Foundation (WCF), Brussels, Belgium, 16–18 May 2006. [Google Scholar]
- Cadoni, P. Analysis of Incentives and Disincentives for Cocoa in Nigeria; FAO: Rome, Italy, 2013. [Google Scholar]
- Adewuyi, A.O.; Babatunde, M.A.; Bankole, A.S. A global value chain of cocoa and garment in Nigeria. J. Sustain. Dev. Afr. 2014, 16, 1–20. [Google Scholar]
- Panak Balentić, J.; Ačkar, Đ.; Jokić, S.; Jozinović, A.; Babić, J.; Miličević, B.; Šubarić, D.; Pavlović, N. Cocoa Shell: A by-product with great potential for wide application. Molecules 2018, 23, 1404. [Google Scholar] [CrossRef] [Green Version]
- Mudakir, I.; Hastuti, U.S.; Rohman, F.; Gofur, A. The effect of cocoa pods waste as a growing media supplement on productivity and nutrient content of brown oyster mushroom. J. Biol. Agric. Healthc. 2014, 4, 134–140. [Google Scholar]
- Awolu, O.O.; Oyeyemi, S.O. Optimization of bioethanol production from cocoa (Theobroma cacao) bean shell. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 506–514. [Google Scholar]
- Darwin, N.A.; Cheng, J.J.; Gontupil, J.; Liu, Z. Influence of total solid concentration for methane production of cocoa husk co-digested with digested swine manure. Int. J. Environ. Waste Manag. 2016, 17, 71. [Google Scholar] [CrossRef]
- Darwin, D.; Cheng, J.J.; Liu, Z.; Gontuphil, J. Anaerobic co-digestion of cocoa husk with digested swine manure: Evaluation of biodegradation efficiency in methane productivity. Agric. Eng. Int. CIGR J. 2016, 18, 147–156. [Google Scholar]
- Mancini, G.; Papirio, S.; Lens, P.N.L.; Esposito, G. Increased biogas production from wheat straw by chemical pretreatments. Renew. Energy 2018, 119, 608–614. [Google Scholar] [CrossRef]
- Adjin-Tetteh, M.; Asiedu, N.; Dodoo-Arhin, D.; Karam, A.; Amaniampong, P.N. Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind. Crops Prod. 2018, 119, 304–312. [Google Scholar] [CrossRef]
- Titiloye, J.O.; Abu Bakar, M.S.; Odetoye, T.E. Thermochemical characterisation of agricultural wastes from West Africa. Ind. Crops Prod. 2013, 47, 199–203. [Google Scholar] [CrossRef]
- Osemwegie, Q.; Anyiwe, M.; Odewale, J. Econometric analysis of the economic cost of Lethal Yellowing Disease (LYD) on coconut (Cocos nucifera L.) yield in LYD epidemic area of Nigeria: A case study of Nigerian Institute for Oil Palm Research (NIFOR). Am. J. Exp. Agric. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Uwubanmwen, I.O.; Nwawe, C.N.; Okere, R.A.; Dada, M.; Eseigbe, E. Harnessing the potentials of the coconut palm in the Nigerian economy. World J. Agric. Sci. 2011, 7, 684–691. [Google Scholar]
- Bashirat, O.O. Feasibility Study on the Import of Fresh Organic Coconut from Nigeria to Germany—A case Study of Biotropic Import Company, Germany. Master’s Thesis, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands, September 2012. [Google Scholar]
- Nwankwojike, B.N.; Onuba, O.; Ogbonna, U. Development of a coconut dehusking machine for rural small scale farm holders. Int. J. Innov. Technol. Creat. Eng. 2012, 2, 1–7. [Google Scholar]
- Suharto, J.C. Potentials for Increasing Farmers’ Income and Enhancing Competitiveness of The Coconut Industry Through Alternative Uses. In Proceedings of the Workshop on Promoting Multi-purpose Uses and Competitiveness of the Coconut, Chumphon, Thailand, 26–29 September 1996. [Google Scholar]
- Raghavan, K. Biofuels from Coconuts; FACT Foundation: Wageningen, The Netherlands, 2010. [Google Scholar]
- Yerima, I.; Grema, M.Z. The potential of coconut shell as biofuel. J. Middle East N Afr. Sci. 2018, 4, 11–15. [Google Scholar]
- Amoako, G.; Mensah-Amoah, P. Determination of calorific values of coconut shells and coconut husks. J. Mater. Sci. Res. Rev. 2019, 2, 1–7. [Google Scholar]
- Cabral, M.M.S.; Abud, A.K.d.S.; Silva, C.E.d.F.; Almeida, R.M.R.G. Bioethanol production from coconut husk fiber. Ciência Rural 2016, 46, 1872–1877. [Google Scholar] [CrossRef] [Green Version]
- Tooy, D.; Nelwan, L.; Pangkerego, F. Evaluation of Biomass Gasification Using Coconut Husks In Producing Energy To Generate Small-Scale Electricity. In Proceedings of the International Conference on Artificial Intelligence, Energy and Manufacturing Engineering (ICAEME’2014), Kuala Lumpur, Malaysia, 9–10 June 2014. [Google Scholar]
- Adepoju, A.F.; Adenuga, O.O.; Mapayi, E.F.; Olaniyi, O.O.; Adepoju, F.A. Coffee: Botany, distribution, diversity, chemical composition and its management. IOSR J. Agric. Vet. Sci. 2017, 2, 1–7. [Google Scholar]
- Sarumi, M.B.; Ladipo, D.O.; Denton, L.; Olopade, E.O.; Badaru, K.; Ughasoro, C. Nigeria: Country report to the FAO International Technical Conference on Plant Genetic Resources (Leipzig, 1996); FAO: Rome, Italy, 1995. [Google Scholar]
- Oko-Isu, A.; Chukwu, A.U.; Ofoegbu, G.N.; Igberi, C.O.; Ololo, K.O.; Agbanike, T.F.; Anochiwa, L.; Uwajumogu, N.; Enyoghasim, M.O.; Okoro, U.N.; et al. Coffee output reaction to climate change and commodity price volatility: The Nigeria experience. Sustainability 2019, 11, 3503. [Google Scholar] [CrossRef] [Green Version]
- Adeleke, S.A.; Olukunle, O.J.; Olaniran, J.A.; Famuyiwa, B.S. Design of a small-scale hulling machine for improved wet-processed coffee. Int. J. Sci. Technol. Res. 2017, 6, 391–397. [Google Scholar]
- Figueroa, G.A.; Homann, T.; Rawel, H.M. Coffee production wastes: Potentials and perspectives. Austin Food Sci. 2016, 1, 1014. [Google Scholar]
- Von Eden, J.C.; Calvert, K.C.; Sanh, K.; Hoa, H.; Tri, Q.; Vietnam, S.R. Review of Coffee Wastewater Characteristics and Approaches to Treatment; German Technical Cooperation Agency: Bonn, Germany, 2002. [Google Scholar]
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas potential of coffee processing waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef] [Green Version]
- Vítěz, T.; Koutný, T.; Šotnar, M.; Chovanec, J. On the spent coffee grounds biogas production. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1279–1282. [Google Scholar] [CrossRef] [Green Version]
- Luz, F.C.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass fast pyrolysis in screw reactors: Prediction of spent coffee grounds bio-oil production through a monodimensional model. Energy Convers. Manag. 2018, 168, 98–106. [Google Scholar] [CrossRef]
- Ajetomobi, J.; Abiodun, A. Climate change impacts on cowpea productivity in Nigeria. Afr. J. Food Agric. Nutr. Dev. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C. Cowpea: Post-Harvest Operations; FAO: Rome, Italy, 2004. [Google Scholar]
- Okonji, C.J.; Okeleye, K.A.; Aderibigbe, S.G.; Oyekanmi, A.A.; Sakariyawo, O.S.; Okelana, M.A.O. Effect of cowpea residue incorporation and nitrogen application rates on the productivity of upland rice. World J. Agric. Sci. 2011, 2, 1427–1436. [Google Scholar] [CrossRef]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Madhukara, K.; Srilatha, H.R.; Srinath, K.; Bharathi, K.; Nand, K. Production of methane from green pea shells in floating dome digesters. Process. Biochem. 1997, 32, 509–513. [Google Scholar] [CrossRef]
- Ibeawuchi, I.I.; Okoli, N.A.; Alagba, R.A.; Ofor, M.O.; Emma-Okafor, L.C.; Peter-Onoh, C.A.; Obiefuna, J.C. Fruit and vegetable crop production in Nigeria: The gains, challenges and the way forward. J. Biol. Agric. Healthc. 2015, 5, 194–208. [Google Scholar]
- Singh, A.; Kuila, A.; Adak, S.; Bishai, M.; Banerjee, R. Utilization of vegetable wastes for bioenergy generation. Agric. Res. 2012, 1, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Jekayinfa, S.O.; Linke, B.; Pecenka, R. Biogas production from selected crop residues in Nigeria and estimation of its electricity value. Int. J. Renew. Energy Technol. 2015, 6, 101. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, H.; Liu, Y.; Huang, Y.; Zhang, R.; Chen, C.; Liu, G. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste Manag. 2016, 52, 295–301. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.M.; Lima Alino, J.H.; Triolo, J.M.; Flotats, X.; Silva de Mendonça Costa, M.S. Methane potential of fruit and vegetable waste: An evaluation of the semi-continuous anaerobic mono-digestion. Environ. Technol. 2018, 41, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Ravi, P.P.; Lindner, J.; Oechsner, H.; Lemmer, A. Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresour. Technol. 2018, 247, 96–102. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Wicks, M.; Li, Y.; Keener, H. Anaerobic digestion of food waste for bioenergy production. Adv. Food Waste Bioenergy Prod. 2018, 1, 1–8. [Google Scholar]
- Martí-Herrero, J.; Soria-Castellón, G.; Diaz-de-Basurto, A.; Alvarez, R.; Chemisana, D. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew. Energy 2019, 133, 676–684. [Google Scholar] [CrossRef]
- Ola, F.A.; Jekayinfa, S.O. Assessment of the product yields from the thermal decomposition of mango stone shell. Sci. Focus 2014, 19, 65–71. [Google Scholar]
- Ajeigbe, H.A.; Waliyar, F.; Echekwu, C.A.; Ayuba, K.; Motagi, B.N.; Eniayeju, D.; Inuwa, A. A Farmer’s Guide to Groundnut Production in Nigeria; International Crops Research Institute for the Semi Arid Tropics, Federal Ministry of Agriculture and Rural Development: Abuja, Nigeria, 2014. [Google Scholar]
- Duc, P.A.; Dharanipriya, P.; Velmurugan, B.K.; Shanmugavadivu, M. Groundnut shell—A beneficial bio-waste. Biocatal. Agric. Biotechnol. 2019, 20, 101206. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Lawan, I.; Inuwa, M.B.; Mustapha, A. Assessment of Groundnut Waste Management and Utilization: A Case Study of Dawakin Tofa Local Government of Kano State. In Proceedings of the Second International Interdisciplinary Conference on Global Initiatives for Integrated Development, Chukwuemeka Odumegwu University, Uli, Anambra, Nigeria, 2–5 September 2015; pp. 598–604. [Google Scholar]
- Oyelaran, O.A. Characterization of briquettes produced from groundnut shell and waste paper admixture. Iran. J. Energy Environ. 2015, 6. [Google Scholar] [CrossRef]
- Nyachaka, C.J.; Yawas, D.S.; Pam, G.Y. Production and performance evaluation of bioethanol fuel from groundnuts shell waste. Am. J. Eng. Res. 2013, 2, 303–312. [Google Scholar]
- Olafimihan, E.O.; Adebiyi, K.A.; Jekayinfa, S.O. Effect of temperature on the production of ethanol fuel from selected agricultural residues. Int. J. Mech. Eng. 2015, 4, 51–56. [Google Scholar]
- Radhakrishnan, N.; Gnanamoorthi, V. Pyrolysis of groundnut shell biomass to produce bio-oil. J. Chem. Pharm. Sci. 2015, 9, 34–36. [Google Scholar]
- Shuaibu, M.U.; Ibitoye, S.J.; Saliu, O.J. Output projections for maize in Nigeria (2015–2030), implication on its importation. Curr. Res. J. Commer. Manag. 2015, 1, 24–28. [Google Scholar]
- Abdulrahaman, A.A.; Kolawole, O.M. Traditional preparations and uses of maize in Nigeria. Ethnobot. Leafl. 2006, 10, 219–227. [Google Scholar]
- Cadoni, P.; Angelucci, F. Analysis of Incentives and Disincentives for Maize in Nigeria; FAO: Rome, Italy, 2013. [Google Scholar]
- Aliyu, A.K.; Modu, B.; Tan, C.W. A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria. Renew. Sustain. Energy Rev. 2018, 81, 2502–2518. [Google Scholar] [CrossRef]
- Batidzirai, B.; Valk, M.; Wicke, B.; Junginger, M.; Daioglou, V.; Euler, W.; Faaij, A.P.C. Current and future technical, economic and environmental feasibility of maize and wheat residues supply for biomass energy application: Illustrated for South Africa. Biomass Bioenergy 2016, 92, 106–129. [Google Scholar] [CrossRef] [Green Version]
- Jekayinfa, S.O.; Pecenka, R.; Orisaleye, J.I. Empirical model for prediction of density and water resistance of corn cob briquettes. Int. J. Renew. Energy Technol. 2019, 10, 212–228. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Jekayinfa, S.O.; Adebayo, A.O.; Ahmed, N.A.; Pecenka, R. Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources Part A 2018, 40, 3019–3028. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Jekayinfa, S.O.; Pecenka, R.; Onifade, T.B. Effect of densification variables on water resistance of corn cob briquettes. Agron. Res. 2019, 17, 1722–1734. [Google Scholar]
- Luque, L.; Oudenhoven, S.; Westerhof, R.; van Rossum, G.; Berruti, F.; Kersten, S.; Rehmann, L. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach. Biotechnol. Biofuels 2016, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.S.; Zhang, J.; Bao, J. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain. Bioresour. Technol. 2015, 189, 399–404. [Google Scholar] [CrossRef]
- Goh, E.-B.; Baidoo, E.E.; Keasling, J.D.; Beller, H.R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 2012, 78, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Liang, L.; He, Q.; Li, C.; Xu, F.; Sun, J.; Goh, E.B.; Konda, N.M.; Beller, H.R.; Simmons, B.A. Methyl Ketones from Municipal solid waste blends by one-pot ionic-liquid pretreatment, saccharification, and fermentation. ChemSusChem 2019, 12, 4313–4322. [Google Scholar] [CrossRef]
- Adebayo, A.O.; Jekayinfa, S.O.; Linke, B. Effect of co-digestion on anaerobic digestion of cattle slurry with maize cob at mesophilic temperature. J. Energy Technol. Policy 2013, 3, 47–54. [Google Scholar] [CrossRef]
- Adebayo, A.O.; Jekayinfa, S.O.; Linke, B. Effect of co-digestion on anaerobic digestion of pig slurry with maize cob at mesophilic temperature. J. Nat. Sci. Res. 2014, 4, 66–73. [Google Scholar]
- Adebayo, A.O.; Jekayinfa, S.O.; Linke, B. Effect of co-digesting pig slurry with maize stalk on biogas production at mesophilic temperature. J. Multidiscip. Eng. Technol. 2015, 2, 2295–2300. [Google Scholar]
- Sukhesh, M.J.; Rao, P.V. Anaerobic digestion of crop residues: Technological developments and environmental impact in the Indian context. Biocatal. Agric. Biotechnol. 2018, 16, 513–528. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ceranic, M.; Kosanic, T.; Djuranovic, D.; Kaludjerovic, Z.; Djuric, S.; Gojkovic, P.; Bozickovic, R. Experimental investigation of corn cob pyrolysis. J. Renew. Sustain. Energy 2016, 8, 063102. [Google Scholar] [CrossRef]
- Tippayawong, N.; Rerkkriangkrai, P.; Aggarangsi, P.; Pattiya, A. Characterization of biochar from pyrolysis of corn residues in a semi-continuous carbonizer. Eng. Trans. 2018, 70, 1387–1392. [Google Scholar]
- Ukwuru, M.U.; Muritala, A.; Iheofor, A.O. Cereal utilization in Nigeria. Res. J. Food Nutr. 2018, 2, 1–12. [Google Scholar]
- Izge, A.U.; Song, I.M. Pearl millet breeding and production in Nigeria: Problems and prospects. J. Environ. Issues Agric. Dev. Countr. 2013, 5, 25–33. [Google Scholar]
- Lamers, J.; Feil, P. The many uses of millet residues. Ilea Newsl. 1993, 9, 15. [Google Scholar]
- Lawal, O.O. Nutritional composition of a full diallel-crossed forage pearl millet of Nigeria origin. Afr. Crop Sci. J. 2017, 25, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Oyedepo, S.O.; Dunmade, I.S.; Adekeye, T.; Attabo, A.A.; Olawole, O.C.; Babalola, P.O.; Oyebanji, J.A.; Udo, M.O.; Lilanko, O.; Leramo, R.O. Bioenergy technology development in Nigeri—Pathway to sustainable energy development. Int. J. Environ. Sustain. Dev. 2019, 18, 175–205. [Google Scholar] [CrossRef]
- Izah, S.C.; Angaye, T.C.N.; Ohimain, E.I. Environmental impacts of oil palm processing in Nigeria. Biotechnol. Resear. 2016, 2, 132–141. [Google Scholar]
- Ahmad, A.; Buang, A.; Bhat, A.H. Renewable and sustainable bioenergy production from microalgal co-cultivation with Palm Oil Mill Effluent (POME): A review. Renew. Sustain. Energy Rev. 2016, 65, 214–234. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghufran, R.; Wahid, Z.A. Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Rev. Environ. Sci. Biotechnol. 2011, 10, 353–376. [Google Scholar] [CrossRef] [Green Version]
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Shamsuddin, A.H.; Liew, M.S. High Quality Solid Biofuel Briquette Production from Palm Oil Milling Solid Wastes. In Proceedings of theASME 2009 3rd International Conference on Energy Collocated with the Heat Transfer and InterPACK09 Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 125–130. [Google Scholar]
- Yuhazri, M.Y.; Sihombing, H.; Nirmal, U.; Lau, S.; Tom, P.P. Solid fuel from empty fruit bunch fiber and waste papers, part 3: Ash content from combustion test. Glob. Eng. Technol. Rev. 2012, 2, 7–13. [Google Scholar]
- Safana, A.A.; Abdullah, N.; Sulaiman, F. Bio-char and bio-oil mixture derived from the pyrolysis of mesocarp fibre for briquettes production. J. Oil Palm Res. 2018, 30, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, S.O.S.; Aiyelaagbe, I.O.O.; Akyeampong, E. Plantain (Musa spp.) cultivation in Nigeria: A review of its production, marketing and research in the last two decades. Acta Hortic. 2010, 879, 211–218. [Google Scholar] [CrossRef]
- Ekunwe, P.A.; Ajayi, H.I. Economics of plantain production in Edo State Nigeria. Res. J. Agric. Biol. Sci. 2010, 6, 902–905. [Google Scholar]
- Okareh, O.T.; Adeolu, A.T.; Adepoju, O.T. Proximate and mineral composition of plantain (Musa Paradisiaca) wastes flour; a potential nutrients source in the formulation of animal feeds. Afr. J. Food Sci. Technol. 2015, 6, 53–57. [Google Scholar] [CrossRef]
- Agwa, O.K.; Nwosu, I.G.; Abu, G.O. Bioethanol production from Chlorella vulgaris biomass cultivated with plantain (Musa paradisiaca) peels extract. Adv. Biosci. Biotechnol. 2017, 08, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Itelima, J.; Onwuliri, F.; Onwuliri, E.; Onyimba, I.; Oforji, S. Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. Int. J. Environ. Sci. Dev. 2013, 4, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Parra-Ramírez, D.; Solarte-Toro, J.C.; Cardona-Alzate, C.A. Techno-economic and environmental analysis of biogas production from plantain pseudostem waste in Colombia. Waste Biomass Valorization 2019, 11, 3161–3171. [Google Scholar] [CrossRef]
- Ilori, M.O.; Adebusoye, S.A.; Lawal, A.K.; Awotiwon, O.A. Production of biogas from banana and plantain peels. Adv. Environ. Biol. 2007, 1, 33–38. [Google Scholar]
- Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Ogunjobi, J.K.; Lajide, L. The potential of cocoa pods and plantain peels as renewable sources in Nigeria. Int. J. Green Energy 2014, 12, 440–445. [Google Scholar] [CrossRef]
- Ugonna, C.U.; Jolaoso, M.O.; Onwualu, A.P. A technical appraisal of potato value chain in Nigeria. Int. Res. J. Agric. Sci. Soil Sci. 2013, 3, 291–301. [Google Scholar]
- Ahmad, I.M.; Makama, S.A.; Kiresur, V.R.; Amina, B.S. Efficiency of sweet potato farmers in Nigeria: Potentials for food security and poverty alleviation. IOSR J. Agric. Vet. Sci. 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Sepelev, I.; Galoburda, R. Industrial potato peel waste application in food production: A review. Res. Rural Dev. 2015, 1, 130–136. [Google Scholar]
- Adewumi, J.K.; Olayanju, M.A.; Adewuyi, S.A. Support for Small Rice Threshers in Nigeria; DFID: London, UK, 2007; pp. 1–60. [Google Scholar]
- Osabuohien, E.S.C.; Okorie, U.E.; Osabohien, R.A. Rice Production and Processing in Ogun State, Nigeria. In Food Systems Sustainability and Environmental Policies in Modern Economies; Obayelu, E., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 188–215. [Google Scholar] [CrossRef] [Green Version]
- Udemezue, J.C. Analysis of rice production and consumption trends in Nigeria. J. Plant Sci. Crop Prot. 2018, 1, 305. [Google Scholar]
- Okeke, C.G.; Oluka, S.I. A survey of rice production and processing in South East Nigeria. Niger. J. Technol. 2017, 36, 227–234. [Google Scholar]
- Mohammed, S. Rice farming in Nigeria: Challenges, opportunities and prospects. In Proceedings of the 2nd Nigeria Rice Investment Forum, Transforming Rice Production in Nigeria and West Africa for Self Sustainability and Socio-Economic Development, Abuja, Nigeria, 17–18 November 2014. [Google Scholar]
- Teh, K.W.; Jamari, S.S. The valorization of rice waste via torrefaction method. Int. J. Chem. Eng. Appl. 2016, 7, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Wajima, T.; Sakakibara, T. Conversion of rice straw into methane gas using zeolites. J. Eng. Sci. Res. 2018, 2, 18–24. [Google Scholar]
- Alhinai, M.; Azad, A.K.; Bakar, M.S.A.; Phusunti, N. Characterisation and thermochemical conversion of rice husk for biochar production. Int. J. Renew. Energy Res. 2018, 8, 1648–1656. [Google Scholar]
- Abudi, Z.N.; Hu, Z.; Xiao, B.; Rajaa, N.; Chen, S. Enhancing biogas production from organic fraction of municipal solid waste by co-digestion with thickened waste activated sludge and rice straw. Fresenius Environ. Bull. 2016, 25, 4130–4140. [Google Scholar]
- Ajimotokan, H.A.; Ibitoye, S.E.; Odusote, J.K.; Adesoye, O.A.; Omoniyi, P.O. Physico-mechanical properties of composite briquettes from corncob and rice husk. J. Bioresour. Bioprod. 2019, 4, 159–165. [Google Scholar]
- Abbas, A.; Ansumali, S. Global potential of rice husk as a renewable feedstock for ethanol biofuel production. Bioenergy Res. 2010, 3, 328–334. [Google Scholar] [CrossRef]
- Jacob, A.A.; Fidelis, A.E.; Salaudeen, K.O.; Queen, K.R. Sorghum: Most under-utilized grain of the semi-arid Africa. Sch. J. Agric. Sci. 2013, 3, 147–153. [Google Scholar]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.Y.; Abdurrahaman, S.L.; Muhammad, I.R. Fodder production potentials and its nutritional value of sorghum and millet crops. Dutse J. Agric. Food Secur. 2017, 4, 92–97. [Google Scholar]
- Saeed, H.A.M.; Liu, Y.; Chen, H. Exploring Sudanese agricultural residues as alternative fibres for pulp and paper manufacturing. Iop Conf. Ser. Mater. Sci. Eng. 2018, 368, 012030. [Google Scholar] [CrossRef]
- Turhollow Jr, A.F.; Webb, E.; Downing, M. Review of Sorghum Production Practices: Applications for Bioenergy; Office of Scientific and Technical Information (OSTI), Engineering Science Division, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2010. [Google Scholar]
- Rodias, E.; Berruto, R.; Bochtis, D.; Sopegno, A.; Busato, P. Green, yellow, and woody biomass supply-chain management: A review. Energies 2019, 12, 3020. [Google Scholar] [CrossRef] [Green Version]
- Shahandeh, H.; Hons, F.M.; Wight, J.M.; Storlien, J.O. Harvest strategy and N fertilizer effects on bioenergy sorghum production. Aims Energy 2015, 3, 377–400. [Google Scholar] [CrossRef]
- Sundstrom, E.; Yaegashi, J.; Yan, J.; Masson, F.; Papa, G.; Rodriguez, A.; Mirsiaghi, M.; Liang, L.; He, Q.; Tanjore, D. Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chem. 2018, 20, 2870–2879. [Google Scholar] [CrossRef] [Green Version]
- Olaoye, J.O.; Kudabo, E.A. Evaluation of constitutive conditions for production of sorghum stovers briquette. Arid Zone J. Eng. Technol. Environ. 2017, 13, 398–410. [Google Scholar]
- Agricultural Media Resources and Extension Centre (AMREC). Mapping of Soybean Production Areas in Nigeria; University of Agriculture: Abeokuta, Nigeria, 2007. [Google Scholar]
- Ugbabe, O.O.; Abdoulaye, T.; Kamara, A.Y.; Mbavai, J.; Oyinbo, O. Profitability and technical efficiency of soybean production in Northern Nigeria. Tropicultura 2017, 35, 203–214. [Google Scholar]
- Dugje, I.Y.; Omoigui, L.O.; Ekeleme, F.; Bandyopadhyay, R.; Kumar, P.L.; Kamara, A.Y. Farmers’ Guide to Soybean Production in Northern Nigeria; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2009. [Google Scholar]
- Kiš, D.; Sučić, B.; Guberac, V.; Voća, N.; Rozman, V.; Šumanovac, L. Soybean biomass as a renewable energy resource. Agric. Conspec. Sci. 2009, 74, 201–203. [Google Scholar]
- Khardiwar, M.S.; Dubey, A.K.; Mahalle, D.M.; Kumar, S. Study on physical and chemical properties of crop residues briquettes for gasification. Int. J. Renew. Energy Technol. Res. 2013, 2, 237–248. [Google Scholar]
- Odetoye, T.E.; Ajala, E.O.; Ogunniyi, D.S. A review of biofuels research in Nigeria. Arid Zone J. Eng. Technol. Environ. 2019, 15, 153–162. [Google Scholar]
- Nmadu, J.N.; Ojo, M.A.; Ibrahim, F.D. Prospects of sugar production and imports: Meeting the sugar demand of Nigeria by year 2020. Russ. J. Agric. Socio Econ. Sci. 2013, 14, 15–25. [Google Scholar] [CrossRef]
- Aina, O.S.; Ajibola, S.; Ibrahim, I.; Musa, I.A.; Bappah, T.M. Economics analysis of sugarcane (Saccharum officinarum) production in Moro Local Government area of Kwara State, Nigeria. Int. Res. J. Plant Sci. 2015, 6, 1–6. [Google Scholar]
- Girei, A.A.; Giroh, D.Y. Analysis of the factors affecting sugarcane (Saccharum officinarum) production under the out growers scheme in Numan Local Government area Adamawa State, Nigeria. J. Educ. Pr. 2012, 3, 195–200. [Google Scholar]
- Gourichon, H. Analysis of Incentives and Disincentives for Sugar in Nigeria; FAO: Rome, Italy, 2013. [Google Scholar]
- Machado, G.; Santos, F.; Faria, D.; de Queiroz, T.N.; Zinani, F.; de Queiroz, J.H.; Gomes, F. Characterization and potential evaluation of residues from the sugarcane industry of Rio Grande do Sul in biorefinery processes. Nat. Resour. 2018, 9, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Kumar, R.; Chaudhary, V.; Sunil, V.; Arya, A.M.; Sharma, S. Sugarcane bagasse: Foreseeable biomass of bio-products and biofuel: An overview. J. Pharm. Phytochem. 2019, 8, 2356–2360. [Google Scholar]
- Wada, A.C.; Abo-Elwafa, A.; Salaudeen, M.T.; Bello, L.Y.; Kwon-Ndung, E.H. Sugar cane production problems in Nigeria and some Northern African countries. Direct Res. J. Agric. Food Sci. 2017, 5, 141–160. [Google Scholar]
- Bispo, M.D.; Barros, J.A.S.; Tomasini, D.; Primaz, C.; Caramão, E.B.; Dariva, C.; Krause, L.C. Pyrolysis of agroindustrial residues of coffee, sugarcane straw and coconut-fibers in a semi-pilot plant for production of bio-oils: Gas chromatographic characterization. J. Earth Sci. Eng. 2016, 6, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Simo, W.S.F.; Jong, E.N.; Kapseu, C. Improving biogas production of sugarcane bagasse by hydrothermal pretreatment. Chem. Biomol. Eng. 2016, 1, 21–25. [Google Scholar]
- Patil, R.A.; Deshannavar, U.B. Dry sugarcane leaves: Renewable biomass resources for making briquettes. Int. J. Eng. Res. Technol. 2017, 10, 232–235. [Google Scholar] [CrossRef]
- Falola, A.; Achem, B.; Oloyede, W.; Olawuyi, G. Determinants of commercial production of wheat in Nigeria: A case study of Bakura Local Government Area, Zamfara State. Trakia J. Sci. 2017, 15, 397–404. [Google Scholar] [CrossRef]
- Falaki, A.M.; Mohammed, I.B. Performance of some durum wheat varieties at Kadawa, Kano State of Nigeria. Bayero J. Pure Appl. Sci. 2011, 4, 48–51. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Gupta, R.K.; Garg, S.C. Residue burning in rice-wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Bassey, E.E. Constraints and prospects of yam production in Nigeria. Eur. J. Phys. Agric. Sci. 2017, 5, 55–64. [Google Scholar]
- Verter, N.; Bečvářová, V. An analysis of yam production in Nigeria. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Food and Agricultural Organization of the United Nations (FAO). Crop Residues and Agro-Industrial By-Products in West Africa: Situation and Way Forward for Livestock Production; FAO Regional Office for Africa: Accra, Ghana, 2014. [Google Scholar]
- Uchewa, E.N.; Orogwu, C.E.; Nwakpu, P.E. Effect of yam peel meal (YPM) replacement for maize on the growth performance and carcass traits of weaner rabbits. Int. J. Agric. Innov. Res. 2014, 2, 536–541. [Google Scholar]
- Olayemi, S.; Ibikunle, A.; Olayemi, J. Production of ethanol from cassava and yam peels using acid hydrolysis. Am. Soc. Res. J. Eng. Technol. Sci. 2019, 52, 67–78. [Google Scholar]
- Ebabhi, A.M.; Adekunle, A.A.; Adeogun, O.O. Potential of some tuber peels in bioethanol production using Candida tropicalis. Niger. J. Basic Appl. Sci. 2019, 26, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Production of Fuels from Crops. In The Biofuels Handbook: Fuels from Cellulosic and Lignocellulosic Materials; Speight, J.G., Ed.; Royal Society of Chemistry: Cambridge, UK, 2011; Volume 2, pp. 201–227. [Google Scholar]
- Parrish, D.J.; Fike, J.H. Growth and production of herbaceous energy crops. Soils Plant Growth Crop Prod. 2010, 3, 16–43. [Google Scholar]
- Sims, R.E.H.; Hastings, A.; Schlamadinger, B.; Taylor, G.; Smith, P. Energy crops: Current status and future prospects. Glob. Chang. Biol. 2006, 12, 2054–2076. [Google Scholar] [CrossRef]
- Matemilola, S.; Elegbede, I.O.; Kies, F.; Yusuf, G.A.; Yangni, G.N.; Garba, I. An analysis of the impacts of bioenergy development on food security in Nigeria: Challenges and Prospects. Environ. Clim. Technol. 2019, 23, 64–83. [Google Scholar] [CrossRef] [Green Version]
- Agbro, E.B.; Ogie, N.A. A comprehensive review of biomass resources and biofuel production potential in Nigeria. Res. J. Eng. Appl. Sci. 2012, 1, 149–155. [Google Scholar]
- Adewuyi, A. Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and biodiesel production. Energy Rep. 2020, 5, 1408–1419. [Google Scholar] [CrossRef]
- Ojolo, S.J.; Orisaleye, J.I.; Ismail, S.O. Design of a jatropha oil expelling machine. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 412–419. [Google Scholar]
- Okoro, S.; Schickhoff, U.; Schneider, U. Impacts of bioenergy policies on land-use change in Nigeria. Energies 2018, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Schubert, R.; Schellnhuber, H.J.; Buchmann, N.; Epiney, A.; Grießhammer, R.; Kulessa, M.; Messner, D.; Rahmstorf, S.; Schmid, J. Future Bioenergy and Sustainable Land Use; Earthscan: London, UK, 2011. [Google Scholar] [CrossRef]
- Wicke, B. Bioenergy Production on Degraded and Marginal Land: Assessing Its Potentials, Economic Performance, And Environmental Impacts for Different Settings and Geographical Scales; Utrecht University: Utrecht, The Netherlands, 2011. [Google Scholar]
- Olanrewaju, S.B.; Ezekiel, A.A. Degradation characteristics and management of marginal lands in Nigeria, Africa. Afr. J. Soils Sediments 2005, 5, 125–126. [Google Scholar] [CrossRef]
- Agboola, A.A.; Eneji, A.E.; Aiyelari, E.A.; Tijani, E.H. Marginal Lands, Water Quality and Agricultural Land Pollutants in Nigeria. In Proceedings of the 23rd Annual Conference of Soil Science Society of Nigeria, Sokoto, Nigeria, 2–5 March 1997; pp. 303–315. [Google Scholar]
- Elegbede, I.; Matemilola, S.; Kies, F.; Fadeyi, O.; Saba, A.; De Los Rios, P.; Adekunbi, F.; Lawal-Are, A.; Fashina-Bombata, H. Risk analysis and development of algae biofuel from aquatic and terrestrial systems. Energy Procedia 2017, 128, 324–331. [Google Scholar] [CrossRef]
- Lohdip, Y.N.; Gongden, J.J. Nigerian water bodies in jeopardy: The need for sustainable management and security. Wit Trans. Ecol. Environ. 2013, 171, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Di Benedetto, A. The potential of aquatic biomass for CO2-enhanced fixation and energy production. Greenh. Gases Sci. Technol. 2011, 1, 58–71. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, M.; Sachdeva, S.; Puri, S.K. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour. Technol. 2018, 251, 390–402. [Google Scholar] [CrossRef]
- Kundu, A.; Singh, S.; Ojha, S.; Kundu, K. Efficient utilization of biomass for bioenergy in environmental control. Int. J. Energy Power Eng. 2015, 9, 150–153. [Google Scholar]
- Calicioglu, O.; Richard, T.L.; Brennan, R.A. Anaerobic bioprocessing of wastewater-derived duckweed: Maximizing product yields in a biorefinery value cascade. Bioresour. Technol. 2019, 289, 121716. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mehmood, M.A.; Liu, C.-G.; Tawab, A.; Bai, F.-W.; Sakdaronnarong, C.; Xu, J.; Rahimuddin, S.A.; Gull, M. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresour. Technol. 2018, 253, 297–303. [Google Scholar] [CrossRef]
- Alves, J.L.F.; da Silva, J.C.G.; da Silva Filho, V.F.; Alves, R.F.; de Araujo Galdino, W.V.; De Sena, R.F. Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 2019, 121, 28–40. [Google Scholar] [CrossRef]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Kumar, S.M. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour. Technol. 2019, 275, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Fedler, C.B.; Duan, R. Biomass production for bioenergy using recycled wastewater in a natural waste treatment system. Resour. Conserv. Recycl. 2011, 55, 793–800. [Google Scholar] [CrossRef]
- Owusu, P.A.; Banadda, N. Livestock waste-to-bioenergy generation potential in Uganda: A review. Environ. Res. Eng. Manag. 2017, 73, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Deng, L.; Yin, Y.; Pu, X.; Wang, Z. Biogas production potential and characteristics of manure of sheep, duck and rabbit under anaerobic digestion. Trans. Chin. Soc. Agric. Eng. 2010, 26, 277–282. [Google Scholar]
- Teferra, D.M.; Wubu, W. Biogas for Clean Energy. In Anaerobic Digestion; Banu, R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Orakwe, L.C.; Chukwuma, E.C.; Emeka-Orakwe, C.B. Biogas production in Nigeria—Potentials and problems. J. Agric. Eng. Technol. 2011, 19, 103–113. [Google Scholar]
- Adebayo, A.O.; Jekayinfa, S.O.; Ahmed, N.A. Kinetic study of thermophilic anaerobic digestion of cattle manure in a continuously stirred tank reactor under varying organic loading rate. ARPN J. Eng. Appl. Sci. 2018, 13, 3111–3118. [Google Scholar]
- Alhassan, K.A.; Abdullahi, B.T.; Shah, M.M. A review on biogas production as the alternative source of fuel. J. Appl. Adv. Res. 2019, 4, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Okonkwo, E.C.; Okafor, K.I.; Akun, E. The economic viability of the utilisation of biogas as an alternative source of energy in rural parts of Nigeria. Int. J. Glob. Energy ISS. 2018, 41, 205–225. [Google Scholar] [CrossRef]
- Oseji, M.E.; Ana, G.R.E.E.; Sokan-Adeaga, A.A. Evaluation of biogas yield and microbial species from selected multi-biomass feedstocks in Nigeria. Lond. J. Res. Sci. Nat. Form. 2017, 17, 1–20. [Google Scholar]
- Kumar, V.; Kumar, A.; Nanda, M. Pretreated animal and human waste as a substantial nutrient source for cultivation of microalgae for biodiesel production. Environ. Sci. Pollut. Res. 2018, 25, 22052–22059. [Google Scholar] [CrossRef]
- Adhikari, S.; Nam, H.; Chakraborty, J.P. Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–263. [Google Scholar]
- Sowunmi, A.A. Municipal Solid Waste Management and The Inland Water Bodies: Nigerian Perspectives. In Municipal Solid Waste Management; IntechOpen: London, UK, 2019. [Google Scholar]
- Diaz-Barriga-Fernandez, A.D.; Santibañez-Aguilar, J.E.; Radwan, N.; Nápoles-Rivera, F.; El-Halwagi, M.M.; Ponce-Ortega, J.M.a. Strategic planning for managing municipal solid wastes with consideration of multiple stakeholders. ACS Sustain. Chem. Eng. 2017, 5, 10744–10762. [Google Scholar] [CrossRef]
- Ogwueleka, T. Municipal solid waste characteristics and management In Nigeria. Iran. J. Environ. Health Sci. Eng. 2009, 6, 173–180. [Google Scholar]
- Nnaji, C.C. Status of municipal solid waste generation and disposal in Nigeria. Manag. Environ. Qual. Int. J. 2015, 26, 53–71. [Google Scholar] [CrossRef]
- Yusuf, R.; Adeniran, J.; Mustapha, S.; Sonibare, J. Energy recovery from municipal solid waste in Nigeria and its economic and environmental implications. Environ. Qual. Manag. 2019, 28, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Ojolo, S.J.; Ajiboye, J.S.; Orisaleye, J.I. Plug flow analysis for the design of the compaction region of a tapered screw extruder biomass briquetting machine. Agric. Eng. Int. CIGR J. 2015, 17, 176–195. [Google Scholar]
- Orisaleye, J.; Adefuye, O.; Ogundare, A.; Fadipe, O. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic) materials. Eng. Sci. Technol. Int. J. 2018, 21, 229–237. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Ojolo, S.J.; Ajiboye, J.S. Mathematical modelling of die pressure of a screw briquetting machine. J. King Saud Univ. Eng. Sci. 2019. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Ojolo, S.J.; Ajiboye, J.S. Pressure build-up and wear analysis of tapered screw extruder biomass briquetting machines. Agric. Eng. Int. CIGR J. 2019, 21, 122–133. [Google Scholar]
- Orisaleye, J.I.; Ojolo, S.J. Parametric analysis and design of straight screw extruder for solids compaction. J. King Saud Univ. Eng. Sci. 2019, 31, 86–96. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Ojolo, S.J. Mathematical modelling of pressure distribution along the die of a biomass briquetting machine. Int. J. Des. Eng. 2019, 9, 36–50. [Google Scholar] [CrossRef]
- Ojomo, A.O.; Falayi, F.R.; Ogunlowo, A.S. Development of a densification equipment for organic biomass solid fuel pellets. FUOYE J. Eng. Technol. 2018, 3, 108–112. [Google Scholar] [CrossRef]
- Dairo, O.U.; Adeleke, A.E.; Shittu, T.; Ibrahim, N.A.; Adeosun, O.J.; Iyerimah, R.B. Development and performance evaluation of a low-cost hydraulic-operated biomass briquetting machine. FUOYE J. Eng. Technol. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Lasode, O.A.; Ikubanni, P.P.; Malathi, M.; Paswan, D. Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon 2019, 5, e02160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulkareem, S.; Hakeem, B.A.; Ahmed, I.I.; Ajiboye, T.K.; Adebisi, J.A.; Yahaya, T. Combustion characteristics of bio-degradable biomass briquettes. J. Eng. Sci. Technol. 2018, 13, 2779–2791. [Google Scholar]
- Umar, F.; Oyero, J.O.; Ibrahim, S.U.; Maradun, H.F.; Ahmad, M. Sensory evaluation of African catfish (Clarias gariepinus) smoked with melon shell briquettes and firewood. Int. J. Fish. Aquat. Stud. 2018, 6, 281–286. [Google Scholar]
- Lamido, S.I.; Lawal, M.; Salami, H. Briquetting business in Nigeria: A solution to unemployment. Int. J. Eng. Dev. Res. 2018, 6, 101–106. [Google Scholar]
- Obi, O.F.; Adeboye, B.S.; Aneke, N.N. Biomass briquetting and rural development in Nigeria. Int. J. Sci. Environ. Technol. 2014, 3, 1043–1052. [Google Scholar]
- Bello, R.S.; Adegbulugbe, T.A.; Onilude, M.A. Characterization of three conventional cookstoves in South Eastern Nigeria. Agric. Eng. Int. CIGR J. 2015, 17, 122–129. [Google Scholar]
- Ofori, S.N.; Fobil, J.N.; Odia, O.J. Household biomass fuel use, blood pressure and carotid intima media thickness; a cross sectional study of rural dwelling women in Southern Nigeria. Environ. Pollut. 2018, 242, 390–397. [Google Scholar] [CrossRef]
- Adefuye, B.O.; Odusan, O.; T.I., R.-A.; Olowonyo, T.; Bodunde, B.; Alabi, K.; Adefuye, P.O. Practice and perception of biomass fuel use and its health effects among residents in a sub urban area of southern Nigeria: A qualitative study. Niger. Hosp. Pr. 2018, 22, 48–54. [Google Scholar]
- Sá, L.C.R.; Loureiro, L.M.E.F.; Nunes, L.J.R.; Mendes, A.M.M. Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using Eucalyptus globulus Labill. Resources 2020, 9, 54. [Google Scholar] [CrossRef]
- Fogarassy, C.; Toth, L.; Czikkely, M.; Finger, D.C. Improving the Efficiency of pyrolysis and increasing the quality of gas production through optimization of prototype systems. Resources 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Susmozas, A.; Iribarren, D.; Dufour, J. Assessing the Life-Cycle Performance of hydrogen production via biofuel reforming in Europe. Resources 2015, 4, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Bacskai, I.; Madar, V.; Fogarassy, C.; Toth, L. Modeling of Some Operating Parameters Required for the Development of fixed bed small scale pyrolysis plant. Resources 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Ola, F.A.; Jekayinfa, S.O. Pyrolysis of sandbox (Hura crepitans) shell: Effect of pyrolysis parameters on biochar yield. J. Res. Agric. Eng. 2015, 61, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Ola, F.A.; Jekayinfa, S. Pyrolysis of sandbox (Hura crepitans) shell and characterization of the solid product. Sci. Focus 2014, 19, 52–58. [Google Scholar]
- Fuwape, J.A.; Faruwa, F.A. Combustion characteristics of torrefied wood samples of Pinus carrebea and Leucaena leucocephala grown in Nigeria. Pro Ligno 2016, 12, 21–29. [Google Scholar]
- Garba, M.U.; Oloruntoba, J.M.; Isah, A.G.; Alhassan, M. Production of solid fuel from rice straw through torrefaction process. Int. J. Sci. Eng. Invest. 2014, 4, 1–6. [Google Scholar]
- Akanni, A.A.; Kolawole, O.J.; Dayanand, P.; Ajani, L.O.; Madhurai, M. Influence of torrefaction on lignocellulosic woody biomass of Nigerian origin. J. Chem. Technol. Met. 2019, 54, 274–285. [Google Scholar]
- Farrow, S.; Eterigho, E.; Snape, C. Pyrolysis and char burnout characteristics of cassava peelings as potential energy source. Chem. Process Eng. Res. 2018, 57, 59–66. [Google Scholar]
- Onifade, T.B.; Wandiga, S.O.; Bello, I.A.; Jekanyinfa, S.O.; Harvey, P.J. Conversion of lignocellulose from palm (Elaeis guineensis) fruit fibre and physic (Jatropha curcas) nut shell into bio-oil. Afr. J. Biotechnol. 2017, 16, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Okekunle, P.O.; Itabiyi, O.E.; Bello, M.; Adeleke, A.G.; Olayanju, A.; Olapade, O. Biofuel yields from sawdust pyrolysis of different woods in a fixed bed reactor. In Proceedings of the International Conference of Mechanical Engineering, Energy Technology and Management, International Conference Centre, University of, Ibadan, Ibadan, Nigeria, 4–7 September 2019. [Google Scholar]
- Abubackar, H.N.; Veiga, M.C.; Kennes, C. Syngas fermentation for bioethanol and bioproducts. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–221. [Google Scholar] [CrossRef]
- Speight, J.G. Types of Gasifier for Synthetic Liquid Fuel Production. In Gasification for Synthetic Fuel Production—Fundamentals, Processes and Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 29–55. [Google Scholar] [CrossRef]
- Akhator, P.E.; Obanor, A.I. Review on synthesis gas production in a downdraft biomass gasifier for use in internal combustion engines in Nigeria. J. Appl. Sci. Environ. Manag. 2018, 22, 1689–1696. [Google Scholar] [CrossRef]
- Garba, A.; Kishk, M. Economic Assessment of Biomass Gasification Technology in Providing Sustainable Electricity in Nigerian Rural Areas. In Proceedings of the International Sustainable Ecological Engineering Design for Society (SEEDS) Conference, Suffolk, UK, 17–18 September 2015; p. 545. [Google Scholar]
- Kuhe, A.; Aliyu, S.J. Gasification of loose groundnut shells in a throathless downdraft gasifier. Int. J. Renew. Energy Dev. 2015, 4, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Olufemi, A.S. Comparative study of temperature effect on gasification of solid wastes in a fixed bed. Austin Chem. Eng. 2017, 4, 1051. [Google Scholar]
- Ojolo, S.J.; Orisaleye, J.I.; Ismail, S.O.; Odutayo, A.F. Development of an inverted downdraft biomass gasifier cookstove. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 513–516. [Google Scholar]
- Abdulrahman, S.A.; Abubakar, A.B.; El-jummah, A.M. Performance Evaluation of Downdraft Gasifier Fuelled Using Rice Husk and Sawdust. In Faculty of Engineering Series; University of Maiduguri: Maiduguri, Nigeria, 2016; Volume 7, pp. 72–77. [Google Scholar]
- Ojolo, S.J.; Orisaleye, J.I. Design and development of a laboratory scale biomass gasifier. J. Energy Power Eng. 2010, 4, 16–23. [Google Scholar]
- Van den Braak, D.; Soppelsa, L.; Schade, P.; Janse, M.; Hussaini, S.; Tetteroo, K. Techno-Economic Study Report for Potential Biomass Power Plant Sites in Nigeria; United Nations Industrial Development Organisation: Vienna, Austria, 2016. [Google Scholar]
- Aigbodion, A.I.; Bakare, I.O.; Fagbemi, E.A.; Abolagba, E.O.; Omonigho, B.; Ayeke, P.O.; Bausa, M.; Musa, E. Viability of biogas production from manure/biomass in nigeria using fixed dome digester. Univers. J. Agric. Res. 2018, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, A.; Jekayinfa, S.; Linke, B. Effects of organic loading rate on biogas yield in a continuously stirred tank reactor experiment at mesophilic temperature. Br. J. Appl. Sci. Technol. 2015, 11, 1–9. [Google Scholar] [CrossRef]
- Adebayo, A.O.; Jekayinfa, S.O.; Linke, B. Anaerobic digestion of selected animal wastes for biogas production in a fed-batch reactor at mesophilic temperature. J. Multidiscip. Eng. Sci. Technol. 2015, 2, 1875–1880. [Google Scholar]
- Adebayo, A.O.; Jekayinfa, S.O.; Linke, B. Energy productions from selected crop residues through anaerobic digestion in a fed-batch laboratory scale reactor at mesophilic temperature. Int. J. Energy Environ. Res. 2015, 3, 12–21. [Google Scholar]
- Dahunsi, S.O.; Oranusi, S.; Efeovbokhan, V.E.; Zahedi, S.; Ojediran, J.O.; Olayanju, A.; Oluyori, A.P.; Adekanye, T.A.; Izebere, J.O.; Enyinnaya, M. Biochemical conversion of fruit rind of Telfairia occidentalis (fluted pumpkin) and poultry manure. Energy Sources Part A 2018, 40, 2799–2811. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Alao, M.A.; Ogunjuyigbe, A.S.O.; Munda, J.L. Electricity generation prospective of hydrogen derived from biogas using food waste in south-western Nigeria. Biomass Bioenergy 2019, 127, 105291. [Google Scholar] [CrossRef]
- Ngulde, Y.M.; Yerima, I.; Mustapha, A. Evaluation of cow dung and goat pellets for production of biogas in University of Maiduguri, north-eastern Nigeria. Afr. J. Environ. Nat. Sci. Res. 2018, 1, 33–43. [Google Scholar]
- Orhorhoro, E.K.; Oyejide, J.O.; Abubakar, S.A. Design and construction of an improved biogas stove. Arid Zone J. Eng. Technol. Environ. 2018, 14, 325–335. [Google Scholar]
- Ngumah, C.; Ogbulie, J.N.; Orji, J.C.; Amadi, E.S. Biogas potential of organic waste in Nigeria. J. Urban Environ. Eng. 2013, 7, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Akinbami, J.F.K.; Ilori, M.O.; Oyebisi, T.O.; Akinwumi, I.O.; Adeoti, O. Biogas energy use in Nigeria: Current status, future prospects and policy implications. Renew. Sustain. Energy Rev. 2001, 5, 97–112. [Google Scholar] [CrossRef]
- Ndukwe, N.A.; van Wyk, J.P.H.; Mamabola, T.M.; Okiei, W.O.; Alo, B.I.; Igwe, C. Bio-ethanol production from saccharified sawdust cellulose obtained from twenty different trees along the Lagos lagoon in Nigeria. Biosci. Res. 2018, 15, 1218–1224. [Google Scholar]
- Ogali, R.E.; Ofodile, S.E.; Eze, C. Comparison of bioethanol yield from four cocoyam species in Nigeria. J. Chem. Soc. Niger. 2016, 41, 53–57. [Google Scholar]
- Otaraku, I.J.; Oji, A.; Obi, C.L. Modelling and optimization of ethanol production from cassava (Manihot esculenta). Int. J. Sci. Res. Chem. 2019, 4, 1–6. [Google Scholar]
- Omotosho, O.; Amori, A. Effects of fermentation duration on bio-ethanol yield from cell sap of selected palm species in Nigeria. FUOYE J. Eng. Technol. 2018, 3, 17–20. [Google Scholar] [CrossRef]
- Etsuyankpa, M.B.; Gimba, C.E.; Agbaji, E.B.; Omoniyi, K.I.; Ndamitso, M.M.; Mathew, J.T. Assessment of the effects of microbial fermentation on selected anti-nutrients in the products of four local cassava varieties from Niger state, Nigeria. Am. J. Food Sci. Technol. 2015, 3, 89–96. [Google Scholar]
- Igbokwe, J.O.; Onuoha, L.N.; Nwafor, M.O.I.; Aviara, N.A. Characterization of blends of petrol and bioethanol synthesized from Nigeria palm bunch. Arid Zone J. Eng. Technol. Environ. 2019, 15, 142–152. [Google Scholar]
- Nwufo, O.C.; Okwu, M.; Nwaiwu, C.F.; Igbokwe, J.O.; Nwafor, O.M.I.; Anyanwu, E.E. The application of Artificial Neural Network in prediction of the performance of spark ignition engine running on ethanol-petrol blends. Int. J. Eng. Technol. 2017, 12, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Okoronkwo, A.C.; Ezurike, O.B.; Opara, U.V.; Igbokwe, J.O.; Olele, P.C. The synthesis, characterization and the performance evaluation of a gasoline ethanol diethyl ether blend on spark ignition engine. J. Basic Appl. Res. Int. 2016, 16, 155–164. [Google Scholar]
- Yahuza, I.; Dandakouta, H. A performance review of ethanol-diesel blended fuel samples in compression-ignition engine. Chem. Eng. Process Technol. 2015, 06, 256. [Google Scholar] [CrossRef]
- Alamu, O.J.; Waheed, M.A.; Jekayinfa, S.O. Biodiesel production from Nigerian palm kernel oil: Effect of KOH concentration on yield. Energy Sustain. Dev. 2007, 11, 77–82. [Google Scholar] [CrossRef]
- Alamu, O.J.; Waheed, M.A.; Jekayinfa, S.O. Effect of ethanol–palm kernel oil ratio on alkali-catalyzed biodiesel yield. Fuel 2008, 87, 1529–1533. [Google Scholar] [CrossRef]
- Alamu, O.J.; Waheed, M.A.; Jekayinfa, S.O. Alkali-catalysed laboratory production and testing of biodiesel fuel from Nigerian palm kernel oil. Agric. Eng. Int. CIGR J. 2007, 9, EE 07 009. [Google Scholar]
- Alamu, O.J.; Waheed, M.A.; Jekayinfa, S.O. Optimal Transesterification Duration for Biodiesel Production from Nigerian Palm Kernel Oil. Agric. Eng. Int. CIGR J. 2007, 9, EE 07 0018. [Google Scholar]
- Ayoola, A.A.; Hymore, K.F.; Omonhinmin, C.A. Optimization of biodiesel production from selected waste oils using response surface methodology. Biotechnology 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Olaoye, J.O.; Adegite, J.O.; Salami, H.A. Development of a laboratory scale biodiesel batch reactor. Int. Res. J. Eng. Technol. 2017, 4, 1698–1704. [Google Scholar]
- Olubunmi, F.A. Evaluation of coconut oil biodiesel fuels as sustainable alternatives to petro-diesel in Nigeria. Int. J. Sci. Eng. Res. 2016, 7, 574–582. [Google Scholar]
- Yami, A.M.; Makoyo, M.; Obioma, P. The production of biodiesel from waste groundnut (Arachis hypogea) oil. Niger. J. Eng. Sci. Technol. 2017, 3, 76–82. [Google Scholar]
- Christoforou, E.A.; Fokaides, P.A. A review of quantification practices for plant-derived biomass potential. Int. J. Green Energy 2015, 12, 368–378. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Koper, M.; Haigh, M.; Dornburg, V. Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy 2015, 74, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Ogunsanwo, O.Y.; Attah, V.I.; Adenaiya, A.O.; Umar, M. Sustainable utilization of firewood as a form of energy in Nigeria. In Proceedings of the 37th Annual Conference of the Forestry Association of Nigeria: Sudano-Sahelian Landscapes and Renewable Natural Resources Development in Nigeria, Minna, Nigeria, 9–14 November 2014. [Google Scholar]
- Orimoogunje, O.O.I.; Asifat, J. Fuel wood consumption and species degradation in South-Western Nigeria: The Ecological Relevance. J. Landsc. Ecol. 2015, 8, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO); International Tropical Timber Organization (ITTO); United Nations (UN). Forest Product Conversion Factors; FAO, ITTO and UN: Rome, Italy, 2020. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE); Food and Agriculture Organization of the United Nations (FAO). Forest Product Conversion Factors for the UNECE Region; United Nations: Geneva, Switzerland, 2010. [Google Scholar]
- Bhattacharya, S.C.; Albina, D.O.; Abdul Salam, P. Emission factors of wood and charcoal-fired cookstoves. Biomass Bioenergy 2002, 23, 453–469. [Google Scholar] [CrossRef]
- Amber, I.; Kulla, D.M.; Gukop, N. Generation, characteristics and energy potential of solid municipal waste in Nigeria. J. Energy South. Afr. 2012, 23, 47–51. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Municipal Solid Waste and Its Role in Sustainability; IEA Bioenergy: Paris France, 2003. [Google Scholar]
- Inter-ministerial Committee on Renewable Energy and Energy Efficiency (ICREEE). Sustainable Energy for All Action Agenda (SE4ALL-AA); National Council on Power: Abuja, Nigeria, 2016. [Google Scholar]
- Emodi, N.V.; Ebele, N.E. Policies enhancing renewable energy development and implications for Nigeria. Sustain. Energy 2016, 4, 7–16. [Google Scholar]
- Okedu, K.E.; Uhunmwangho, R.; Promise, W. Renewable energy in Nigeria: The challenges and opportunities in mountainous and riverine regions. Int. J. Renew. Energy Res. 2015, 5, 222–229. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The Energy and Agriculture Nexus; Environment and Natural Resources Working Paper No. 4; FAO: Rome, Italy, 2000. [Google Scholar]
- UN-Energy. Sustainable Bioenergy: A Framework for Decision Makers; United Nations: New York, NY, USA, 2007. [Google Scholar]
- Perley, C. The Status and Prospects for Forestry as a Source of Bioenergy in Asia and the Pacific; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2008. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Forests and Energy: Key Issues; FAO Forestry Paper 154; FAO: Rome, Italy, 2008. [Google Scholar]
- Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers. Manag. 2014, 81, 30–40. [Google Scholar] [CrossRef]
- Onabanjo, T.; Di Lorenzo, G.; Kolios, A.J. Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel. Renew. Energy 2017, 113, 966–979. [Google Scholar] [CrossRef] [Green Version]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 95–106. [Google Scholar] [CrossRef]
- Ben-Iwo, J.; Manovic, V.; Longhurst, P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sustain. Energy Rev. 2016, 63, 172–192. [Google Scholar] [CrossRef] [Green Version]
- Brechbill, S.C.; Tyner, W.E.; Ileleji, K.E. The economics of biomass collection and transportation and its supply to Indiana cellulosic and electric utility facilities. Bioenergy Res. 2011, 4, 141–152. [Google Scholar] [CrossRef]
- Chen, X. Economic potential of biomass supply from crop residues in China. Appl. Energy 2016, 166, 141–149. [Google Scholar] [CrossRef]
Demographic Parameter | 2015 | 2020 | 2025 | 2030 |
---|---|---|---|---|
Total population (million) | 196.96 | 239.63 | 291.55 | 352.67 |
Population growth rate (%) | 3.80 | 4.00 | 4.00 | 3.88 |
Urban share of population (%) | 49 | 53 | 57 | 60 |
Number of persons per household | 5.4 | 5.2 | 5.0 | 4.8 |
Sector | 2015 | 2020 | 2025 | 2030 |
---|---|---|---|---|
Industry | 26.03 | 39.47 | 92.34 | 145.21 |
Transport | 16.59 | 19.70 | 26.53 | 33.36 |
Household | 28.01 | 33.60 | 33.94 | 34.27 |
Services | 12.14 | 15.89 | 26.95 | 38.00 |
Total | 82.77 | 108.66 | 179.75 | 250.84 |
Fuel | 2015 | 2020 | 2025 | 2030 |
---|---|---|---|---|
Coal | 1850 | 6527 | 7545 | 10,984 |
Electricity import | 0 | 0 | 0 | 31,948 |
Gas | 18,679 | 33,711 | 61,891 | 80,560 |
Hydro (Large and small) | 3043 | 6533 | 6533 | 6533 |
Nuclear | 0 | 1500 | 2500 | 3500 |
Small hydro | 172 | 409 | 894 | 1886 |
Solar | 1369 | 3455 | 7000 | 25,917 |
Wind | 19 | 22 | 25 | 29 |
Biomass | 3 | 16 | 35 | 54 |
State | Area of Forest Reserve (ha) | Area of Forest Plantation (ha) |
---|---|---|
Abia | 8700 | 2051 |
Adamawa | 10,011 | 2374 |
Akwa Ibom | 31,857 | 25,800 |
Anambra | 32,457 | 5332 |
Bauchi | 840,280 | 1200 |
Benue | 60,175 | 2234 |
Borno | 582,820 | 432,052 |
Cross River | 610,129 | 1900 |
Delta | 78,506 | 2000 |
Edo | 482,047 | 150,000 |
Enugu | 8524 | 7498 |
Imo | 1525 | 1160 |
Jigawa | 92,000 | 3000 |
Kaduna | 613,484 | 6146 |
Kano | 77,702 | 2186 |
Katsina | 245,100 | 18,900 |
Kebbi | 340,289 | 17,750 |
Kogi | 540,360 | 5000 |
Kwara | 460,350 | 6000 |
Lagos | 12,579 | 2000 |
Niger | 756,906 | 4956 |
Ogun | 273,118 | 35,000 |
Ondo | 337,336 | 27,153 |
Osun | 86,057 | 6381 |
Oyo | 336,563 | 8031 |
Plateau | 402,500 | 6800 |
Rivers | 25,500 | 231 |
Sokoto | 602,631 | 10,943 |
Taraba | 10,011 | 1359 |
Item | Unit | Value |
---|---|---|
Wood fuel, coniferous | m3 | 0 |
Wood fuel, non-coniferous | m3 | 65,890,862 |
Saw logs and veneer logs, non-coniferous | m3 | 7,600,000 |
Pulpwood, round and split, non-coniferous (production) | m3 | 22,000 |
Other industrial round wood, non-coniferous (production) | m3 | 2,400,000 |
Wood charcoal | Tonnes | 4,519,220 |
Sawn wood, coniferous | m3 | 2000 |
Sawn wood, non-coniferous all | m3 | 2,000,000 |
Veneer sheets | m3 | 1000 |
Plywood | m3 | 56,000 |
Particle board | m3 | 40,000 |
Semi-chemical wood pulp | Tonnes | 9000 |
Chemical wood pulp | Tonnes | 14,000 |
Chemical wood pulp, sulphate, unbleached | Tonnes | 14,000 |
Recovered paper | Tonnes | 20,000 |
Printing and writing papers | Tonnes | 1000 |
Other paper and paperboard | Tonnes | 18,000 |
Wrapping and packaging paper and paperboard | Tonnes | 18,000 |
Tree Part or Product | Portion (%) |
---|---|
Left in the forest: | |
Top, branches and foliage | 23.0 |
Stump (excluding roots) | 10.0 |
Sawdust | 5.0 |
Sawmilling: | |
Slabs, edgings and off-cuts | 17.0 |
Sawdust and fines | 7.5 |
Various losses | 4.0 |
Bark | 5.5 |
Sawn timber | 28.0 |
Total | 100.0 |
Product | Production in 1000 Ton | Production in t/ha | Residue | RPR | Proximate Analysis (%) | Ultimate Analysis (%) | Energy Content (LHV) (kJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ash | Volatiles | Fixed Carbon | C | H | O | S | N | Cl | F | ||||||
Cassava | 59,485.9 | 8.76 | Peels | 0.36–0.91 | 11.7 | 59.4 | 28.9 | 22.1 | 13.5 | 37.3 | 1.82 | 2.38 | - | - | 16,400 |
Stalks | 0.20–1.00 | 5.7 | 76.0 | 18.3 | 48.8 | 6.7 | 43.4 | - | 1.1 | 17,000 | |||||
Cocoa | 328.2 | 0.28 | Husks | 1.00–2.00 | 10.5 | 67.8 | 21.7 | 47.4 | 5.2 | 33.6 | 0.2 | 3.0 | 0.01 | 0.01 | 13,000–17,237 |
Coconut | 288.6 | 7.38 | Husks | 0.42–1.60 | 0.5 | 74.9 | 24.6 | 39.4 | 6.1 | - | 0.04 | 0.5 | - | - | 10,000–17,030 |
Shells | 0.12–0.70 | 4.0 | 70.5 | 17.5 | 49.6 | 5.43 | 41.8 | - | 0.1 | - | - | 17,400–18,000 | |||
Coffee | 1.6 | 1.30 | Husks | 0.12–1.88 | 0.9 | 72.0 | 27.1 | 46.4 | 4.9 | 46.7 | - | 0.6 | - | - | 16,000 |
Cowpea | 3410.0 | 0.90 | Shells | 1.20–1.90 | 5.9 | 75.3 | 18.8 | 43.0 | 5.6 | 43.3 | 0.01 | 0.6 | 0.13 | - | 17,900 |
Groundnut | 2420.0 | 0.86 | husks/shells | 0.37–1.20 | 3.1 | 68.1 | 28.8 | 49.3 | 7.3 | 39.1 | 0.02 | 1.1 | - | - | 13,785–18,130 |
Maize | 11,192.0 | 1.59 | Cobs | 0.20–1.80 | 1.6 | 84.3 | 14.1 | 46.2 | 5.4 | 47.2 | 0.2 | 0.9 | - | - | 25,330 |
Husk | 0.20–0.30 | 34.4 | 55.2 | 10.4 | 31.1 | 3.6 | 32.6 | 0.5 | 1.1 | - | - | 16,370–19,900 | |||
Stalks | 0.55–4.33 | 6.3 | 73.4 | 20.3 | 41.9 | 5.4 | 51.3 | 0.1 | 1.4 | - | - | 17,740 | |||
Millet | 1500.0 | 0.68 | Straws | 0.95–2.00 | 2.7 | 94.1 | 3.2 | 42.7 | 6.0 | 33.0 | - | 0.1 | 15,400 | ||
Oil palm | 7759.4 | 2.55 | empty bunches | 0.23–0.39 | 6.5 | 73.5 | 20.0 | 48.9 | 6.3 | 36.7 | 0.2 | 0.7 | - | - | 16,730 |
Fiber | 0.11–1.10 | 8.4 | 72.8 | 18.8 | 47.5 | 6.0 | 36.4 | 0.3 | 1.4 | - | - | 17,800–18,133 | |||
Shells | 0.05–1.00 | 12.5 | 67.1 | 20.4 | 50.0 | 5.6 | 35.0 | 0.1 | 0.7 | - | - | 20,200–21,700 | |||
Plantain | 3164.9 | 6.41 | Leaves | 0.25–0.50 | 6.3 | 78.2 | 15.5 | 38.0 | 4.7 | 55.9 | - | 1.5 | 15,730–17,510 | ||
Stem | 3.91–5.00 | 6.3 | 78.2 | 15.5 | 39.0 | 5.4 | 54.8 | - | 0.8 | - | - | 16,130 | |||
Potato | 5298.2 | 6.20 | Peels | 1.14 | 3.3 | 93.0 | 3.7 | 43.8 | 6.0 | 46.2 | - | 4.1 | - | - | 16,430–25,770 |
Rice | 9864.3 | 2.01 | Husks | 0.17–0.35 | 15.8 | 69.3 | 14.9 | 38.2 | 5.9 | - | 0.1 | 0.7 | - | - | 14,000–16,410 |
Straws | 0.40–3.96 | 21.5 | 62.6 | 15.9 | 28.6 | 4.0 | 65.7 | 0.6 | 1.2 | - | - | 12,440 | |||
Sorghum | 6939.0 | 1.19 | Straws | 0.85–7.40 | 8.1 | 73.4 | 18.5 | 39.5 | 7.5 | 43.0 | 0.2 | 1.1 | 0.6 | - | 15,400 |
Soybean | 730.0 | 0.97 | Straws | 0.80–3.94 | 4.0 | 88.8 | 7.2 | 45.0 | 6.7 | 45.4 | - | 2.9 | - | - | 17,900 |
Sugarcane | 1497.8 | 16.83 | Bagasse | 0.05–1.16 | 2.4 | 85.6 | 24.8 | 48.6 | 5.9 | 42.8 | 0.04 | 0.2 | 0.03 | - | 7700–8000 |
Wheat | 66. 6 | 0.94 | Straws | 0.70–1.80 | 2.7 | 94.1 | 3.2 | 47.3 | 5.3 | 46.7 | 0.2 | 0.6 | - | - | 16,210 |
Yam | 47942.7 | 8.09 | Peels | 0.06 | 1.9 | 91.0 | 7.1 | 25.3 | 15.2 | 49.8 | 1.39 | 1.41 | - | - | 16,433 |
Problems | Affected Areas (States) |
---|---|
Aridity/desertification | Jigawa, Borno, Yobe |
Mountain/plateau zone | Plateau, Taraba |
Population pressure | Imo, Abia, Akwa-Ibom, Ebonyi, Enugu |
Severe sheet erosion | Benue, Kogi, Enugu, Edo, Ogun, Cross River, Imo, Anambra |
Severe gully erosion | Imo, Anambra, Enugu, Cross-River, Rivers, Akwa-Ibom |
Coastal flooding | Lagos, Rivers, Delta, Akwa-Ibom, Ondo, Bayelsa |
Animal | Million Unit | Biogas Yield (m3/kg Dry Matter) | Daily Generation of Dung (kg) |
---|---|---|---|
Asses | 1.313 | 0.24 | 10 |
Camels | 0.282 | 0.14–0.19 | 20 |
Cattle | 20.773 | 0.20–0.24 | 8–50 |
Chickens | 140.688 | 0.28–0.40 | 0.05–0.15 |
Goats | 78.037 | 0.25–0.37 | 1–5 |
Horses | 0.103 | 0.24–0.37 | 13–15 |
Pigs | 7.506 | 0.37–0.56 | 1–4.5 |
Rabbits and hares | 0.005 | 0.10–0.21 | 0.01–0.06 |
Sheep | 42.500 | 0.25–0.37 | 1–5 |
Product | Residue | RPR | Residues in 1000 tons | Energy Content (kJ/kg)) | Energy Potential (PJ/year) |
---|---|---|---|---|---|
Cassava | Peels | 0.64 | 37,773.5 | 16,400 | 619.49 |
Stalks | 0.60 | 35,691.5 | 17,000 | 606.76 | |
Cocoa | Husks | 1.50 | 492.3 | 15,119 | 7.44 |
Coconut | Husks | 1.01 | 291.5 | 13,515 | 3.94 |
Shells | 0.41 | 118.3 | 17,700 | 2.09 | |
Coffee | Husks | 1.00 | 1.6 | 16,000 | 0.03 |
Cowpea | Shells | 1.55 | 5285.5 | 17,900 | 94.61 |
Groundnut | husks/shells | 0.79 | 1899.7 | 15,958 | 30.31 |
Maize | Cobs | 1.00 | 11,192.0 | 25,330 | 283.49 |
Husk | 0.25 | 2798.0 | 18,135 | 50.74 | |
Stalks | 2.44 | 27,308.5 | 17,740 | 484.45 | |
Millet | Straws | 1.48 | 2212.5 | 15,400 | 34.07 |
Oil palm | empty bunches | 0.31 | 2405.4 | 16,730 | 40.24 |
Fiber | 0.61 | 4694.4 | 17,967 | 84.34 | |
Shells | 0.53 | 4073.7 | 20,950 | 85.34 | |
Plantain | Leaves | 0.38 | 1186.8 | 16,620 | 19.73 |
Stem | 4.46 | 14,099.6 | 16,130 | 227.43 | |
Potato | Peels | 1.14 | 6039.9 | 21,100 | 127.44 |
Rice | Husks | 0.26 | 2564.7 | 15,205 | 39.00 |
Straws | 2.18 | 21,504.2 | 12,440 | 267.51 | |
Sorghum | Straws | 4.13 | 28,623.4 | 15,400 | 440.80 |
Soybean | Straws | 2.37 | 1730.1 | 17,900 | 30.97 |
Sugarcane | Bagasse | 0.61 | 906.2 | 7850 | 7.11 |
Wheat | Straws | 1.25 | 83.3 | 16,210 | 1.35 |
Yam | Peels | 0.06 | 2876.6 | 16,433 | 47.27 |
Animal | Biogas Yield (m3/kg Dry Matter) | Daily Generation of Dung (kg) | Energy Potential (EJ/year) |
---|---|---|---|
Asses | 0.24 | 10.000 | 0.0260 |
Camels | 0.17 | 20.000 | 0.0077 |
Cattle | 0.22 | 29.000 | 1.0933 |
Chickens | 0.34 | 0.100 | 0.0395 |
Goats | 0.31 | 3.000 | 0.5987 |
Horses | 0.31 | 14.000 | 0.0036 |
Pigs | 0.47 | 2.750 | 0.0792 |
Rabbits and hares | 0.16 | 0.035 | 0.0000 |
Sheep | 0.31 | 3.000 | 0.3260 |
Source | Density (kg/m3) | Volume (m3) | Mass Produce (tons) | Residue (tons) | Energy Content (PJ) |
---|---|---|---|---|---|
Saw logs and veneer logs, non-coniferous | 675 | 7,600,000 | 5,130,000 | 3,693,600 | 68.33 |
Pulpwood, round and split, non-coniferous | 550 | 22,000 | 12,100 | 8712 | 0.16 |
Other industrial round wood, non-coniferous | 449 | 2,400,000 | 1,077,600 | 775,872 | 14.35 |
Wood fuel | 521 | 65,890,862 | 34,329,139 | - | 635.09 |
Wood charcoal | - | - | 4,519,220 | - | 83.61 |
Potential Benefits | Potential Negative Impacts |
---|---|
Diversification of agricultural output | Reduced local food availability if energy crop plantations replace subsistence farmland |
Stimulation of rural economic development and contribution to poverty reduction | Increased food process for consumers |
Increase in food prices and higher income for farmers | Demand for land for energy crops may increase deforestation, reduce biodiversity and increase greenhouse gas emissions |
Development of infrastructure and employment in rural areas | Increased number of pollutants |
Lower greenhouse gas emissions | Modifications to requirements for vehicles and fuel infrastructures |
Increased investment in land rehabilitation | Higher fuel production costs |
New revenues generated from the use of wood and agricultural residues, and from carbon credits | Increased wood removals leading to the degradation of forest ecosystems |
Reduction in energy dependence and diversification of domestic energy supply, especially in rural areas | Displacement of small farmers and concentration of land tenure and incomes |
Access to affordable and clean energy for small and medium-sized rural enterprises | Reduced soil quality and fertility from intensive cultivation of bioenergy crops |
Distortion of subsidies on other sectors and creation of inequities across countries |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jekayinfa, S.O.; Orisaleye, J.I.; Pecenka, R. An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources 2020, 9, 92. https://doi.org/10.3390/resources9080092
Jekayinfa SO, Orisaleye JI, Pecenka R. An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources. 2020; 9(8):92. https://doi.org/10.3390/resources9080092
Chicago/Turabian StyleJekayinfa, Simeon Olatayo, Joseph Ifeolu Orisaleye, and Ralf Pecenka. 2020. "An Assessment of Potential Resources for Biomass Energy in Nigeria" Resources 9, no. 8: 92. https://doi.org/10.3390/resources9080092
APA StyleJekayinfa, S. O., Orisaleye, J. I., & Pecenka, R. (2020). An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources, 9(8), 92. https://doi.org/10.3390/resources9080092