Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions
Abstract
:1. Introduction
- Decrease in MSSs’ volume (lower sludge volume reduces the costs of its pumping and storage);
- Stabilization of organic substances present in MSSs [3].
- Implementation of Directive 99/31/EC on the landfill of waste (LFD) in 2016 [12], which eliminated the possibility of disposing of completely untreated MSSs in sites other than a hazardous-waste landfill (heat of combustion > 6 MJ/kg); in Poland, thermal conversion was a key alternative to previously used methods of recycling and disposal;
- Modernization of existing MSSs mono-incineration plants in order to incorporate advanced technology designed to reduce the pollution of environment, including air protection;
- Construction of new MSSs mono-incineration plants thanks to implementation of infrastructure using EU co-financing (in 2010, in Poland there were only three MSS mono-incineration plants with the total capacity of 37,300 Mg d.w./year; currently, there are 11 MSS mono-incineration plants, with the total capacity of 160,300 Mg d.w./year) [13].
2. Materials and Methods
2.1. Methods Used in the Literature Review
2.2. Methods Used in the Wastes Analysis—Mass Flows and Composition
3. Results
3.1. Inventory of Polish Mono-Incineration Plants of MSS
3.1.1. Incineration Plant in Warsaw
3.1.2. Incineration Plant in Cracow
3.1.3. Incineration Plant in Łódź
3.1.4. Incineration Plant in Gdańsk
3.1.5. Incineration Plant in Gdynia
3.1.6. Incineration Plant in Bydgoszcz
3.1.7. Incineration Plant in Szczecin
3.1.8. Incineration Plant in Zielona Góra
3.1.9. Incineration Plant in Kielce
3.1.10. Incineration Plant in Olsztyn
3.1.11. Incineration Plant in Łomża
3.2. Inventory of Wastes Generated in Polish Mono-Incineration Plants of MSS
- Cadmium (Cd): electroplating plant, production of dyes, production of batteries, production of paints, production of plastics, production of stabilizers for polymers, chemical industry, plant protection, graphics and printing industries;
- Lead (Pb): production of dye, production of batteries, production of fertilizers, motorization, power industry, plant protection electrochemical industry;
- Chromium (Cr): electroplating plant, tanneries, wood impregnation, textile industry, production of dyes and plastics, graphics and printing industries;
- Cooper (Cu): metallurgy, dyeing, textile industry, production of pesticides and fertilizers;
- Mercury (Hg): production of batteries, production of phosphoric acid, caustic soda, pulp mills industry, production of pesticides and metallic mercury;
- Nickel (Ni): galvanizing industry, paper industry, refinery, steel plant, production of fertilizers;
- Zinc (Zn): production of batteries, production of paints, production of plastics and plastics stabilizers, textile industry, graphics and printing industries [33].
4. Disposal Practices of Wastes Generated in Polish Mono-Incineration Plants of MSS
5. Circular Management Directions for Wastes Generated in Polish Mono-Incineration Plants of MSS
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda fornSustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission, Commission of European Communities. Communication No. 98, 2020. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; (COM no. 98, 2020); Commission of European Communities: Brussels, Belgium, 2020. [Google Scholar]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards circular economy: Evaluation of sewage sludge biogas solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Krüger, O.; Grabner, A.; Adam, C. Complete survey of German sewage sludge ash. Environ. Sci. Technol. 2014, 48, 11811–11818. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, J.; Poon, C.S. Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions. J. Environ. Manag. 2019, 247, 509–517. [Google Scholar] [CrossRef]
- Gorazda, K.; Tarko, B.; Wzorek, Z.; Kominko, H.; Nowak, A.; Kulczycka, J.; Henclik, A.; Smol, M. Fertilisers production from ashes after sewage sludge combustion—A strategy towards sustainable development. Environ. Res. 2017, 180, 171–180. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A. Circular economy in wastewater treatment plant–challenges and barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Commission of European Communities. Communication No. 490, 2017. on the 2017 List of Critical Raw Materials for the EU; (COM no. 490, 2017); Commission of European Communities: Brussels, Belgium, 2017. [Google Scholar]
- Smol, M.; Adam, C.; Kruger, O. Use of nutrients from wastewater for the fertilizer industry—Approaches towards the implementation of the circular economy (CE). Desalin. Water Treat. 2020, 186, 1–9. [Google Scholar] [CrossRef]
- Alzate, S.; Restrepo-Cuestas, B.; Jaramillo-Duque, Á. Municipal solid waste as a source of electric power generation in Colombia: A techno-economic evaluation under different scenarios. Resources 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Central Statistical Office. Environment 2018; Central Statistical Office: Warsaw, Poland, 2019. [Google Scholar]
- European Commission. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste; Commission of European Communities: Brussels, Belgium, 1999. [Google Scholar]
- Ministry of Environment. Strategy for Treatment of Municipal Sewage Sludge in 2019–2022; Ministry of Environment: Warsaw, Poland, 2018.
- Ministry of Environment. Regulation of the Minister of the Environment: Catalogue of Waste; Journal of Laws 2020, Item 10; Ministry of Environment: Warsaw, Poland, 2020.
- Ministry of Environment. Act. of 14 December 2012 on Waste; Journal of Laws of 2013, item 21; Ministry of Environment: Warsaw, Poland, 2013.
- Bień, J.; Bień, B.D. Utilisation of municipal sewage sludge by thermal methods in the face of storage disallowing. Inż. Ekol. 2015, 45, 36–43. [Google Scholar]
- Smol, M.; Kulczycka, J.; Kowalski, Z. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus–Polish case study. J. Environ. Manag. 2016, 184, 617–628. [Google Scholar] [CrossRef]
- Krüger, O.; Adam, C. Recovery potential of German sewage sludge ash. Waste Manag. 2015, 45, 400–406. [Google Scholar] [CrossRef]
- Ministry of Enviranment. National Waste Management Plan; Resolution No. 88 of 1 July 2016; Ministry of Enviranment: Warsaw, Poland, 2016.
- Municipal Water and Sewage Enterprise in the Warsaw S.A. Thermal Transformation of Sludge. Available online: www.mpwik.com.pl/view/termiczne-przeksztalcanie-osadow (accessed on 15 March 2020).
- Cracow Waterworks, Płaszów Wastewater Treatment Plant, Information about the Sewage Treatment Plant. Available online: wodociagi.krakow.pl/o-firmie/nasze-zaklady/oczyszczalnia-plaszow.html (accessed on 15 March 2020).
- Veolia, Sewage Sludge Thermal Utilization Station for GOŚ ŁAM in Łódź. Available online: www.veoliawatertechnologies.pl/media/case_studies_Veolia/stuo_goslam_lodz.htm (accessed on 15 March 2020).
- Gdansk Water and Sewage Infrastructure, Expansion of the Sewage Treatment Plant Gdańsk Wschód Stage IIb—Sewage Sludge Management. Available online: www.gdansk.pl/inwestycje-miejskie/ii-etap-rozbudowy-oczyszczalni-sciekow-gdansk-wschod-ciag-zrzutowy-sciekow-oczyszczonych,a,8309 (accessed on 15 March 2020).
- Water Supply and Sewage Company in Gdynia, Sewage Treatment Plant. Available online: www.pewik.gdynia.pl/o-spolce/podstawowe-informacje/ochrona-srodowiska/oczyszczalnia-sciekow (accessed on 15 March 2020).
- Municipal Water Supply and Sewerage System in Bydgoszcz, Installation for Thermal Transformation of Sewage Sludge. Available online: www.mwik.bydgoszcz.pl/index.php/instalacja-termicznego-pzeksztalcania-osadow (accessed on 15 March 2020).
- Dominowska, M. Pomorzany Sewage Treatment Plant in Szczecin—Detailed Information. Available online: zwik.szczecin.pl/uploads/dokumenty/opis_Oczyszczalni_Pomorzany.pdf (accessed on 15 March 2020).
- Zielona Góra Water Supply and Sewerage, Sewage Treatment Technology. Available online: https://www.zwik.zgora.pl/woda-i-scieki/scieki/technologia-oczyszczania-sciekow (accessed on 15 March 2020).
- Kielce Waterworks, Sewage Sludge Thermal Utilization Station—Technology Safe for the Environment and People. Available online: sitkowka.wod-kiel.com.pl/stacja-termicznej-utylizacji-osadow-sciekowych-technologia-bezpieczna-dla-srodowiska-i-ludzi-,52932.html (accessed on 15 March 2020).
- Fieducik, J.; Gawroński, A.; Matuszczak, R. Osady ściekowe i ich utylizacja w przedsiębiorstwie wodociągów i kanalizacji w Olsztynie. Czas. Inż. Ląd. Śr. Arch. 2014, 61, 121–131. [Google Scholar]
- Voivodship Inspectorate for Environmental Protection in Białystok. Delegation in Łomża, Information of the Podlasie Voivodship Inspector for Environmental Protection in Białystok about the state of the environment in Łomża in 2016. Available online: www.wios.bialystok.pl/pdf/lomza_2016.pdf (accessed on 15 March 2020).
- Ministry of Development. Regulation of the Minister of Development of 16 July 2015 on the Acceptance of Waste for Landfilling; Journal of Laws 2015 item 1277; Ministry of Development: Warsaw, Poland, 2015.
- Latosińska, J.; Gawdzik, J. The impact of combustion technology of sewage sludge on mobility of heavy metals in sewage sludge Ash/Wpływ technologii spalania komunalnych Osadów Ściekowych Na Mobilność Metali Ciężkich Z Popiołów. Ecol. Chem. Eng. S 2014, 21, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Gawdzik, J.; Długosz, J.; Urbaniak, M. General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in the Świętokrzyskie Province. Environ. Protect. Eng. 2015, 41, 107–117. [Google Scholar] [CrossRef]
- Gorazda, K.; Tarko, B.; Wzorek, Z.; Nowak, A.K.; Kulczycka, J.; Henclik, A. Characteristic of wet method of phosphorus recovery from polish sewage sludge ash with nitric acid. Open Chem. 2016, 14, 37–45. [Google Scholar] [CrossRef]
- Gorazda, K.; Kowalski, Z.; Wzorek, Z. From sewage sludge ash to calcium phosphate fertilizers. Pol. J. Chem. Technol. 2012, 14, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Borowski, G.; Gajewska, M.; Haustein, E. Possibilities of ashes utilization from sewage sludge thermal processingin a fluidized bed boiler (Możliwości zagospodarowania popiołów z termicznego przekształcania osadów ściekowych w kotłach fluidalnych). Inż. Ochr. Śr. 2014, 17, 393–402. [Google Scholar]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J. Environ. Manag. 2019, 148, 109283. [Google Scholar] [CrossRef]
- European Commission. Council Directive 2008/98/EC on Waste; (Waste Framework Directive 2008/98/EC), 2008/98/EC; Commission of European Communities: Brussels, Belgium, 2008. [Google Scholar]
- Sobek, S.; Werle, S. Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge. Renew. Energy 2020, 153, 962–974. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D.S. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Kim, N.; Lee, S.; Yeon, S.; Seo, J.H.; Park, D. A study of solubilization of sewage sludge by hydrothermal treatment. J. Environ. Manag. 2019, 250, 109490. [Google Scholar] [CrossRef]
- Werle, S. Sewage sludge-to-energy management in eastern europe: A polish perspective. Ecol. Chem. Eng. S 2015, 22, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Borowski, B. Processing of ashes from sewage sludge combustion for building material. Inż. Ekol. 2011, 251–258. [Google Scholar]
- Yang, F.; Chen, J.; Yang, M.; Wang, X.; Sun, Y.; Xu, Y.; Qian, G. Phosphorus recovery from sewage sludge via incineration with chlorine-based additives. Waste Manag. 2019, 95, 644–651. [Google Scholar] [CrossRef]
- Kleemann, R.; Chenoweth, J.; Clift, R.; Morse, S.; Pearce, P.; Saroj, D. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Manag. 2017, 60, 201–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havukainen, J.; Nguyen, M.T.; Hermann, L.; Horttanainen, M.; Mikkilä, M.; Deviatkin, I.; Linnanen, L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016, 49, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Moeller, K.; Oberson, A.; Bünemann, E.K.; Cooper, J.; Friedel, J.K.; Glaesner, N.; Mueller, T. Improved phosphorus recycling in organic farming: Navigating between constraints. Adv. Agron. 2018, 147, 159–237. [Google Scholar]
- Kratz, S.; Vogel, C.; Adam, C. Agronomic performance of P recycling fertilizers and methods to predict it: A review. Nutr. Cycl. 2019, 115, 1–39. [Google Scholar] [CrossRef]
- Gorazda, K.; Tarko, B.; Werle, S.; Wzorek, Z. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction. Waste Manag. 2018, 73, 404–415. [Google Scholar] [CrossRef]
- Amann, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Res. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Hermann, L.; Reuter, M. Environmental footprint of thermo-chemical phosphaterecycling. J. Earth Sci. Eng. 2013, 3, 744. [Google Scholar]
- Klemeš, J.; Bulatov, I.; Seferlis, P.; Koltsova, E.; Kapustenko, P.; Zhekeyev, M. Waste minimisation and utilisation in phosphoric acid industry. Chem. Eng. Trans. 2006, 9, 263–268. [Google Scholar]
- Hukari, S.; Hermann, L.; Nättorp, A. From wastewater to fertilisers—Technical overview and critical review of European legislation governing phosphorus recycling. Sci. Total Environ. 2016, 542, 1127–1135. [Google Scholar] [CrossRef]
- Sartorius, C.; von Horn, J.; Tettenborn, F. Phosphorus recovery from wastewater–state-of-the-art and future potential. Proc. Water Environ. Fed. 2011, 1, 299–316. [Google Scholar] [CrossRef]
- Weigand, H.; Bertau, M.; Hübner, W.; Bohndick, F.; Bruckert, A. RecoPhos: Full-scale fertilizer production from sewage sludge ash. Waste Manag. 2013, 33, 540–544. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development. Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act. on Fertilizers and Fertilization; Journal of Law 2008, no. 119, item. 765; Ministry of Agriculture and Rural Development: Warsaw, Poland, 2008.
- European Commission. Communication on CE Package. Proposal for a Regulation of the European Parliament and of the Council Laying down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009; (COM no. 157, 2016); Commission of European Communities: Brussels, Belgium, 2016. [Google Scholar]
- European Commission. Regulationof the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Reg. (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Reg. (EC) No 2003/2003; (EU 2019/1009); Commission of European Communities: Brussels, Belgium, 2019. [Google Scholar]
- Smol, M. The importance of sustainable phosphorus management in the circular economy (CE) model: The Polish case study. J. Mat. Cycl. Waste Manag. 2019, 21, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 2015, 95, 45–54. [Google Scholar] [CrossRef]
- European Commission, Commission of European Communities. Communication No. 640, 2019. The European Green Deal; (COM no. 640, 2019); Commission of European Communities: Brussels, Belgium, 2019. [Google Scholar]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of sustainable mineral resource management in implementing the Circular Economy (CE) model and the European Green Deal Strategy. Resources 2020, 95, 55. [Google Scholar] [CrossRef]
- Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F.G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 2009, 29, 1122–1128. [Google Scholar] [CrossRef]
- European Commission, Commission of European Communities. Communication No. 398, 2014. towards a Circular Economy: A Zero Waste Programme for Europe; (COM no. 398, 2014); Commission of European Communities: Brussels, Belgium, 2014. [Google Scholar]
- European Commission, Commission of European Communities. Communication No. 614, 2015. Closing the Loop—An. EU Action Plan for the Circular Economy; (COM no. 614, 2015); Commission of European Communities: Brussels, Belgium, 2015. [Google Scholar]
- European Commission, Commission of European Communities. Communication No. 29, 2018. Monitoring Framework for the Circular Economy; (COM no. 29, 2018); Commission of European Communities: Brussels, Belgium, 2018. [Google Scholar]
- Kasprzyk, M.; Gajewska, M.; Molendowska, S. Possibilities of phosphorus recovery from effluents, sewage sludge and ashes from sewage sludge thermal processing. Ecol. Eng. 2017, 18, 65–78. [Google Scholar]
- Podewils, W. Recycling of phosphorus in Germany—Current status and prospects. Wodoc. Kanaliz. 2014, 1, 26–30. [Google Scholar]
- Xu, H.; He, P.; Gu, W.; Wang, G.; Shao, L. Recovery of phosphorus as struvite from sewage sludge ash. J. Environ. Sci. 2012, 24, 1533–1538. [Google Scholar] [CrossRef]
- European Commission. The EU Environmental Implementation Review: Common Challenges and How to Combine Efforts to Deliver Better Results, Country Report—POLAND; (SWD no. 53, 2017b); Commission of European Communities: Brussels, Belgium, 2017. [Google Scholar]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
No. | Description | Waste Code |
---|---|---|
Non-hazardous waste | ||
1 | Bottom slag and ash, other than those mentioned in 19 01 11 | 19 01 12 |
2 | Fly ash other than those mentioned in 19 01 13 | 19 01 14 |
3 | Boiler dust other than those mentioned in 19 01 15 | 19 01 16 |
4 | Stabilized wastes other than those mentioned in 19 03 04 | 19 03 05 |
5 | Solidified wastes other than those mentioned in 19 03 06 | 19 03 07 |
6 | Wastes from waste pyrolysis other than those mentioned in 19 01 17 | 19 01 18 |
7 | Sands from fluidized beds | 19 01 19 |
8 | Wastes not otherwise specified | 19 01 99 |
Hazardous waste | ||
8 | Solid wastes from gas treatment | 19 01 07 * |
9 | Sludges and other hydrated waste from gas treatment | 19 01 06 * |
10 | Fly ash containing dangerous substances | 19 01 13 * |
11 | Wastes from waste pyrolysis containing dangerous substances | 19 01 17 * |
No. | Location/Town of the WWTP | Name of the WWTP Equipped with Incineration Plant | Rated Capacity [Thousand Mg d.w./Year] | Used Type of Incineration Furnace |
---|---|---|---|---|
1 | Warsaw | Wastewater Treatment Plant „Czajka” (in Polish: Oczyszczalnia Ścieków „Czajka”) | 62.2 | fluidized-bed |
2 | Cracow | Wastewater Treatment Plant „Płaszów” (in Polish: Oczyszczalnia ścieków „Płaszów”) | 23.0 | fluidized-bed |
3 | Łódź | Group Wastewater Treatment Plant (in Polish: Grupowa Oczyszczalnia Ścieków) | 21.0 | fluidized-bed |
4 | Gdańsk | Wastewater Treatment Plant „Wschód” (in Polish: Oczyszczalnia Ścieków „Wschód”) | 14.0 | fluidized-bed |
5 | Gdynia | „Dębogórze” Group Treatment Plant (in Polish: Grupowa Oczyszczalnia Ścieków „Dębogórze”) | 9.0 | fluidized-bed |
6 | Bydgoszcz | Wastewater Treatment Plant „Fordon” (in Polish: Oczyszczalnia Ścieków „Fordon”) | 7.8 | fluidized-bed |
7 | Szczecin | Wastewater Treatment Plant „Pomorzany” (in Polish: Oczyszczalnia Ścieków „Pomorzany”) | 6.0 | grate stoker |
8 | Kielce | Wastewater Treatment Plant „Sitkówka” (in Polish: Oczyszczalnia Ścieków „Sitkówka”) | 6.2 | fluidized-bed |
9 | Olsztyn | Wastewater Treatment Plant „Łyna” (in Polish: Oczyszczalnia Ścieków „Łyna”) | 3.2 | grate stoker |
10 | Zielona Góra | Wastewater Treatment Plant „Łącza” (in Polish: Oczyszczalnia Ścieków „Łącza”) | 6.4 | grate stoker |
11. | Łomża | Łomża Wastewater Treatment Plant (in Polish: Łomżyńska Oczyszczalnia Ścieków) | 1.5 | grate stoker |
Total | 160.3 | - |
No. | Technology Used | Waste [Code] | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
Waste Generates During the Sewage Sludge Incineration [Mg] | ||||||||||
1 | fluidized-bed | fly ash [19 01 14] | 0 | 1785 | 5427 | 7371 | 4001 | 8420 | 12,574 | 10,127 |
solidified wastes [19 03 07] | 0 | 4253 | 5511 | 3624 | 460 | 3122 | 350 | 247 | ||
solid wastes from gas treatment [19 01 07 *] | 0 | 412 | 1524 | 2049 | 1075 | 2298 | 2778 | 1576 | ||
sludges and other hydrated waste from gas treatment [19 03 06 *] | 0 | 1559 | 1380 | 690 | 26 | 995 | 607 | 295 | ||
2 | fluidized-bed | fly ash [19 01 14] | 4340 | 2724 | 5231 | 4725 | 4452 | 4934 | 3310 | 4885 |
solid wastes from gas treatment [19 01 07 *] | 549 | 530 | 780 | 869 | 836 | 871 | 598 | 921 | ||
3 | fluidized-bed | fly ash [19 01 14] | 2990 | 3006 | 2126 | 2920 | 3260 | 3258 | 2949 | 3824 |
solid wastes from gas treatment [19 01 07 *] | 790 | 475 | 238 | 223 | 189 | 163 | 170 | 246 | ||
4 | fluidized-bed | fly ash [19 01 14] | - | - | - | 2616 | 2748 | 4076 | 3447 | 3279 |
solid wastes from gas treatment [19 01 07 *] | - | - | - | 1328 | 1734 | 2190 | 1951 | 1838 | ||
stabilized wastes [19 03 05] | - | - | - | 1157 | 109 | 375 | 10 | 58 | ||
5 | fluidized-bed | fly ash [19 01 14] | 1101 | 1315 | 1565 | 1282 | 1711 | 1760 | 1515 | 1676 |
6 | fluidized-bed | bottom slag and ash [19 01 12] | 792 | 388 | 435 | 493 | 672 | 1112 | 601 | 585 |
boiler dust [19 01 16] | 1707 | 1560 | 2415 | 1971 | 1393 | 1843 | 1971 | 2095 | ||
7 | grate stoker | bottom slag and ash [19 01 12] | 455 | 1011 | 902 | 1255 | 1316 | 1168 | 1562 | 1426 |
8 | grate stoker | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
9 | fluidized-bed | fly ash [19 01 14] | 12 | 720 | 1152 | 699 | 699 | 907 | 813 | 719 |
solid wastes from gas treatment [19 01 07 *] | 26 | 383 | 440 | 236 | 236 | 318 | 247 | 230 | ||
sands from fluidized beds [19 01 19] | - | - | - | - | 106 | - | - | - | ||
10 | grate stoker | bottom slag and ash [19 01 12] | 334 | 338 | 122 | 130 | 146 | 323 | 269 | 235 |
wastes not otherwise specified [19 01 99] | 60 | - | - | - | - | - | - | - | ||
solid wastes from gas treatment [19 01 07 *] | - | 80 | 31 | 41 | 38 | 95 | 60 | 54 | ||
11 | grate stoker | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Element | Warszawa | Cracow | Kielce | Bydgoszcz | Limited Values for Acceptance of Waste for Landfilling [31] |
---|---|---|---|---|---|
19 10 14 | 19 01 12 | ||||
[mg/kg d.w.] | |||||
Arsenic (As) | <1.0 | 0.03 | 0.52 | <1.00 | 2 |
Bar (Ba) | 0.56–4.04 | 0.89 | 5.330 | 2.19 | 100 |
Cadmium (Cd) | <1.0 | 0.004 | <0.005 | <0.01 | 1 |
Chromium (Cr) | <0.5 | 0.168 | <0.02 | 0.25 | 10 |
Cooper (Cu) | <0.5 | 0.02 | <0.03 | 0.26 | 50 |
Mercury (Hg) | <0.03 | 0.005 | <0.001 | <0.005 | 0.2 |
Molybdenum (Mo) | <0.05–12.0 | 8.2–12.2 | 4.010 | 2.02 | 10 |
Nickel (Ni) | <0.5 | 0.049 | 0.038 | <0.1 | 10 |
Lead (Pb) | <1.0 | 0.04 | 0.567 | <0.1 | 10 |
Antimony (Sb) | <0.5 | 0.3 | 0.537 | <0.01 | 0.7 |
Selenium (Se) | <0.3–2.03 | 1.28 | 0.468 | 0.03 | 0.5 |
Zinc (Zn) | <0.5 | 0.13 | 0.660 | <0.5 | 50 |
Chlorides (Cl-) | <50–175 | 50 | <50 | 301 | 15,000 |
Fluorides (F-) | <0.5–141 | 78 | 3.730 | 9.7 | 150 |
Sulfur (SO4 2−) | 4280–11,750 | 6450 | <100 | >10,000 | 20,000 |
MSS Mono-Incineration Plant | Calcium (Ca) | Potassium (K) | Magnesium (Mg) | Sodium (Na) | Phosphorus (P) | Aluminum (Al) | Iron (Fe) | Reference |
---|---|---|---|---|---|---|---|---|
[%] | ||||||||
Warszawa | 10.90 | 0.63 | 1.44 | - | 7.34 | 7.14 | 3.76 | [34] |
Warszawa | 10.91 | 0.63 | 1.57 | 0.26 | 9.80 | - | - | [6] |
Cracow | 10.50 | 0.53 | 1.93 | - | 7.80 | 2.34 | 11.34 | [34] |
Cracow | 11.80 | - | 1.12 | - | 9.98 | - | - | [35] |
Cracow | 10.05 | 0.58 | 1.90 | 0.20 | 7.80 | - | - | [6] |
Łódź | 12.37 | 0.85 | 2.24 | - | 8.70 | 1.37 | 7.22 | [34] |
Łódź | 12.37 | 0.85 | 2.24 | 0.45 | 8.70 | - | - | [6] |
Gdańsk | 12.24 | 1.45 | - | - | 9.59 | - | - | [36] |
Gdynia | 12.21 | 0.76 | 2.41 | - | 11.3 | 2.32 | 9.01 | [34] |
Gdynia | 11.44 | 0.71 | 1.98 | 0.38 | 12.20 | - | - | [6] |
Bydgoszcz | 20.71 | 0.67 | 2.18 | 8.03 | 2.94 | 4.19 | [34] | |
Bydgoszcz | 20.73 | 0.66 | 2.18 | 0.26 | 8.03 | - | - | [6] |
Szczecin | 11.20 | 1.25 | 2.67 | 9.93 | 4.67 | 6.01 | [34] | |
Szczecin | 12.01 | 1.37 | 2.78 | 0.57 | 9.77 | - | - | [6] |
Kielce | 12.48 | 1.34 | 2.72 | 0.39 | 8.29 | - | - | [32] |
Kielce | 11.7 | 1.30 | 1.17 | 10.80 | 2.26 | 8.69 | [34] | |
Kielce | 11.71 | 1.30 | 2.45 | 0.29 | 10.80 | - | - | [6] |
Olsztyn | 14.80 | 1.55 | 2.70 | 0.41 | 9.42 | - | - | [32] |
No. | Waste Code | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
Waste Disposal Practices | |||||||||
1 | 19 01 14 | Recovery in installation (solidified) or reception and management by an external company (recovery or disposal or collection) | |||||||
19 03 07 | |||||||||
19 01 07 * | Recovery in installation (solidified) or reception and management by an external company (recovery or disposal or collection). Part of the hazardous waste was directed to disposal process | ||||||||
19 03 06 * | |||||||||
2 | 19 01 14 | Reception and management by an external company (recovery or disposal or collection) | |||||||
19 01 07 * | Reception and management by an external company (recovery or disposal or collection) | ||||||||
3 | 19 01 07 * | Reception and management by an external company | 57% Landfilling 43% taken by an external company | 93% Landfilling 7% taken by an external company | Landfilling | ||||
19 01 14 | Landfilling | ||||||||
4 | 19 01 14 | Reception and management by an external company (recovery or disposal or collection) | |||||||
19 01 07 * | |||||||||
19 03 05 | |||||||||
5 | 19 01 14 | Landfilling in heaps, spraying, soil covering | Landfilling in heaps, from 2016 in big bags | ||||||
6 | 19 01 12 | Reception and management by an external company (recovery or disposal or collection) | |||||||
19 01 16 | |||||||||
7 | 19 01 12 | Reception and management by an external company (recovery or disposal or collection) | |||||||
8 | n.d. | n.d. | |||||||
9 | 19 01 14 | Reception and management by an external company (recovery or disposal or collection) | |||||||
19 01 07 * | |||||||||
19 01 19 | |||||||||
10 | 19 01 12 | Landfilling | Landfilling /sent for recovery | Landfilling | Landfilling/taken by an external company | Landfilling | |||
19 01 99 | Landfilling | - | - | - | - | - | - | - | |
19 01 07 * | - | Landfilling | Landfilling/sent for recovery | Landfilling | Landfilling/taken by an external company | Landfilling | |||
11 | n.d. | n.d. |
Element | Polish Fertilizer Regulations [56] | CE Fertilizer Proposal [57] | EU Fertilizer Regulation [58] |
---|---|---|---|
Arsenic (As) | 50 | ns. | 40 |
Cadmium (Cd) | 50 | 1.5 | 2.0 |
Lead (Pb) | 140 | 120 | 120 |
Mercury (Hg) | 2 | 1.9 | 1.0 |
Cooper (Cu) | ns. | ns. | ns. |
Nickel (Ni) | ns. | 50 | 90 |
Zinc (Zn) | ns. | ns. | ns. |
Chromium (Cr) | ns. | ns. | ns. |
Selenium (Se) | ns. | ns. | ns. |
Cobalt (Co) | ns. | ns. | ns. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smol, M. Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions. Resources 2020, 9, 91. https://doi.org/10.3390/resources9080091
Smol M. Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions. Resources. 2020; 9(8):91. https://doi.org/10.3390/resources9080091
Chicago/Turabian StyleSmol, Marzena. 2020. "Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions" Resources 9, no. 8: 91. https://doi.org/10.3390/resources9080091
APA StyleSmol, M. (2020). Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions. Resources, 9(8), 91. https://doi.org/10.3390/resources9080091