Responsible Materials Management for a Resource-Efficient and Low-Carbon Society †
Abstract
:1. Introduction
1.1. Raw Material Trends
1.2. Aim of This Special Issue
2. The Role of Raw Materials for Future Societies
2.1. Raw Materials and the Sustainable Development Goals (SDGs)
2.2. The Role of Raw Materials in a Low-Carbon and Resource Efficient Society
3. Global and EU Policies for Sustainable Materials Management
4. Towards Low-Carbon and Material-Efficient Societies
5. Overview of Papers in This Special Issue
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krausmann, F.; Lauk, C.; Haas, W.; Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Chang. 2018, 52, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, A.; Graedel, T.E. The omnivorous diet of modern technology. Resour. Conserv. Recycl. 2013, 74, 1–7. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S.; Hellweg, S. A new method for analyzing sustainability performance of global supply chains and its application to material resources. Sci. Total Environ. 2019, 684, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, M.; Löf, O. Mining’s contribution to national economies between 1996 and 2016. Miner. Econ. 2019, 32, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Mancini, L.; Sala, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- Schrijvers, D.; Hool, A.; Blengini, G.A.; Chen, W.-Q.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K.; et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 2019, 155, 104617. [Google Scholar] [CrossRef]
- UNEP IRP. Global Resources Outlook 2019: Natural Resources for the Future We Want; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Hatfield-Dodds, S.; Schandl, H.; Newth, D.; Obersteiner, M.; Cai, Y.; Baynes, T.; West, J.; Havlik, P. Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies. J. Clean. Prod. 2017, 144, 403–414. [Google Scholar] [CrossRef]
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2019. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Mancini, L.; Vidal Legaz, B.; Vizzarri, M.; Wittmer, D.; Grassi, G.; Pennington, D. Mapping the Role of Raw Materials in Sustainable Development Goals. In A Preliminary Analysis of Links, Monitoring Indicators, and Related Policy Initiatives; Publications Office of the European Union: Luxemburg, 2019. [Google Scholar]
- Kleijn, R.; van der Voet, E.; Kramer, G.J.; van Oers, L.; van der Giesen, C. Metal requirements of low-carbon power generation. Energy 2011, 36, 5640–5648. [Google Scholar] [CrossRef]
- Günther, J.; Lehmann, H.; Nuss, P.; Purr, K. Resource-Efficient Pathways towards Greenhouse-Gas-Neutrality—RESCUE; Umweltbundesamt: Dessau/Rosslau, Germany, 2019.
- UNFCCC. Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Dewulf, J.; Blengini, G.A.; Pennington, D.; Nuss, P.; Nassar, N.T. Criticality on the international scene: Quo vadis? Resour. Policy 2016, 50, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Blengini, G.; Blagoeva, D.; Dewulf, J.; Torres de Matos, C.; Nita, V.; Vidal-Legaz, B.; Latunussa, C.; Kayam, Y.; Talens Peirò, L.; Baranzelli, C.; et al. Assessment of the Methodology for Establishing the EU List of Critical Raw Materials-Background Report; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-69612-1. [Google Scholar]
- Manhart, A.; Vogt, R.; Priester, M.; Dehoust, G.; Auberger, A.; Blepp, M.; Dolega, P.; Kämper, C.; Giegrich, J.; Schmidt, G.; et al. The environmental criticality of primary raw materials—A new methodology to assess global environmental hazard potentials of minerals and metals from mining. Miner. Econ. 2019, 32, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, E.T.; Pedro, A.M.; Ekins, P.; Gatune, J.; Milligan, B.; Oberle, B.; Christmann, P.; Ali, S.; Kumar, S.V.; Bringezu, S.; et al. Mineral Resource Governance in the 21st Century: Gearing Extractive Industries towards Sustainable Development; A Report by the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Van den Brink, S.; Kleijn, R.; Tukker, A.; Huisman, J. Approaches to responsible sourcing in mineral supply chains. Resour. Conserv. Recycl. 2019, 145, 389–398. [Google Scholar] [CrossRef]
- Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hagelüken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G. What Do We Know About Metal Recycling Rates? J. Ind. Ecol. 2011, 15, 355–366. [Google Scholar] [CrossRef]
- Talens Peirò, L.; Nuss, P.; Mathieux, F.; Blengini, G.A. Recycling Indicators Based on EU Flows and Raw Materials System Analysis Data; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Krausmann, F.; Wiedenhofer, D.; Lauk, C.; Haas, W.; Tanikawa, H.; Fishman, T.; Miatto, A.; Schandl, H.; Haberl, H. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. USA 2017, 114, 1880–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivetti, E.A.; Cullen, J.M. Toward a sustainable materials system. Science 2018, 360, 1396–1398. [Google Scholar] [CrossRef] [Green Version]
- Schanes, K.; Jäger, J.; Drummond, P. Three Scenario Narratives for a Resource-Efficient and Low-Carbon Europe in 2050. Ecol. Econ. 2019, 155, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Schnurr, M.; Glockner, H.; Berg, H.; Schipperges, M. Erfolgsbedingungen für Systemsprünge und Leitbilder Einer Ressourcenleichten Gesellschaft: Band 3: Leitbilder Einer Ressourcenleichten Gesellschaft Abschlussbericht (in German); German Environment Agency (UBA): Dessau-Rosslau, Germany, 2018.
- Passarini, L.; Ciacci, L.; Nuss, P.; Manfredi, S. Material Flow Analysis of Aluminium, Copper, and Iron in the EU-28; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- EC. EU Raw Materials Scoreboard 2018; Publications Office of the European Union: Brussels, Belgium, 2018; ISBN 978-92-79-89745-0. [Google Scholar]
- UN. Commodity Trade Statistics Database. Available online: Comtrade.un.org (accessed on 5 June 2018).
- Liu, G.; Müller, D.B. Mapping the Global Journey of Anthropogenic Aluminum: A Trade-Linked Multilevel Material Flow Analysis. Environ. Sci. Technol. 2013, 47, 11873–11881. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Int. AAAI Conf. Weblogs Soc. Media 2009, 8, 361–362. [Google Scholar]
- Graedel, T.E. Material Flow Analysis from Origin to Evolution. Environ. Sci. Technol. 2019, 53, 12188–12196. [Google Scholar] [CrossRef]
- BIO by Deloitte. Study on Data for a Raw Material System Analysis: Roadmap and Test of the Fully Operational MSA for Raw Materials; European Commission: Brussels, Belgium, 2015.
- EC. Monitoring Framework for the Circular Economy; European Commission (EC): Brussels, Belgium, 2018. [Google Scholar]
- United Nations Sustainable Development Goals: 17 Goals to Transform Our World. Available online: http://www.un.org/sustainabledevelopment/ (accessed on 21 December 2016).
- Mehlum, H.; Moene, K.; Torvik, R. Institutions and the Resource Curse*. Econ. J. 2006, 116, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Van der Ploeg, F. Natural Resources: Curse or Blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef] [Green Version]
- Schellens, M.K.; Gisladottir, J. Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition. Resources 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- VDI VDI-Richtlinie 4800-1. Ressourceneffizienz—Methodische Grundlagen, Prinzipien und Strategien; VDI: Düsseldorf, Germany, 2018. [Google Scholar]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- UNEP. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; A Report of the Working Group on Decoupling to the International Resource Panel; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- IRENA. Global Energy Transformation: A Roadmap to 2050 (2019 Edition); International Renewable Energy Agency: Abu Dhabi, UAE, 2019. [Google Scholar]
- De Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; van Engelen, G.; Tukker, A. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Ali, S.H.; Bazilian, M.; Radley, B.; Nemery, B.; Okatz, J.; Mulvaney, D. Sustainable minerals and metals for a low-carbon future. Science 2020, 367, 30–33. [Google Scholar] [CrossRef]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- Elshkaki, A.; Graedel, T.E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 2013. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Resource Demand Scenarios for the Major Metals. Environ. Sci. Technol. 2018, 52, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- World Bank. The Growing Role of Minerals and Metals for a Low Carbon Future; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Dominish, E.; Florin, N.; Teske, S. Responsible Minerals Sourcing for Renewable Energy; Institute for Sustainable Futures, University of Technology: Sydney, Australia, 2019. [Google Scholar]
- Månberger, A.; Stenqvist, B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 2018, 119, 226–241. [Google Scholar] [CrossRef]
- Blagoeva, D.; Aves Dias, P.; Marmier, A.; Pavel, C. Assessment of potential bottlenecks along the materials supply chain for the future deployment of low-carbon energy and transport technologies in the EU. In Wind Power, Photovoltaic and Electric Vehicles Technologies, Time Frame: 2015–2030; European Commission, DG Joint Research Centre: Luxembourg, 2016. [Google Scholar]
- Marscheider-Weidemann, F.; Langkau, S.; Hummen, T.; Erdmann, L.; Tercero Espinoza, L.; Angerer, G.; Marwede, M.; Benecke, S. Rohstoffe für Zukunftstechnologien 2016; DERA Rohstoffinformationen 28: Berlin, Germany, 2016. [Google Scholar]
- EC. Critical Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Hertwich, E.; Lifset, R.; Pauliuk, S.; Heeren, N. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future; A Report of the International Resource Panel (IRP); United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Barrett, J.; Scott, K. Link between climate change mitigation and resource efficiency: A UK case study. Glob. Environ. Chang. 2012, 22, 299–307. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Ali, S.; Ciacci, L.; Fishman, T.; Heeren, N.; Masanet, E.; Asghari, F.N.; Olivetti, E.; Pauliuk, S.; Tu, Q.; et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—A review. Environ. Res. Lett. 2019, 14, 043004. [Google Scholar] [CrossRef] [Green Version]
- Scott, K.; Giesekam, J.; Barrett, J.; Owen, A. Bridging the climate mitigation gap with economy-wide material productivity. J. Ind. Ecol. 2019, 23, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Enkvist, P.; Klevnas, P. The Circular Economy–A Powerful Force for Climate Mitigation: Transformative Innovation for Prosperous and Low-Carbon Industry; Material Economics: Stockholm, Sweden, 2018. [Google Scholar]
- Hernandez, A.G.; Cooper-Searle, S.; Skelton, A.C.H.; Cullen, J.M. Leveraging material efficiency as an energy and climate instrument for heavy industries in the EU. Energy Policy 2018, 120, 533–549. [Google Scholar] [CrossRef] [Green Version]
- Bobba, S.; Mathieux, F.; Blengini, G.A. How will second-use of batteries affect stocks and flows in the EU? A model for traction Li-ion batteries. Resour. Conserv. Recycl. 2019, 145, 279–291. [Google Scholar] [CrossRef]
- Climate Action Tracker Addressing Global Warming. Available online: https://climateactiontracker.org/global/temperatures/ (accessed on 5 March 2020).
- IGF. Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development (IGF). Available online: https://www.igfmining.org/ (accessed on 11 November 2019).
- G7. G7 Bologna Environment Ministers’ Meeting—Communique; G7: Bologna, Italy, 2017. [Google Scholar]
- G20. G20 Resource Efficiency Dialogue; G20: Hamburg, Germany, 2017. [Google Scholar]
- UNEA UN Environment Assembly. Available online: https://environmentassembly.unenvironment.org/proceedings-report-ministerial-declaration-resolutions-and-decisions-unea-4 (accessed on 17 November 2019).
- OECD. OECD Due Diligence Guidance for Responsible Business Conduct; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2018. [Google Scholar]
- OECD. OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2016. [Google Scholar]
- World Bank Climate-Smart Mining: Minerals for Climate Action. Available online: https://www.worldbank.org/en/topic/extractiveindustries/brief/climate-smart-mining-minerals-for-climate-action (accessed on 11 November 2019).
- UNEA. Mineral Resource Governance; UN Environment Assembly: Nairobi, Kenya, 2019. [Google Scholar]
- EC. The Raw Materials Initiative—Meeting our Critical Needs for Growth and Jobs in Europe; European Commission (EC): Brussels, Belgium, 2008. [Google Scholar]
- EC. Europe 2020. In A Strategy for Smart, Sustainable and Inclusive Growth; Publications Office of the European Union: Brussels, Belgium, 2010. [Google Scholar]
- EC. Closing the Loop—An EU Action Plan for the Circular Economy; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- EC. Energy Roadmap 2050; Publications Office of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- EC. A Clean Planet for All A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Publications Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- EC. Implementation of the Strategic Action Plan on Batteries: Building a Strategic Battery Value Chain in Europe; European Commission (EC), Publications Office of the European Union: Brussels, Belgium, 2019. [Google Scholar]
- EC. The European Green Deal; Publications Office of the European Union: Brussels, Belgium, 2019. [Google Scholar]
- EC. Circular Economy Action Plan: For a Cleaner and More Competitive Europe; European Commission (EC): Brussels, Belgium, 2020. [Google Scholar]
- EC. A New Industrial Strategy for Europe; European Commission (EC): Brussels, Belgium, 2020. [Google Scholar]
- EC. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law); European Commission (EC): Brussels, Belgium, 2020. [Google Scholar]
- EEA. More from Less—Material Resource Efficiency in Europe: 2015 Overview of Policies, Instruments and Targets in 32 Countries; European Environment Agency (EEA): Copenhagen, Denmark, 2016. [Google Scholar]
- Bahn-Walkowiak, B.; Steger, S. Resource Targets in Europe and Worldwide: An Overview. Resources 2015, 4, 597–620. [Google Scholar] [CrossRef] [Green Version]
- Domenech, T.; Bahn-Walkowiak, B. Transition towards a resource efficient circular economy in Europe: Policy lessons from the EU and the member states. Ecol. Econ. 2019, 155, 7–19. [Google Scholar] [CrossRef]
- OECD. Waste Management and the Circular Economy in Selected OECD Countries; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2019. [Google Scholar]
- Purr, K.; Strenge, U.; Werner, K.; Nissler, D.; Will, M.; Knoche, G.; Volkens, A. Germany in 2050—A Greenhouse Gas-Neutral Country; German Environment Agency (UBA): Dessau-Rosslau, Germany, 2014. [Google Scholar]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- IRENA. Towards 100% Renewable Energy: Status, Trends and Lessons Learned; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2019. [Google Scholar]
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa, L. Global Energy System Based on 100% Renewable Energy–Power, Heat, Transport and Desalination Sectors; Lappeenranta University of Technology and Energy Watch Group: Berlin, Germany, 2019. [Google Scholar]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- IRP. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future; United Nations International Resource Panel (IRP): Nairobi, Kenya, 2020. [Google Scholar]
- Allen, C.; Metternicht, G.; Wiedmann, T.; Pedercini, M. Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging. Nat. Sustain. 2019, 2, 1041–1050. [Google Scholar] [CrossRef]
- Van Soest, H.L.; van Vuuren, D.P.; Hilaire, J.; Minx, J.C.; Harmsen, M.J.H.M.; Krey, V.; Popp, A.; Riahi, K.; Luderer, G. Analysing interactions among Sustainable Development Goals with Integrated Assessment Models. Glob. Transit. 2019, 1, 210–225. [Google Scholar] [CrossRef]
- Buchert, M.; Degreif, S.; Bulach, W.; Schüler, D.; Prakash, S.; Möller, M.; Köhler, A.; Behrendt, S.; Nolte, R.; Röben, A. Substitution as a Strategy for Reducing the Criticality of Raw Materials for Environmental Technologies; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2019.
- EUROSTAT. Economy-Wide Material Flow Accounts (EW-MFA): Compilation Guide 2013; Statistical Office of the European Communities: Luxembourg, 2013.
- UNEP UN. Environment International Resource Panel Global Material Flows Database; United Nations International Resource Panel (IRP): Paris, France, 2019. [Google Scholar]
- Mayer, A.; Haas, W.; Wiedenhofer, D.; Krausmann, F.; Nuss, P.; Blengini, G.A. Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy-wide Material Loop Closing in the EU28. J. Ind. Ecol. 2019, 23, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuss, P.; Blengini, G.A.; Haas, W.; Mayer, A.; Nita, V.; Pennington, D. Development of a Sankey Diagram of Material Flows in the EU Economy Based on Eurostat Data; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-73901-9. [Google Scholar]
- Chen, W.-Q.; Graedel, T.E. Anthropogenic Cycles of the Elements: A Critical Review. Environ. Sci. Technol. 2012, 46, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- MinFuture MinFuture: Global Material Flows and Demand-Supply Forecasting for Mineral Strategies. Available online: https://minfuture.eu/ (accessed on 24 November 2019).
- EC. ILCD Handbook—International Reference Life Cycle Data System: Recommendations for Life Cycle Impact Assessment in the European Context; Joint Research Centre (JRC), European Commission (EC): Ispra, Italy, 2011. [Google Scholar]
- Zampori, L.; Pant, R. Suggestions for Updating the Organisation Environmental Footprint (OEF) Method; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- UNEP. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Programme (UNEP): Paris, France, 2009. [Google Scholar]
- Mancini, L.; Eynard, U.; Eisfeldt, F.; Ciroth, A.; Blengini, G.A.; Pennington, D. Social Assessment of Raw Materials Supply Chains: A life-Cycle-Based Analysis; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Teubler, J.; Kiefer, S.; Liedtke, C. Metals for Fuels? The Raw Material Shift by Energy-Efficient Transport Systems in Europe. Resources 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Moreau, V.; Dos Reis, P.C.; Vuille, F. Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Boubault, A.; Maïzi, N. Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100. Resources 2019, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Rötzer, N.; Schmidt, M. Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified? Resources 2018, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Di Noi, C.; Ciroth, A. Environmental and Social Pressures in Mining. Results from a Sustainability Hotspots Screening. Resources 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Young, S.B.; Fernandes, S.; Wood, M.O. Jumping the Chain: How Downstream Manufacturers Engage with Deep Suppliers of Conflict Minerals. Resources 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Graedel, T.E.; Reck, B.K.; Ciacci, L.; Passarini, F. On the Spatial Dimension of the Circular Economy. Resources 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, L.; Nuss, P. Responsible Materials Management for a Resource-Efficient and Low-Carbon Society. Resources 2020, 9, 68. https://doi.org/10.3390/resources9060068
Mancini L, Nuss P. Responsible Materials Management for a Resource-Efficient and Low-Carbon Society. Resources. 2020; 9(6):68. https://doi.org/10.3390/resources9060068
Chicago/Turabian StyleMancini, Lucia, and Philip Nuss. 2020. "Responsible Materials Management for a Resource-Efficient and Low-Carbon Society" Resources 9, no. 6: 68. https://doi.org/10.3390/resources9060068
APA StyleMancini, L., & Nuss, P. (2020). Responsible Materials Management for a Resource-Efficient and Low-Carbon Society. Resources, 9(6), 68. https://doi.org/10.3390/resources9060068