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Abstract: In recent years, increased interest and actions have been taken to better understand,
and mitigate, sustainability impacts of mining activities, by both industry and policy. The present
work reports on a sustainability hotspots screening performed for the EU Horizon 2020 “Integrated
Mineral Technologies for More Sustainable Raw Material Supply” (ITERAMS) project, which foresees
a more efficient water recycling, tailings valorization, and minimization of environmental footprint.
The focus of this paper is on social and environmental issues in mining. Different methodologies
were explored, starting from a qualitative causal loop modelling. Afterwards, an environmental and
social LCA screening was performed using well-accepted databases and methods, thus completing
results with a literature research. The main findings related to the importance of the supply chain,
the vulnerability of local communities, and the toxic emissions from tailings offer a starting point to
reflect on the specific social, socio-economic, and environmental context which may influence these
issues. A better understanding of the environmental and social pressures associated with mining is
not only crucial to orient the sustainability assessment foreseen for the ITERAMS project, but also
to contribute in terms of methodology to the challenges tackled by policy and research worldwide
towards a more sustainable mining.

Keywords: mining; social impacts; environmental impacts; hotspots; social risks; supply chain;
LCA; screening

1. Introduction

1.1. Mining and the Sustainable Development Goals

A mining activity is defined as “the process of extracting metallic, non-metallic mineral or
industrial rock deposits from the Earth” [1]. As reported by the North American Industry Classification
System (NAICS), it is often the case that “the term mining is used in the broad sense to include
quarrying, well operations, beneficiating (e.g., crushing, screening, washing, and flotation), and other
preparation customarily performed at the mine site, or as a part of mining activity” [2]. A number of
social and environmental risks and impacts may be generated by these activities, hence preventing
the sector and, at a broader level, our societies from a sustainable development, often quoted as
the “development that meets the needs of the present, without compromising the ability of future
generations to meet their own needs” [3].

In recent years, the mining industry has acknowledged its potential and duty to monitor and
assess the sustainability of the raw materials sector, which is referred to the “key enablers of many
critical sectors of the economy” [4], including for instance metals, minerals, and biotic materials.
A number of programs and initiatives have been undertaken by the industry to take action on those
issues that the mining activities have contributed to create or exacerbate. These issues include health
problems, water and air pollution, environmental degradation, and restricted access to material
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resources for local communities. Both this awareness and proper accountability are crucial as the
mining industry has the chance to contribute to the achievement of the Sustainable Development
Goals (SDGs) by mitigating environmental and social impacts and creating new opportunities. In fact,
the relation between mining and the SDGs has been clearly identified [5].

Considering the implementation of new technologies aiming at an efficient waste water treatment
and at the reduction of the land consumption for tailings treatment and storage facilities, mining
companies can act towards the SDG6 “Clean Water and Sanitation” and SDG15 “Life on Land”.
Furthermore, given that a number of ore processing processes, such as crushing and grinding,
are highly energy demanding [6], an increase in the energy efficiency of the sector may result in
a reduction of the Green House Gas (GHG) emissions, hence in the direction of the SDG7 “Energy
Access and Sustainability” and the SDG13 “Climate Action”. Regarding social sustainability, the mining
industry may help to reduce the unemployment rate and promote the economic growth (SDG3
“Good Health and Well-Being”), and create new social opportunities, fighting inequalities and
discrimination (SDG1 “End Poverty”, SDG5 “Gender Equality”, and SDG10 “Reduce inequalities”).
Finally, with reference to the SDG 16 “Peace, Justice, and Strong Institutions”, mining companies are
called upon to a responsible supply of raw materials, in particular when there is the risk that the
trading of minerals finances armed conflicts and corruption. The acknowledgement of this latter issue
has led to guidance and regulations to promote due diligence for the supply of conflict minerals [7,8].

1.2. Mining and the European Policy Framework

From this brief introduction, it is clear that the mining sector finds itself under the pressure from
the society that asks for resources to sustain its development; on the other side, the public opinion
and the societal stakeholder request that the raw materials sourcing is performed following social
responsibility along the supply chain and environmental protection. Furthermore, it is expected that
the resource provision is pursued within legal national and international frameworks [9].

The European Union (EU) has launched a number of initiatives and policies addressing the main
social and environmental issues related to raw materials and promoting the effort towards the SDGs,
which are not legally binding. As a foundation for the European Commission (EC) commitment
towards sustainability of raw materials and related activities, the Raw Materials Initiative (RMI) was
established in 2008 [10] with the intention of securing a sustainable and fair resources supply both
within and outside the EU. Furthermore, the provision of secondary raw materials is encouraged
through recycling together with a more efficient resource use. Following the RMI, the European
Innovation Partnership (EIP) on raw materials was launched in 2012 [11] to gather a number of
different stakeholders, including academia, citizens, NGOs, industries, and governments. The EIP
has the mission to put into practice the legal framework defined by the RMI by establishing action
and monitoring plans. For instance, the Raw Materials Scoreboard (RMS) was implemented in
2016 and updated in 2018 [4] to provide quantitative information to be used by the Partnership
and decision-makers to monitor the EIP activities and as a basis for policies. Specifically, the RMS
reports on 24 indicators which are grouped in five main subject areas, namely “Raw materials in the
global context”, “Competitiveness and innovation”, “Framework conditions for mining”, “Circular
economy and recycling”, and “Environmental and social sustainability”. Besides this, the Strategic
Implementation Plan (SIP) is crucial for the EIP which has defined seven specific objectives to be
achieved by 2020 [12]. These targets include the identification of conditions for a stable supply of
primary raw materials in the EU, alternatives to critical raw materials, promotion of pilot actions,
and a network of knowledge.

Besides specific initiatives on raw materials, the EU promotes in any sector social protection,
fair working conditions, and equal opportunities and rights in the labor market [13]. As it may
be difficult to quantify the mentioned social issues and it may be actually challenging to obtain
reliable data on those topics, the EU encourages Corporate Social Responsibility (CSR) and the
transparency of environmental and social consequences of companies’ business [4,14]. In addition,
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the Global Reporting Initiative (GRI) provides guidance on how to communicate sustainability issues
by developing reporting standards and GRI sector specific indicators for the use of companies and
governments [15,16].

1.3. Motivation

Mining has been repeatedly associated with a negative image. Feelings of insecurity are
often perceived by the local communities because of the risk of environmental degradation [9] and
consequences on human health due to exposure to respirable dust and chemicals and toxic and
carcinogenic emissions from tailings [17–19], triggered by mining activities in the area. In addition,
there is the fear that the industry may have negative consequences on other coexisting sectors in the
area, such as nature tourism and reindeer farming in northern Europe [20]. Depending on the region,
the protection of indigenous rights may become an important issue to account for, particularly in
view of the affection of these populations to land and water resources, which are moreover crucial
for their livelihood [21]. On the other side, the presence of a mine and processing site in a region may
trigger opportunities related to job creation and the construction of infrastructures, such as schools,
hospitals, and roads [22]. Therefore, social impact evaluation in the mining sector has emerged as
a relevant issue regarding both positive and negative aspects [23,24]. Finally, a number of challenges
are associated with water related risks, which may cause damages both on the environment and the
people. These challenges include water balance management, water quality, tailings dam failures,
and site rehabilitation [25].

The present work reports on a sustainability hotspots screening performed in the context of the
EU Horizon (H) 2020 “Integrated Mineral Technologies for More Sustainable Raw Material Supply”
(ITERAMS) project. The focus of this paper is on social and environmental issues related to mining and
on how the outcomes of this preliminary screening study can be used in the context of the sustainability
assessment of the ITERAMS solution. The project addresses the H2020 topic of “Sustainable selective
low impact mining” and has three main objectives [26]:

• Efficient water recycling, through a reduction in water consumption up to more than 90%,
improved water quality, efficient water treatment, and recovery of valuable elements from
process water.

• Tailings valorization, with the creation of geopolymers to be used as backfill material and tailings
cover, or simply sold as products. Furthermore, the rest of the tailings is planned to be deposited
as a filter dry cake.

• Minimization of the environmental footprint, by reducing emissions to the environment,
freshwater intake, and the risk of dam accidents.

The combined solutions proposed by ITERAMS are planned to be implemented and validated in
three sites, the Kevitsa nickel copper mine in Finland, the Neves-Corvo copper zinc mine in Portugal,
and an unspecified platinum mine in South Africa.

The identification and quantification of environmental and social pressures in mining have as
a firm basis the definition of a multifaceted approach to capture, at first, issues in the sector at a broader
level and, secondly, to characterize these topics for the context of the sites under study. The intention of
this work is to present how different challenges related to social and environmental impacts of mining
activities have been addressed for the preliminary sustainability hotspots identification in the ITERAMS
project. The paper shows how the methodologies explored can help to achieve a better understanding
of mining issues; indeed, comprehension is the first essential step towards the improvement of mining
sustainability and the related achievement of social equity and environmental responsibility, as highly
promoted by the SDGs and European policies and initiatives.
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2. Materials and Methods

2.1. Qualitative Modelling Approach

A causal loop diagram (CLD) is an established modeling technique to sketch topics, states,
influencing variables, and relations between them, in a graphical way, for any given subject, with by
intention low formal overhead and boundaries. Drafting a causal loop diagram (CLD) may be useful
in the early phase of a project to better define the system under study, hence identifying the main
variables and how they influence and trigger each other. Often, CLDs allow a deeper understanding
of the system under study, such as the identification of reinforcing variables, positive or negative
feedback loops, or also trade-offs, which often may not be evident at first sight even to domain experts.
This becomes important when tackling sustainability because environmental and social impacts may
be not only complementary and overlapping, but actually contradictory.

The application of CLDs can be found in literature [27–29]. However, they have been rarely used
in Life Cycle Sustainability Assessment (LCSA), despite some guidelines and examples [30–32].

The definition of qualitative cause-effect relationships among the different elements, variables,
risks, and impacts of the ITERAMS project was the first operation performed for the hotspots screening,
thus resulting in a CLD created in the Vensim software [33]. The intention was to obtain an overview
on the issues to be further addressed by the Life Cycle Assessment (LCA) screening and complemented
by literature research. Furthermore, attention was focused on those topics which are more difficult
to evaluate with LCA, but equally important when interpreting the sustainability hotspots, such as
qualitative social aspects and risks. In addition, the CLD shows few reasonings on Life Cycle Costing
(LCC) impacts together with social and environmental ones. Although costs are not the focus of this
paper, they are reported in the full diagram displayed in Section 3.1 “Results from the Qualitative
CLD” not to extrapolate an incomplete picture from the original comprehensive model.

The CLD is referred to mine operation, hence excluding mine installation and closure and
exploring the influence of water and tailings treatment technologies on mining.

Specifically, the different elements in the diagram can be described as following:

• Variables: external measures and requirements that have an influence on ore mining and
processing. This includes, for instance, water quality (see Figure 1a) and security prescriptions,
which affect, respectively, the water cleaning effort and the workers’ safety.

• External conditions: the mining activity often depends on a number of external situations linked
with the area where the site is located, such as hydrological and geological variables, Figure 1b.
They may deeply affect the efficiency and the impacts of the operations; on the other side, it might
be very difficult to influence the action of those external conditions.

• State boxes: elements of the mining and processing operations, which are influenced by the
external variables and conditions, consequently exercising a pressure on the environmental and
social dimensions. See Figure 2a.

• Arrows: they are crucial to define the cause-effect relations in the diagram. A blue arrow from “a”
to “b” and a “+” sign indicate that “if “a” increases, then “b” increases”; a green arrow from “a”
to “b” and a “-” sign indicate that “if “a” increases, then “b” decreases”. For instance, Figure 2b
shows that if dry tailings protection increases, tailings leaking may be reduced; on the other side,
if tailings leaking occurs, the effort spent on leaking treatment increases.

• Inputs: they are elementary and product flows used by processes related to ore mining and
processing. These inputs include any energy and consumable, water, and land use, as displayed
in Figure 3.

• Risks, occurring in different stages of ore mining and processing, see Figure 4a. They can be
reduced by mitigation measures or the implementation of specific new technologies.
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• Impacts: pressures on the environment or societal stakeholders, Figure 4b. They can be
either positive or negative. They include, for instance, impacts on local communities, workers,
ecosystems, and resources.
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The full CLD diagram is displayed in Figure 5 in Section 3.1 “Results from the Qualitative CLD”.

2.2. LCA Screening Approach

Beside a qualitative causal loop diagram, the LCA methodology was identified as the main
approach to be used for the hotspots screening. LCA is a well-established and internationally
recognized technique to assess potential positive and negative impacts occurring across the life
cycle of a product or service. Hence, this scientific approach was applied both to the environmental
(ELCA) and social (SLCA) dimensions. The already mentioned CLD was a crucial input to the LCA
screening, further complemented with literature research [9,20–25,34,35]. Therefore, it is important to
highlight the meaningfulness of an iterative and complementary procedure among different screening
approaches, namely CLD, LCA, and literature. In fact, this procedure enables a better interpretation of
the outcomes in the specific local context of mining activities.

Mining processes representative for the first target of the ITERAMS solution (sulfide ore mining)
were investigated in the different countries where the validation sites are located (Finland, Portugal,
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and South Africa). The processes were selected from well-accepted and renowned databases and
calculated in the openLCA software. EXIOBASE and ecoinvent databases were used for the ELCA
screening, while the Product Social Impact Life Cycle Assessment (PSILCA) database was identified
for the performance of the SLCA screening. Furthermore, environmental and social impacts were
evaluated with a number of Life Cycle Impact Assessment Methods (LCIAM) in order to (1) cover
all the impact categories important for the project and (2) investigate whether some burdens are
unwittingly shifted from one impact category to another. In addition, the application of different
LCIAMs was crucial for the cross-checking and identification of those topics which emerged as
common sustainability issues to the LCIAMs considered. Specifically, ILCD 2011 Midpoint+, ReCiPe
Midpoint H, CML-IA Baseline, Boulay et al. (2011), and built-in EXIOBASE LCIAM were selected for
the ELCA screening, while social impacts were calculated by applying the Social Impacts Weighting
Method contained in the PSILCA database.

The following steps were undertaken to conduct the screening (as summarized in Table 1):

• Definition of the processes to be investigated: the first focus was set on copper ore mining.
However, when related processes were not available in the databases, the focus was extended to
mining of metal ores.

• Definition of the locations to be considered for the chosen processes: Finland, Portugal, and South
Africa were set as the main focus of the study as the validation sites for the ITERAMS technologies
are located in these three countries. Regarding the ELCA screening performed with EXIOBASE,
the “copper ores and concentrates” sector was analyzed for Finland, Portugal, and South Africa.
On the other side, in the case of the ELCA screening with ecoinvent, the analysis of copper mining
had to be extended to Europe as country-specific processes were not available in the database.
Copper mining impacts could not be assessed for South Africa using the ecoinvent database.
However, moving beyond the first focus of the study, potential environmental impacts of copper
mining in South America were evaluated using ecoinvent, given the intention of applying the
ITERAMS combined solutions to that region as well in the future. Regarding the SLCA screening,
Finland and Portugal were the only two countries analyzed as the third validation site in South
Africa had not been identified at the time of the study. The interpretation of SLCA results, in fact,
requires a number of background information, which cannot be collected in absence of a specific
site location.

• Performance of the environmental LCA screening. The starting point was the comparison of
information contained in the databases and the specific details given by the ITERAMS project
proposal, for instance regarding water consumption for copper ore processing. Afterwards,
environmental hotspots were detected from the calculation of the impacts derived from the
processes in the databases. Finally, this was followed by a reflection on the common and different
issues which emerged from the analysis of the same process occurring in diverse geographic
regions or countries.

• Performance of the social LCA screening. At first, high and very high social risks were identified
considering those directly associated with the mining processes to be analyzed. The identification
procedure of high and very high social risks was based on the analysis of the risk levels reported in
the PSILCA database for the different social indicators assigned to the metal ores mining sector in
Finland and Portugal. Afterwards, potential social impacts were assessed including the upstream
chain, hence leading to the definition of the social hotspots. Finally, results obtained from the
calculation of mining processes were compared to social impacts generated by an average sector
in the country. This latter operation was important to compare sector specific risks and impacts
with the general social situation in the country.

• The study was complemented by the definition of complementary and overlapping issues between
the environmental and social dimensions. Furthermore, possible trade-offs were investigated as
well, as further explained in Section 4.1. Literature research was crucial for the interpretation of
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results and the definition of the background situations with an influence on the impacts detected
with the LCA study.

Table 1 offers an overview of the processes, locations, databases, and LCIAMs investigated for the
LCA screening study.

Table 1. Definition of the locations, databases, Life Cycle Impact Assessment Methods (LCIAMs)
and processes considered for the Environmental Life Cycle Assessment (ELCA) and Social Life Cycle
Assessment (SLCA) screenings.

Approach ELCA SLCA

Geographic area Finland (FI), Portugal (PT), South Africa
(ZA), Europe (RER) and Latin America (RLA) Finland (FI), Portugal (PT)

Database Ecoinvent v.3.4,
EXIOBASE v.2.2 PSILCA v.2 1

LCIAM
ILCD 2011 Midpoint+, ReCiPe Midpoint H,
CML-IA Baseline, Boulay et al. (2011), and

built-in EXIOBASE LCIAM

PSILCA built-in Social Impacts
Weighting Method

Process

Ecoinvent for RER and RLA-> copper mine
operation |copper concentrate|; copper

production, primary |copper|. EXIOBASE
for FI, PT, and ZA -> copper ores and

concentrates

PSILCA for FI and PT ->
(Mining of) Metal ores

Note: 1 A cut-off of 1E-5 is applied for the creation of the product systems under study.

2.3. Definition of the “Background Situations”

The definition of the context of the mining operations is crucial to interpret the LCA results and,
hence, identify the environmental and social hotspots. In particular, it is possible to determine the
so-called “background situations” which may have either a positive or negative influence on the
so-called “stressors”. The stressors are pressures on the environmental and social dimensions that may
be either mitigated or intensified by background existing conditions. For instance, the dependence of
local communities on local water reserves can be considered as a background situation which may
worsen the impact of water withdrawal for ore processing. Indeed, if those local water resources
are used by local populations for agricultural practices, industrial water withdrawal has a greater
impact than that it would have in an area with a different socio-economic condition. Table 2 shows
an overview on the identified stressors and related background situations to be considered for the
interpretation of the environmental and social impacts of the ITERAMS solution. Specifically, for the
present LCA screening the following criteria were determined, most of them traceable in Table 2:

• Vulnerability of local communities, such as the already mentioned dependence on local water
reserves. The human capital may have an influence on the impacts as well, for instance if
a consistent share of the population suffers from HIV or respiratory problems, impacts generated
by mining operations may worsen the health conditions of those weaker individuals.

• Conflicts with other competing sectors in the area, for instance, in terms of workforce or resource
use. Considering the validation sites in Finland and Portugal, the local community in the area of
the Portuguese mine lives from agriculture of olives and cork [36], while reindeer farming and
nature tourism are two competing sectors in Northern Finland [9,20].

• Availability and status of local water and mineral resources. Information can be usually derived
from national environment institutes. As for Finland, it is possible to highlight that the condition
of freshwater is generally good, with the exception of coastal water where the ecological status is
very poor due to eutrophication [37]. In Portugal, the condition of surface water is classified as
“reasonable” in most areas; however, some areas on the coast and inner central southern territories
display a poor or very poor condition [38]. It is necessary to clarify that data for Finland and
Portugal are referred to 2015 and 2013 respectively.
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• Importance of the sector for the national and local economy, considering for instance the
contribution of mining in the national GDP or the share of local workers hired at the mine
sites. For example, as of December 2015, 52% and 36% of workers in Kevitsa (Finland) are hired,
respectively, locally (from Sodankylä) and regionally (from Lapland) [39].

• Risks at a national level, hence not related to the mining sector. They may include public sector
corruption and sanitation and drinkable water coverage in the country. Indeed, social and
socio-economic national and sector-specific risks can influence each other.

• Stability of risks and impacts over the life cycle, which may be useful to detect the contribution of
the supply chain to overall results, hence leading to the identification of direct and indirect risks
and impacts of the mining activity in a given area.

Table 2. Definition of stressors and background situations which have an influence on the potential
environmental and social risks and impacts.

Category Stressor Background Situation

Environmental

Tailings leaking Tailings composition, soil composition
Emissions from tailings Tailings composition

Geopolymers creation from tailings Tailings composition
Chemical products for flotation Ore to be processed, flotation steps

Instability of water cycle Ore to be processed, flotation steps, water recycle
Pond evaporation Evaporation rate, local climatic conditions

Pond seepage Vicinity of water resources, e.g., groundwater reserves, rivers
Water contamination from tailings Vicinity of water resources, tailings composition

Efficiency of water treatment Tailings composition, ore beneficiation steps and efficiency, type
of reagents

Energy use for ore processing Ore to be processed, flotation steps
Water quality Water treatment process and related efficiency

Water pollution Vicinity of water resources, tailings composition
Air quality Emissions from ore beneficiation processes and tailings

Social

Unemployment rate in the country/area Employment conditions in the area, incentives for
industrial activities

Presence of safety measures at the workplace Safety risk linked to ore beneficiation and wastewater
treatment process

Air quality Emissions from ore beneficiation process and tailings,
preexisting air quality conditions

Water pollution Importance of water resources for local communities
Industrial water use Dependence of local communities on local water reserves

Accident rate at the workplace Safety risk linked to ore beneficiation and wastewater
treatment process

Water contamination from tailings Importance of water resources for local communities

Vicinity of touristic areas to the mine Tourist presence in the area, presence of cultural heritage and
natural sites

Contribution of the sector to economic development Importance of the mining sector for the local/national economy,
share of the sector in the GDP

Risk of natural disasters Preexisting natural local conditions (e.g., high risk of
earthquakes), type of industrial activities in the area

Access to material resources Availability of ores and other resources in the area, e.g., water

Presence of indigenous population
Share of indigenous population in the area, inclusion of

indigenous people in the local society and economy, presence of
negotiated agreements for indigenous water rights

Fair salary Labor cost, minimum and living wage, workers’ wage

Working time National regulation on working time, number and duration of
shifts per day

Legal issues Type of working contracts, national regulation on
working contracts

Workers’ rights Local situation regarding the respect of workers’ rights and
freedom of association

Child/forced labor National/local regulation on the topic, share of child/forced
labor in the country/area/sector

Healthy living conditions Pollution level of the country/area and sources of the pollution
Migration Share of migrant workers in the sector, social inclusion policies

End of life responsibility Local/national regulations promoting recycling, reuse, and
responsible disposal

3. Results

3.1. Results from the Qualitative CLD

The CLD explores risks and impacts generated by the different processes of the mine operation,
see Figure 5 for a complete picture. The focus is the investigation of the different variables and resource
inputs which affect the water cycle at the mine site. Furthermore, attention is paid to the issue of
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tailings disposal and on how this may be influenced by diverse hydrological conditions and water
recycling approaches. Specifically, risks derived from process operation, untreated and uncaptured
leaking, and dam accidents are highlighted in the diagram in Figure 5.
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The CLD displays the influence of risks and technology choices on social and environmental
impacts with reference to consequences on workers and local communities for the social side and
on ecosystems, resources, land use, and human health for the environmental dimension. However,
the human health issue can be related directly to the social sphere, hence stressing the complementarity
between the two dimensions.

Figure 6 explains the relations among the different elements in the diagram which affect human
health impacts; brackets indicate that the element has already appeared in the diagram, in this case
in Figure 6. Therefore, in this example, it is possible to detect the impact contribution of energy and
material inputs for water cleaning and tailings treatment effort. Furthermore, a number of risks related
to tailings leaking and dam accidents can exacerbate the potential consequences on human health.
Finally, environmental conditions together with tailings deposit characteristics, such as the pond size,
may have an additional role in the proportion by which tailings treatment affects health conditions of
workers and local populations.
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Figure 6. Tree causality diagram: impacts on human health.

In addition, the CLD investigates the relations around the geopolymers creation which is a crucial
point for the ITERAMS project. For instance, a good geopolymers performance may positively influence
dry tailings protection, hence preventing tailings leaking and evaporation with a consequent reduction
of impacts on human health and ecosystems.

3.2. Results from the Environmental LCA Screening

The ELCA screening reports results calculated with different databases and methods pursuing,
this way, the method of triangulation. The processes analyzed with ecoinvent, namely “copper mine
operation” and “copper production, primary”, include a number of life cycle stages, such as copper
mining in ground, blasting, grinding, flotation, concentration, and tailings disposal. Furthermore,
the processes account for consumables and energy used during ore extraction and beneficiation,
for instance chemicals, electricity, and fuel.
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Toxicity categories emerged as crucial if the processes in ecoinvent are calculated with the different
methods considered, see Figure 7a,b. These toxicity categories include both water related ones, such as
freshwater and marine ecotoxicity, and human toxicity, additionally subdivided by the International
Reference Life Cycle Data System (ILCD) method by cancer and non-cancer effects. The results
presented below are normalized according to the following normalization sets:

• ILCD 2011 Midpoint+: EU27 2010 normalization.
• ReCiPe midpoint H: World ReCiPe H normalization. The most recent ReCiPe method (2016) could

not be used as normalization is not foreseen.
• CML-IA baseline: EU 25 normalization.
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If the most contributing processes to the previously identified toxicity categories are investigated,
the treatment of sulfidic tailings off-site clearly emerges as an environmental hotspot for both the water
and human toxicity issues (Figure 8). Therefore, this outcome reinforces the purpose of the ITERAMS
project which has tailings valorization and reduction of effluents to the environment as core objectives.
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Figure 8. Copper production, primary |copper| RER, from ecoinvent. Process contribution (including
the supply chain) to the impact category “Freshwater ecotoxicity”, calculated with ILCD 2011 Midpoint+
(screenshot from openLCA 1.7).

Climate change has not emerged as a major issue from the normalized results presented. However,
literature [6] and primary data from mining companies report that the stages of crushing and grinding
require a consistent amount of electricity which is, hence, responsible for an important share of
GHG emissions during operation. Considering the processes in ecoinvent and the different LCIAMs,
the analysis of the most contributing processes to the climate change impact category confirms
electricity and blasting as the main environmental hotspots. However, input values for electricity



Resources 2018, 7, 80 12 of 21

in the analyzed processes in ecoinvent appear to be underestimated if compared to primary data
and secondary sources. In addition, the electricity reported by ecoinvent for the investigated mining
processes is produced by hydro power; this may be considered as one reason for lower climate change
values than expected.

Blue water withdrawal and consumption indicators were analyzed in EXIOBASE for the sector
“Copper ores and concentrates” in different countries. Blue water is defined as the “water that has been
sourced from surface or groundwater resources and is either evaporated, incorporated into a product
or taken from one body of water and returned to another, or returned at a different time” [40]. Figure 9
displays results for Finland, showing that plastic, chemicals, and blending components have a major
effect on blue water consumption and withdrawal for manufacturing. If total blue water withdrawal
is analyzed, electricity production can be determined as an environmental hotspot, due to cooling
operations. Please note that blue water consumption does not include water used for cooling processes,
which is hence assumed to be released with a similar quality as the withdrawal.
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without upstream chain) to the impact categories “Water Withdrawal Blue—Total”, “Water Withdrawal
Blue—Manufacturing”, and “Water Consumption Blue—Manufacturing”, calculated with EXIOBASE
built-in LCIAMs (screenshot from openLCA 1.7).

If the same sector is investigated for South Africa and Portugal, it is interesting to compare the
value of water withdrawal and consumption and the related hotspots between the three countries,
see Table 3. Results include the upstream chain and display that water withdrawal in Finland is
notably higher than in South Africa and Portugal. Furthermore, the results show that impacts are
more widespread in the life cycle in comparison to the outcomes obtained from the calculation of the
processes in ecoinvent with the different impact assessment methods.
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Table 3. Main drivers for blue water withdrawal and consumption in Finland, South Africa,
and Portugal for the sector “Copper ores and concentrates”. Results are calculated for 1 EUR output.

Country Blue Water Withdrawal Blue Water Consumption

m3 Top 3 drivers m3 Top 3 drivers

Finland 0.01266
Electricity (gas), RU; Basic
plastics, FI; Other business

services, FI
0.00554

Additives, BR; Other
business services, FI; Basic

plastics, FI

m3 Top 3 drivers m3 Top 3 drivers

South Africa 0.00551
Electricity (coal), ZA;

Construction, ZA; Metal
products, ZA

0.00516
Electricity (coal), ZA;

Supporting transport, ZA;
Construction, ZA

Portugal 0.00876

Electricity (gas), PT;
Electricity (petroleum and

oil derivatives), PT;
Distribution and trade

services of electricity, PT

0.00223
Hotel and restaurant

services, PT; Electricity
(gas), PT; heavy fuel oil, PT

3.3. Results from the Social LCA Screening

The SLCA screening enabled, at first, the identification of those high and very high social risks
directly linked to mining of metal ores in Finland and Portugal. Both countries present a very high risk
of mining companies’ involvement in corruption and bribery and of a not socially responsible behavior
in the supply chain. Furthermore, a high (in Finland) and very high (in Portugal) risk of non-fatal
accidents can be highlighted, with an additional very high risk of fatal accidents in Finland. Industrial
water use emerged as an important issue for the Finnish sector, while women discrimination in the
labor force and neglect of trade unionism rights could be considered as social issues in the Portuguese
industry. The full documentation and explanation of social risks and impact categories in the database
are available in the PSILCA manual [41].

The calculation of potential social impacts related to mining of metal ores in Finland highlights
that a number of potential social impacts are not related to the sector as such, but they occur in
the upstream chain. Thus, the life cycle under study (Figure 10) displays the highest contribution
to sector-specific social themes, such as “Social responsibility along the supply chain”, “Non-fatal
accidents”, “Certified environmental management systems”, “Trade unionism”, and “Safety measures”.
However, the last three social topics could not be identified with the previous investigation of high
and very high social risks directly linked to the mining process, meaning that those social impacts are
largely related to processes part of the supply chain. Results are expressed in medium risk hours and
referred to 1 USD output.

Considering that a high risk of water withdrawn for industrial purposes in Finland emerged from
the previous process risk analysis, the process contribution to the related social issue was investigated.
Furthermore, this social theme was seen crucial for the evaluation of the sustainability of the ITERAMS
solution, as additionally confirmed by the CLD and the ELCA screening. Figure 11 displays that
most impacts are linked to the upstream processes of basic metals and chemicals manufacturing,
with a negligible contribution derived from metal ore mining itself.
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Figure 11. (Mining of) metal ores, Finland, from PSILCA. Process contribution (including the supply
chain) to the impact category “Industrial water depletion”, calculated with Social Impacts Weighting
Method in PSILCA (screenshot from openLCA 1.7).

The Portuguese sector of mining of metal ores shows that a number of potential social impacts
are associated with the sector, hence with a less contribution derived from processes happening in the
upstream chain. This outcome is, therefore, different from the picture outlined for the Finnish mining
sector previously analyzed, for which the supply chain emerged as important for most social impact
categories. This may be explained, on one side, with the starting risk levels in the upstream processes
of the two countries; on the other side, the activity variable (working hours) is more than three times
higher for the Portuguese process than for the Finnish one. The activity variable is crucial for the
quantification of a social risk and expresses its importance in the product life cycle. In the context of
the two countries under study, the Portuguese sector needs 0.01827 working hours to produce 1 USD
output of the sector, while only 0.00563 working hours are required in Finland to generate 1 USD
output for the metal ores mining sector.

Figure 12 displays the product life cycle contribution to social impacts for 1 USD output. A high
amount of medium risk hours can be detected for “Trade unionism”, “Social responsibility along
the supply chain”, “Non-fatal accidents”, and “Active involvement of enterprises in corruption and
bribery”. A minor contribution from upstream processes can be noted for the mentioned sector-specific
impact categories. Besides this, social risks at the country level can be highlighted, such as sanitation
coverage and public-sector corruption.
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more efficient water recycling and the production of dry tailings are supposed to decrease risks and 
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Figure 12. (Mining of) metal ores, Portugal, from PSILCA. Overall social impacts associated with the
life cycle under study, calculated with Social Impacts Weighting Method in PSILCA. The assessment of
data quality is included in the results (screenshot from openLCA 1.7).

The geographic localization of social impacts related to metal ores mining in Portugal is less
widespread for a number of impact categories if compared to Finland. Figure 13a displays the direct
process contribution, without upstream chain, to “Non-fatal accidents”. The highest share of the
impacts is due exactly to the Portuguese mining sector as such. Basic metals manufacturing and the
construction sector in Portugal can be identified as other social hotspots (both from commodities and
industry fields). Furthermore, in this case, impacts can be localized in Portugal and, to a small extent,
in Spain, Figure 13b.

Resources 2018, 7, 80 16 of 22 

 

 

Figure 12. (Mining of) metal ores, Portugal, from PSILCA. Overall social impacts associated with the 
life cycle under study, calculated with Social Impacts Weighting Method in PSILCA. The assessment 
of data quality is included in the results (screenshot from openLCA 1.7). 

The geographic localization of social impacts related to metal ores mining in Portugal is less 
widespread for a number of impact categories if compared to Finland. Figure 13a displays the direct 
process contribution, without upstream chain, to “Non-fatal accidents”. The highest share of the 
impacts is due exactly to the Portuguese mining sector as such. Basic metals manufacturing and the 
construction sector in Portugal can be identified as other social hotspots (both from commodities 
and industry fields). Furthermore, in this case, impacts can be localized in Portugal and, to a small 
extent, in Spain, Figure 13b.  

 
 

(a) (b) 

Figure 13. (Mining of) metal ores, Portugal, from PSILCA, calculated with Social Impacts Weighting 
Method in PSILCA (a) Process contribution (direct, without upstream chain) to the impact category 
“Non-fatal accidents”; (b) Geographic localization of the impact category “Non-fatal accidents” 
(screenshots from openLCA 1.7). 

4. Discussion 

4.1. Identification and Interpretation of the Sustainability Hotspots 

The CLD provided a number of useful inputs to be further developed with both the LCA 
screening and the literature research. Several cause-effect relations in the diagram confirmed what 
was expected, for instance in terms of dam accidents which may be reduced or even eliminated with 
the ITERAMS implementation. Indeed, the risk of dam breakage and damage increases with the 
dam size which, in turn, generates a higher land use. Therefore, less wastewater output due to a 
more efficient water recycling and the production of dry tailings are supposed to decrease risks and 
impacts on ecosystems, human health, workers, and local communities. On the other side, the CLD 
shows less straightforward relations among the different items, leading to the identification of a 
number of trade-offs. The closed loop water cycle planned by ITERAMS, for instance, may lead to a 

Figure 13. (Mining of) metal ores, Portugal, from PSILCA, calculated with Social Impacts Weighting
Method in PSILCA (a) Process contribution (direct, without upstream chain) to the impact category
“Non-fatal accidents”; (b) Geographic localization of the impact category “Non-fatal accidents”
(screenshots from openLCA 1.7).

4. Discussion

4.1. Identification and Interpretation of the Sustainability Hotspots

The CLD provided a number of useful inputs to be further developed with both the LCA screening
and the literature research. Several cause-effect relations in the diagram confirmed what was expected,
for instance in terms of dam accidents which may be reduced or even eliminated with the ITERAMS
implementation. Indeed, the risk of dam breakage and damage increases with the dam size which,
in turn, generates a higher land use. Therefore, less wastewater output due to a more efficient water
recycling and the production of dry tailings are supposed to decrease risks and impacts on ecosystems,
human health, workers, and local communities. On the other side, the CLD shows less straightforward
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relations among the different items, leading to the identification of a number of trade-offs. The closed
loop water cycle planned by ITERAMS, for instance, may lead to a more efficient water recycling,
but concurrently to higher impacts on human health due to the higher energy required and produced
to isolate the water cycle in the different ore beneficiation steps, Figure 14.
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Figure 14. Example of trade-off investigation with a CLD (screenshot from Vensim).

The ELCA screening highlighted tailings treatment as the main environmental hotspot.
In particular, tailings disposal may cause serious damages both to the environment and human
health due to heavy metals toxic emissions which pollute air and water resources. Figure 15, for
example, shows the most contributing flows to the impacts generated by the treatment of sulfidic
tailings in the context of marine aquatic ecotoxicity.
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Figure 15. Copper mine operation |copper concentrate| RER, from ecoinvent. Flow and process
contribution to the impact category “Marine aquatic ecotoxicity”, calculated with CML-IA baseline
method (screenshot from openLCA 1.7).

Furthermore, although a number of differences in results can be noticed between different
geographic locations, environmental impacts are not excessively globally widespread, meaning that
they are usually confined to the geographic region or continent. On the other hand, a different outcome
may be highlighted for the SLCA screening where the supply chain and geographic impact distribution
emerged as crucial for a number of social issues or even countries.

An interesting insight on social impacts is offered by the comparison between the mining sector
and an average industry in the country. If this operation is performed for Finland (Figure 16), social
impacts of metal ores mining result higher than those of an average Finnish sector, especially regarding
“Contribution to environmental load”, “Social responsibility along the supply chain”, “Industrial water
depletion”, and “Safety measures”.
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Figure 16. Comparison of social impacts between “(Mining of) metal ores, Finland” and an average
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1 USD output.

The main social hotspots related to a number of impact categories for mining of metal ores in
Finland are basic metals and chemicals manufacturing in Finland, construction in China and India,
and machinery production in Russia. This outcome stresses the high contribution of the processing
stages, such as flotation, to overall impacts. Furthermore, several impacts occurring in the supply chain
can be localized in Asian countries. In the case of the analyzed Portuguese mining sector, basic metals
manufacturing in Portugal, metal products in China and Angola, and motor vehicles and engines
manufacturing in USA can be regarded as social hotspots. Besides, construction in India and China
together with the direct impacts linked to the mining sector itself show an important contribution to
the product life cycle in Portugal. As for the Portuguese case, the impacts related to the mine and
processing plant installation appear to be rather consistent.

The interpretation of the identified environmental and social sustainability hotspots can be
further developed if the overlapping and complementarity between the two dimensions is further
discussed. Indeed, a number of indicators or impact categories may cover the same issue; however,
they often express different consequences as they investigate impacts on different stakeholders and
characters. Figure 17 shows an example of how water resource depletion due to industrial water
withdrawal and consumption for the mining activities may have consequences on the environment,
leading to the destruction of material resources and environmental degradation. In parallel, the
scarcity or exhaustion of water resources may destroy those local economies which need water for
their operations. In both cases, local communities may be highly affected incurring in poverty and
resettlement if they are dependent on local water reserves for their livelihood, and hence, easily
vulnerable. A second demonstration of this complementarity is provided by tailings leaking which
may lead to soil and, consequently, groundwater contamination with severe health problems for the
local population, but also with ecosystem impairment.
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4.2. Strength and Weakness of the Study

The different approaches presented in the article jointly led to the identification of the
environmental and social hotspots associated with the mining industry and further developed in
the context of the objectives of the ITERAMS project. Such an achievement was made possible by
the mutual iteration between the CLD, LCA, and literature which from time to time triggered new
challenges and reflections.

A number of limitations could be identified with reference to the use of existing databases for the
LCA screening. Indeed, it should be considered that databases use statistical data to build some of the
information they present; hence, uncertainties related to data gaps, quality, and assumptions may be
present [42]. Furthermore, a specific reflection on the uncertainty derived from multi regional input
output (IO) models should be made, considering the use of IO databases (EXIOBASE, PSILCA) for the
study [43].

Regarding the LCA screening, results are taken directly from the selected databases without
altering any input and output value. In this regard, the water and electricity requirements for copper
ore mining and processing in ecoinvent are estimated to be rather low in contrast to primary data that
will, in turn, be used for the next LCA assessment of ITERAMS. In addition, there is some criticism on
the characterization models used to estimate toxicity from heavy metals [44].

Finally, the documentation of the data quality is crucial for the interpretation of results. Data
quality is assessed in openLCA using the Pedigree matrix [41,45], further adapted for SLCA. In this
latter case, for instance, it should be noted that information for “Trade unionism” and “Non-fatal
accidents” is older than five years and that incomplete data are available for “Social responsibility
along the supply chain” and “Certified environmental management systems”. Few indicators, such as
“Trade unionism”, “Pollution”, and “Industrial water depletion”, present a low data quality for the
criteria “Further technical conformance”. This is due to the fact that data for these indicators are
interpolated from the country average as sector-specific information is not available.

5. Conclusions

The sustainability hotspots screening study provided a valuable input to the ITERAMS project.
Indeed, it enabled a better understanding of the environmental and social issues associated with
mining which are crucial for the creation and evaluation of the specific life cycle model of the
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ITERAMS combined solutions. In fact, this work was the first step towards the prioritization of
the efforts and resources for the sustainability evaluation of the project. In addition, it provided
an important overview to be accounted for when drafting the goal and scope of the following LCA
study. Furthermore, this article highlighted the significance of exploring different methodologies
and approaches in sustainability assessment. Indeed, once results are calculated, they need to be
placed in the context of the mining activities, hence evaluating those specific local and national
background situations which influence environmental and social pressures. The study on how the
environmental and social dimensions interact with each other was equally fundamental, displaying
how often environmental risks and impacts end up on risks and impacts on societal stakeholders.
Furthermore, it is worth mentioning that the sustainability screening approach developed in the
context of the ITERAMS project can be applied to both other mining case studies and, more broadly,
to other different situations if the general reflections and insights given on the methodology, tools,
and identification of the background situations are considered.

As a final point, the present study was important for the project as it helped to create a dialogue
among the different project partners. The technical partners and the mining companies had, this way,
the chance to understand the sense and the approach of LCA and sustainability assessment in general.
These understanding and appraisal are crucial for the partners´ commitment and participation to the
next stages of the work, starting from the primary data collection at the different mine sites.
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causality diagram: local community impacts.
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