Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource
Abstract
:1. Introduction
2. Geological and Geomorphological Overview of the Middle Atlas
3. Methodology and Datasets
3.1. Remote Sensing and Geophysical Data Acquisition and Processing
3.2. Multispectral Sentinel-2A Image
3.2.1. Remote Sensing Data Processing and Interpretation
3.2.2. Geophysical Data Acquisition
Electrical Resistivity Survey Using ERT
SP Field Measurements
3.3. Geophysical Data Processing and Interpretation
3.3.1. ERT Data Processing
3.3.2. From SP Data Acquisition to SP Signal Maps
3.3.3. Boreholes Data and Geophysical Data Interpretation of the Second Site
4. Results and Discussion
4.1. Sinkholes Identified Remotely
4.2. ERT
4.3. SP
4.4. Protection Zoning of Sinkholes
4.5. Assessment of Measurements and Sinkhole Delineation Precisions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fairbridge, R.W. The Encyclopaedia of Geomorphology; Reinhold Book Corporation: New York, NY, USA, 1968. [Google Scholar]
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Casagli, N. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Nisio, S.; Caramanna, G.; Ciotoli, G. Sinkholes in Italy: First results on the inventory and analysis. Geol. Soc. Spec. Public 2007, 279, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Sauro, U. Dolines and sinkholes: Aspects of evolution and problems of classification. Acta Carsol. 2003, 32, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Muzirafuti, A.; Boualoul, M.; Randazzo, G.; Lanza, S.; Allaoui, A.; El Ouardi, H.; Habibi, M.; Ouhaddach, H. The use of remote sensing for water protection in the karst environment of the Tabular Middle Atlas/the causse of El Hajeb/Morocco. In Earth Observation Advancements in a Changing World; Chirici, G., Gianinetto, M., Eds.; AIT Series, Trends in Earth Observation; Italian Society of Remote Sensing: Firenze, Italy, 2019. [Google Scholar]
- Hinaje, S.; Aït Brahim, L. Les bassins lacustres du Moyen Atlas (Maroc): Exemple d’activité tectonique polyphasée associée à des structures d’effondrement. Comun. Inst. Geol. Mineiro 2002, 89, 283–294. [Google Scholar]
- Miche, H.; Saracco, G.; Mayer, A.; Qarqori, K.; Rouai, M.; Dekayir, A.; Chalikakis, K.; Emblanch, C. Hydrochemical constraints between the karst tabular Middle Atlas Causses and the Saïs basin (Morocco): Implications of groundwater circulation. J. Hydrogeol. 2018, 26, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Allaoui, A. Contribution des Etudes Structurales, Géophysiques et Hydrochimiques à la Compréhension des Ecoulements des Eaux Souterraines du Causse d’Agouray vers le Bassin de Saïss, (Maroc) [Contribution of Structural, Geophysical and Hydrochemical Studies to the Comprehension of Groundwater floWs from the Causse d’Agouray to the Saïss Basin, (Morocco)]. Ph.D. Thesis, Moulay Ismail University, Meknes, Morocco, 2019. [Google Scholar]
- Amraoui, F.; Razack, M.; Bouchaou, L. Turbidity dynamics in karstic systems. Example of Ribaa and Bittit springs in the Middle Atlas (Morocco). Hydrol. Sci. J. 2003, 48, 971–984. [Google Scholar] [CrossRef]
- Howell, B.; Fryar, A.; Benaabidate, A.E.; Bouchaou, L.; Farhaoui, M. Variable responses of karst springs to recharge in the Middle Atlas region of Morocco. Hydrogeol. J. 2019, 27, 1693–1710. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.C.; Büntgen, U.; Verstege, A.; Luterbacher, J.; Xoplaki, E. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 2007, 34, L17702. [Google Scholar] [CrossRef] [Green Version]
- Akdim, B.; Amyay, M. Environmental vulnerability and agriculture in the karstic domain: Landscape indicators and cases in the Atlas Highlands, Morocco. Int. J. Speleol. 1999, 28B, 119–138. [Google Scholar] [CrossRef]
- Aouragh, M.H.; Essahlaoui, A.; Ouali, A.E.; Hmaidi, A.E.; Kamel, S. Groundwater potential of Middle Atlas plateaus, Morocco, using fuzzy logic approach, GIS and remote sensing. Geomat. Hazards Risk 2017, 8, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Tennevin, M. Paysages karstiques du Moyen Atlas septentrional. Méditerranée 1978, 32, 23–32. [Google Scholar] [CrossRef]
- Mhiyaoui, H.; Manar, A.; Remmal, T.; Boujamaaoui, M.; El Kamel, F.; Amar, M.; El Amrani, I. Deep quaternary volcanic structures in the central Middle Atlas (Morocco): Contributions of aeromagnetic mapping (structures profondes du volcanisme quaternaire du Moyen Atlas central (Maroc): Apports de la cartographie aéromagnétique. Bull. Inst. Sci. Rabat Sci. T. 2016, 38, 111–125. [Google Scholar]
- Qarqori, K.; Rouai, M.; Moreau, F.; Saracco, G.; Dauteuil, O.; Hermitte, D.; Boualoul, M.; Le Carlier de Veslud, C. Geoelectrical tomography investigating and modeling of fractures network around Bittit spring (Middle Atlas, Morocco). Int. J. Geophys. 2012, 489634, 13. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, G.; Romanov, D.; Tippelt, T.; Vienken, T.; Werban, U.; Dietrich, P.; Mai, F.; Borner, F. Mapping and modeling of collapse sinkholes in soluble rock: The Münsterdorf site, northern Germany. J. Appl. Geophys. 2018, 154, 64–80. [Google Scholar] [CrossRef]
- Čeru, T.; Dolenec, M.; Gosar, A. Application of ground penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments. Remote Sens. 2018, 10, 639. [Google Scholar]
- Zini, L.; Calligaris, C.; Forte, E.; Petronio, L.; Zavagno, E.; Boccali, C.; Cucchi, F. A multidisciplinary approach in sinkhole analysis: The Quinis Village case study (NE-Italy). Eng. Geol. 2015, 197, 132–144. [Google Scholar] [CrossRef]
- Krawczyk, M.; Polom, U.; Trabs, S.; Dahm, T. Sinkholes in the city of Hamburg—New urban shear-wave reflection seismic system enables high-resolution imaging of subrosion structures. J. Appl. Geophys. 2012, 78, 133–143. [Google Scholar] [CrossRef]
- Barbara, T.; Halima, A.; Abdessamad, C.; Fatima, E.B.; Mohamed, C. Remote Sensing and GIS Contribution to the Investigation of Karst Landscapes in NW-Morocco. Geosciences 2014, 4, 50–72. [Google Scholar]
- Christoph, S.; Olaf, B.; Bernhard, E. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology 2009, 112, 106–112. [Google Scholar]
- Kim, Y.J.; Nam, B.H.; Youn, H. Sinkhole Detection and Characterization Using LiDAR-Derived DEM with Logistic Regression. Remote Sens. 2019, 11, 1592. [Google Scholar] [CrossRef] [Green Version]
- Galve, J.P.; Castañeda, C.; Gutiérrez, F.; Herrera, G. Assessing sinkhole activity in the Ebro Valley mantled evaporite karst using advanced DInSAR. Geomorphology 2015, 229, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Billi, A.; Fillippis, L.; Poncia, P.P.; Sella, P.; Faccenna, C. Hidden Sinkholes and Karst cavities in Travertine plateau of the highly-populated geothermal seismic territory (Tivoli, central Italy). Geomophology 2016, 255, 63–80. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Kaliouby, H.M.; Zabramawi, Y.A. Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. J. Appl. Geophys. 2012, 87, 28–39. [Google Scholar] [CrossRef]
- Rizzo, E.; Giampaolo, V.; Capozzoli, L.; Grimaldi, S. Deep Electrical Resistivity Tomography for the Hydrogeological Setting of Muro Lucano Mounts Aquifer (Basilicata, Southern Italy). Geofluids 2019, 2019, 6594983. [Google Scholar] [CrossRef]
- Baudon, C.; Fabuel-Perez, I.; Redfern, J. Structural style and evolution of a Late Triassic rift basin in the Central High Atlas, Morocco: Controls on sediment deposition. Geol. J. 2009, 44, 677–691. [Google Scholar] [CrossRef]
- Michard, A. Elément de géologie marocaine. Notes et Mém. Serv. Géol. Maroc. 1976, 252, 408. [Google Scholar]
- Laville, E.; Petit, J.P. Role of synsedimentary strike-slip faults in the formation of the Moroccan Triassic basins. Geology 1984, 12, 424–427. [Google Scholar] [CrossRef]
- Fedan, B. Evolution géodynamique d’un basin intra-plaque sur décrochement: Le Moyen Atlas Maroc Durant le Méso-Cénozoïque. Trav. Inst. Sci. Rabat. 1989, 18, 1–142. [Google Scholar]
- Manspeizer, W.; Puffer, J.H.; Cousminer, H.L. Separation of Morocco and eastern North America: A Triassic-Liassic stratigraphic record. Geol. Soc. Am. Bull. 1978, 89, 901–920. [Google Scholar] [CrossRef]
- Warme, J.E. Evolution of the Jurassic High-Atlas Rift, Morocco: Transtension, Structural and Eustatic Controls on Carbonate Facies, Tectonic Inversion. Guidebook, AAPG Field Seminar, 24 September–1 October 1989. Colorado School of Mines, Golden, Colorado, Publication Number 9. 1989. Available online: http://www.worldcat.org/title/evolution-of-the-jurassic-high-atlas-rift-morocco-transtension-structural-and-eustatic-controls-on-carbonate-deposition-tectonic-inversion/oclc/20552972 (accessed on 30 June 2016).
- Wilmsen, M.; Neuweiler, F. Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 2008, 55, 773–807. [Google Scholar] [CrossRef]
- Mattauer, M.; Tapponier, P.; Proust, F. Sur les mécanismes de formation des chaines intracontinentales. L’exemple des chaines atlasiques du Maroc. Bull. Soc. Geol. Fr. 1977, 7, 521–526. [Google Scholar] [CrossRef]
- Arboleya, M.; Teixell, L.A.; Charroud, M.; Julivert, M. A structural transect through the High and Middle Atlas of Morocco. J. Afr. Earth Sci. 2004, 39, 319–327. [Google Scholar] [CrossRef]
- Qarqori, K. Contribution à l’étude du Réservoir Discontinu et Karstique des Causses Moyen-Atlasiques et de sa Jonction Avec le Bassin de Saïs par Télédétection Spatiale et Imagerie Géophysique [Contribution to the study of the discontinuous and karstic reservoir of the Middle Atlasic Causses and its junction with the Saïs Basin by Remote Sensing and Geophysical Imagery]. Ph.D. Thesis, Moulay Ismail University, Meknes, Morocco, 2015. [Google Scholar]
- Gomez, F.; Barazangi, M.; Bensaid, M. Active tectonism in the intracontinental Middle Atlas Mountains of Morocco: Simultaneous crustal shortening and extension. J. Geol. Soc. Lond. 1996, 153, 389–402. [Google Scholar] [CrossRef]
- Bouya, N.; El-Ouardi, H.; Habibou, E.H. Geologic interpretation of the aeromagnetic survey in the Agourai area (Central Morocco). Centr. Europ. Geol. 2013, 56, 381–395. [Google Scholar] [CrossRef] [Green Version]
- El-Ouardi, H.; Boualoul, M.; Ouhaddach, H.; Habib, M.; Muzarafuti, A.; Allaoui, A.; Amine, A. Fault analysis and its relationship with karst structures affecting lower Jurassic limestone in the Agourai plateau (Middle Atlas, Morocco). Geogaceta 2018, 63, 119–122. [Google Scholar]
- Amraoui, F. Contribution à la Connaissance des Aquifères Karstiques: Cas du Lias de la Plaine du Saïs et Du Causse Moyen Atlasique Tabulaire (Maroc). [Contribution to the Knowledge of Karstic Aquifers: Case of the Lias of the Saïs Plain and the Middle Atlas Moyen Causse (Morocco)]. Ph.D. Thesis, Université Hassan II Ain Chock, Casablanca, Morocco, 2005. [Google Scholar]
- Shalev, E.; Lyakhovsky, V.; Yechieli, Y. Salt dissolution and sinkhole formation along the Dead Sea shore. J. Geophys. Res. 2006, 111, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.D.; Baez-Villanueva, O.M.; Bui, D.D.; Nguyen, P.T.; Ribbe, L. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sens. 2020, 12, 281. [Google Scholar] [CrossRef] [Green Version]
- Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M.; Puca, S. An Automatic Processing Chain for Near Real-Time Mapping of Burned Forest Areas Using Sentinel-2 Data. Remote Sens. 2020, 12, 674. [Google Scholar] [CrossRef] [Green Version]
- Muzirafuti, A.; Randazzo, G.; Lanza, S.; Crupi, A.; Cascio, M.; Barreca, G.; Gregorio, F. Sentinel-2 images for the monitoring of dissolved contaminants on Sicily’s South-east coast. In Proceedings of the 21th EGU General Assembly, Vienna, Austria, 7–12 April 2019. [Google Scholar]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from lidar-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Doctor, D.H.; Young, J.A. An Evaluation of Automated GIS Tools for Delineating Karst Sinkholes and Closed Depressions from 1-Meter LIDAR-Derived Digital Elevation Data. In Proceedings of the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Carlsbad, NM, USA, 1 May–15 August 2013; pp. 449–458. [Google Scholar]
- Boualla, O.; Mehdi, K.; Zourarah, B. Collapse dolines susceptibility mapping in Doukkala Abda (Western Morocco) by using GIS matrix method (GMM) Model. Earth Syst. Environ. 2016, 2, 1–18. [Google Scholar]
- Ivanov, V.Y.; Vivoni, E.; Bras, R.L.; Entekhabi, D. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res. 2004, 40, 1–23. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Boleve, A.; Dupont, J.P.; Barrash, W.; Malama, B. Tomography of the Darcy velocity from self-potential measurements. Geophy. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jardani, A.; Dupont, J.P.; Revil, A. Self-potential signals associated with preferential ground water flow pathways in sinkholes. J. Geophys. Res. 2006, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Tao, M.; Chen, X.; Binley, A. Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments. Environ. Earth Sci. 2019, 78, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Chen, X.; Tao, M.; Binley, A. Characterization of karst structures using quasi-3D electrical resistivity tomography. Environ. Earth Sci. 2019, 78, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Jardani, A.; Revil, A.; Santos, F.; Fauchard, C.; Dupont, J.P. Detection of preferential infiltration pathways using joint inversion of self-potential and EM-34 conductivity data. Geoph. Prospect. 2007, 55, 1–11. [Google Scholar] [CrossRef]
- Zhou, W.; Beck, B.F.; Adam, A.L. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ. Geol. 2002, 42, 922–928. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2D and 3D Electrical Imaging Surveys; University of Alberta: Edmonton, AB, Canada, 2004; Available online: https://sites.ualberta.ca/~unsworth/UA-classes/223/loke_course_notes.pdf (accessed on 1 January 2020).
- Jardani, A.; Revil, A.; Dupont, J.P. 3D self-potential tomography applied to the determination of cavities. Geophys. Res. Lett. 2006, 33, L13401. [Google Scholar] [CrossRef]
- Boleve, A.; Revil, A.; Janod, F.; Mattiuzzo, J.L.; Jardani, A. Forward modeling and validation of a new formulation to compute self-potential signals associated with ground water flow. Hydrol. Earth Syst. Sci. 2007, 11, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Ikard, S.; Pease, E. Preferential groundwater seepage in karst terrane inferred from geoelectric measurements. Near Surf. Geophs. 2019, 17, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S. Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 2007, 313, 315–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boleve, A.; Revil, A.; Janod, F.; Mattiuzzo, J.L.; Jardani, A. A new formulation to compute self-potential signals associated with ground water flow. Hydrol. Earth Syst. Sci. 2007, 4, 1429–1463. [Google Scholar]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Occam’s inversion to generate smooth, two dimensional models form magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics. Chapter 5 Electrical Properties of Rocks and Minerals; Cambridge University Press Retrieval: Cambridge, UK, 1990. [Google Scholar]
- Gutiérrez, F.; Cooper, A.H.; Johnson, K.S. Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas. Environ. Geol. 2008, 53, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Martin, J. Le Moyen Atlas Central. Etude Géomorphologique. [The Central Middle Atlas. Geomorphological Study]. Ph.D. Thesis, Université Paris Diderot - Paris 7, Paris, France, 1976. [Google Scholar]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkholes and Subsidence; Springer: Berlin/Heidelberg, Germany, 2005; p. 382. [Google Scholar]
Morocco Z1: Geographic Coordinate System, Merchich Degree | Transformation Parameters |
---|---|
Projection | Lambert Conformal Conic |
Datum | D_Merchich |
Spheroid | “Clarke_1880_IGN”,6378249.2,293.46602 |
Prime Meridian | “Greenwich”,0.0 |
Linear unit | “Meter”,1.0 |
Angular unit | “Degree”,0.0174532925199433 |
False easting | 500000.0 |
False northing | 300000.0 |
Central meridian | −5.4 |
Standard parallel_1 | 34.86645765555556 |
Standard parallel_2 | 31.72392564722222 |
Scale factor | 0.999625769 |
Latitude of origin | 33.3 |
Sentinel-2 Bands | Spatial Resolution | Wavelength (nm) | Application |
---|---|---|---|
Band-1 Ultra blue | 60 m | 433–453 | Aerosol correction |
Band-2 Blue | 10 m | 458–523 | Aerosol correction, sensitive to vegetation stress, land cove/use mapping |
Band-3 Green | 10 m | 543–578 | Sensitive to total chlorophyll, land cover/use mapping |
Band-4 Red | 10 m | 650–680 | Maximum absorption of chlorophyll, land cover/use mapping |
Band-5 Near infrared (NIR) | 20 m | 698–713 | Consolidation of atmospheric correction/baseline of Fluorescence, land cover/use mapping |
Band-6 Near infrared (NIR) | 20 m | 734–748 | Atmospheric correction, recovery of aerosol charge, land cover/use mapping |
Band-7 Near infrared (NIR) | 20 m | 765–785 | Land cover/use mapping |
Band-8 Near infrared (NIR) | 10 m | 785–900 | Leaf area index, water vapor correction, land cover/use mapping |
Band-8A Near infrared | 20 m | 855–875 | Water vapor absorption reference, land cover/use mapping |
Band-9 Shortwave infrared (SWIR) | 60 m | 930–950 | Water vapor absorption reference, land cover/use mapping, atmospheric correction |
Band-10 Shortwave infrared (SWIR) | 60 m | 1365–1385 | Cirrus cloud detection for atmospheric correction, land cover/use mapping |
Band-11 Shortwave infrared (SWIR) | 20 m | 1565–1655 | Soil detection, sensitive to above ground forest biomass, cloud/snow/ice separation, land cover/use mapping. |
Band-12 Shortwave infrared (SWIR) | 20 m | 2100–2880 | Soil mineral mapping, soil erosion monitoring, stressed biomass and soil distinction, wildfire mapping, land cover/use mapping |
Karst Landforms | Outcrop Geological Formation | Distance from Farmland | Surface Morphology |
---|---|---|---|
1 | Mixt of red clay and carbonate rocks | 3 m | circular |
2 | Carbonate rocks | 10 m | rhombus |
3 | Basalts and carbonate rocks | 0 m | circular |
4 | Red clay and basalts | 0 m | circular |
5 | Carbonate rocks | 200 m | circular |
6 | Basalts and carbonate rocks | 170 m | circular depression |
7 | Carbonate rocks | 40 m | circular |
8 | Carbonate rocks | 50 m | circular |
9 | Basalts and carbonate rocks | 30 m | variable |
Precision Parameters | P1 | P2 | P3 | P4 |
---|---|---|---|---|
Absolute error (Ωm) | 14.0 | 9.4 | 11.3 | 8.9 |
Relative uncertainty (%) | 63.3 | 42.3 | 50.9 | 40.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzirafuti, A.; Boualoul, M.; Barreca, G.; Allaoui, A.; Bouikbane, H.; Lanza, S.; Crupi, A.; Randazzo, G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources 2020, 9, 51. https://doi.org/10.3390/resources9040051
Muzirafuti A, Boualoul M, Barreca G, Allaoui A, Bouikbane H, Lanza S, Crupi A, Randazzo G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources. 2020; 9(4):51. https://doi.org/10.3390/resources9040051
Chicago/Turabian StyleMuzirafuti, Anselme, Mustapha Boualoul, Giovanni Barreca, Abdelhamid Allaoui, Hmad Bouikbane, Stefania Lanza, Antonio Crupi, and Giovanni Randazzo. 2020. "Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource" Resources 9, no. 4: 51. https://doi.org/10.3390/resources9040051
APA StyleMuzirafuti, A., Boualoul, M., Barreca, G., Allaoui, A., Bouikbane, H., Lanza, S., Crupi, A., & Randazzo, G. (2020). Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources, 9(4), 51. https://doi.org/10.3390/resources9040051