Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. i-Tree Hydro
2.3. Input Data
2.4. Scenarios
3. Results and Discussion
3.1. Scenario 1
3.2. Scenario 2
3.3. Scenario 3
3.4. Scenario 4
3.5. Scenario 5
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angel, S.; Sheppard, S.; Civco, D.L.; Buckley, R.; Chabaeva, A.; Gitlin, L.; Kraley, A.; Parent, J.; Perlin, M. The Dynamics of Global Urban Expansion; Transport and Urban Development Department the World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Buhaug, H.; Urdal, H. An urbanization bomb? Population growth and social disorder in cities. Glob. Environ. Chang. 2013, 23, 1–10. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Fletcher, T.D.; Burns, M.J. Urban Stormwater Runoff: A New Class of Environmental Flow Problem. PLoS ONE 2012, 7, e45814. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.M.; Roy, A.H.; Leigh, D.S. Environmental indicators of macroinvertebrate and fish assemblage integrity in urbanizing watersheds. Ecol. Indic. 2009, 9, 1222–1233. [Google Scholar] [CrossRef]
- Barron, O.V.; Barr, A.D.; Donn, M.J. Effect of urbanisation on the water balance of a catchment with shallow groundwater. J. Hydrol. 2013, 485, 162–176. [Google Scholar] [CrossRef]
- Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.; Sterk, G.; Berends, B.R. Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res. 2010, 44, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Ridder, K.D.; van Lipzig, N.P.M. The impact of impervious water-storage parametrization on urban climate modelling. Urban Clim. 2015, 11, 24–50. [Google Scholar]
- Rahardjo, P.; Hartono, D.M.; Suganda, E.; Arifin, H.S. Conservation of Underground Water with the Ecosystem Approach to the Development of the New Towns in Bogor, Tangerang, Bekasi (Botabek) Region. Procedia-Soc. Behav. Sci. 2016, 227, 720–727. [Google Scholar] [CrossRef] [Green Version]
- Endreny, T.A. Land Use and Land Cover Effects on Runoff Processes: Urban and Suburban Development. In Encyclopedia of Hydrological Sciences; American Cancer Society: Atlanta, GA, USA, 2006; ISBN 978-0-470-84894-4. [Google Scholar]
- Gitau, M.W.; Chen, J.; Ma, Z. Water Quality Indices as Tools for Decision Making and Management. Water Resour Manag. 2016, 30, 2591–2610. [Google Scholar] [CrossRef]
- Riley, A.L. Restoring Streams in Cities: A Guide for Planners, Policymakers, and Citizens; Island Press: Washington, DC, USA, 1998; ISBN 978-1-61091-353-9. [Google Scholar]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Rose, S.; Peters, N.E. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrol. Process. 2001, 15, 1441–1457. [Google Scholar] [CrossRef]
- Galarza-Molina, S.; Torres, A.; Rengifo, P.; Puentes, A.; Cárcamo-Hernández, E.; Méndez-Fajardo, S.; Devia, C. The benefits of an eco-productive green roof in Bogota, Colombia, The benefits of an eco-productive green roof in Bogota, Colombia. Indoor Built Environ. 2017, 26, 1135–1143. [Google Scholar] [CrossRef]
- Chianucci, F.; Puletti, N.; Giacomello, E.; Cutini, A.; Corona, P. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban For. Urban Green. 2015, 14, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, M.; Barzetti, V.; Keipi, K.; Williams, J. Manejo de las areas verdes urbanas. Banco Interam. Desarro. 1998, 1, 0–81. [Google Scholar]
- Zhang, B.; Xie, G.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 2015, 140, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Rozos, E.; Makropoulos, C.; Maksimović, Č. Rethinking urban areas: An example of an integrated blue-green approach. Water Sci. Technol. Water Supply 2013, 13, 1534–1542. [Google Scholar] [CrossRef]
- Gardner, G. Toward a Vision of Sustainable Cities. In State of the World: Can a City Be Sustainable? State of the World; Island Press/Center for Resource Economics: Washington, DC, USA, 2016; pp. 45–64. ISBN 978-1-61091-756-8. [Google Scholar]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Rauch, W.; Urich, C.; Bach, P.M.; Rogers, B.C.; de Haan, F.J.; Brown, R.R.; Mair, M.; McCarthy, D.T.; Kleidorfer, M.; Sitzenfrei, R.; et al. Modelling transitions in urban water systems. Water Res. 2017, 126, 501–514. [Google Scholar] [CrossRef]
- Wang, J.; Hassett, J.M.; Endreny, T.A. An object oriented approach to the description and simulation of watershed scale hydrologic processes. Comput. Geosci. 2005, 31, 425–435. [Google Scholar] [CrossRef]
- Yang, Y.; Endreny, T.A.; Nowak, D.J. iTree-Hydro: Snow Hydrology Update For the Urban Forest Hydrology Model1: Itree-Hydro: Snow Hydrology Update for the Urban Forest Hydrology Model. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 1211–1218. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation Models in Hydrology. In Land Surface Evaporation: Measurement and Parameterization; Schmugge, T.J., André, J.-C., Eds.; Springer: New York, NY, USA, 1991; pp. 93–120. ISBN 978-1-4612-3032-8. [Google Scholar]
- BEVEN, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Endreny, T.A. Surface and Upper Weather Pre-processor for i-Tree Eco and Hydro. 2014, 1, pp. 0–19. Available online: https://www.itreetools.org/eco/resources/Surface_weather_and_upper_air_preprocessor_description.pdf (accessed on 10 March 2019).
- Yee-Batista, C.; Rincón, J.; Browder, G.; Acosta, A.; Catacoli, R. Rio Bogotá Environmental Recuperation and Flood Control Project; The Water Environment Federation: Boston, MA, USA, 2010; Volume 14, pp. 987–1000. [Google Scholar]
- Comisión Europea. Building a green infrastructure for Europe; Oficina de Publicaciones de la Unión Europea: Luxembourg, 2013. [Google Scholar]
- Fadigas, L. The Green Structure in the Urban Planning Process; Universidad Técnica de Lisboa: Lisboa, Portugal, 2009. [Google Scholar]
- Secretaría Distrital de Salud. Localidad de Fontibón. In Diagnostico Local con Participación Social 2009–2010; Secretaría Distrital de Salud: Bogotá, Colombia, 2010. [Google Scholar]
- Alcaldía Mayor de Bogotá. Plan Ambiental Local de Fontibon; Alcaldía Mayor de Bogotá: Bogotá, Colombia, 2012.
- Camara de Comercio de Bogotá. Perfil económico y empresarial Localidad Fontibón. In Factores Asociados al Entorno Económico; Camara de Comercio de Bogotá: Bogotá, Colombia, 2007; pp. 17–28. [Google Scholar]
- Alcaldía Local de Fontibón. Plan Ambiental Local Localidad de Fontibón 2017–2020; Alcaldía Local de Fontibón: Bogotá, Colombia, 2017.
- USDA Forest Service. i-Tree Hydro Users Manual; USDA Forest Service: Washington, DC, USA, 2006.
- Beven, K.J.; Kirkby, M.J.; Schofield, N.; Tagg, A.F. Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. J. Hydrol. 1984, 69, 119–143. [Google Scholar] [CrossRef]
- Wang, J.; Endreny, T.A.; Hassett, J.M. A flexible modeling package for topographically based watershed hydrology. J. Hydrol. 2005, 314, 78–91. [Google Scholar] [CrossRef]
- Wood, E.; Sivapalan, M.; Beven, K. Similarity and Scale in Catchment Storm Response. Rev. Geophys. 1990, 28, 1–18. [Google Scholar] [CrossRef]
- Urban Forest Effects Model-UFORE-Online Tools-Tools & Applications-Northern Research Station-USDA Forest Service. Available online: https://www.nrs.fs.fed.us/tools/ufore/ (accessed on 18 February 2019).
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic Simulation of Tree Effects in an Urban Water Balance Model. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Allen, P.M. Continental Scale Simulation of the Hydrologic Balance1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1037–1051. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- USDA. Urban Hydrology for Small Watersheds. Tech. Release 1986, 55, 2–6. [Google Scholar]
- Schneider, K. An Introduction to TR-55; University of Texas at Austin: Austin, TX, USA, 2001; p. 22. [Google Scholar]
- Singh, V.P.; Frevert, D.K. Watershed Models; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-4200-3743-2. [Google Scholar]
- Rossman, L. Storm Water Management Model User’s Manual Version 5.1—Manual; US EPA Office of Research and Development, EPA: Washington, DC, USA, 2015.
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- i-Tree Hydro. Available online: http://www.itreetools.org/hydro/ (accessed on 23 February 2019).
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions; US Department of Agriculture Forest Service: Washington, DC, USA, 2013; 1, pp. 0–21.
- Lega, M.; Endreny, T. Quantifying the environmental impact of pollutant plumes from coastal rivers with remote sensing and river basin modelling. Int. J. Sustain. Dev. Plan. 2016, 11, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Stephan, E.A.; Endreny, T.A.; Nowak, D.J. Development of Nutrient Model for i-Tree Hydro using Sampling Results from the Mianus River Watershed; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Dooley, K.; Kpachavi, A.; Skinner, E. The Impact of Land Use Change on Lake Phosphorus Concentrations in Dakota USA, MN. In Educational work paper; Carleton Collage: Northfield, MN, USA, 2015. [Google Scholar]
- Kirnbauer, M.C.; Baetz, B.W.; Kenney, W.A. Estimating the stormwater attenuation benefits derived from planting four monoculture species of deciduous trees on vacant and underutilized urban land parcels. Urban For. Urban Green. 2013, 12, 401–407. [Google Scholar] [CrossRef]
- Nowak, D.J.; Bodine, A.R.; Robert, E., III; Crane, D.E.; Ellis, A.; Endreny, T.A.; Yang, Y.; Jacobs, T.; Shelton, K. Assessing Urban Forest Effects and Values: The Greater Kansas City Region; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2013; Volume 75, pp. 1–72.
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [Google Scholar] [CrossRef]
- Taggart, T.P.; Endreny, T.A.; Nowak, D. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model; American Geophysical Union: Washington, DC, USA, 2014. [Google Scholar]
- IDEAM FOPAE. Estudio de la Caracterización Climática de Bogotá y Cuenca Alta del Río Tunjuelo; Alcaldía Mayor de Bogotá: Bogotá, Colombia, 2005.
- Susan, F.; Appleton, B.L. A Guide to Successful Pruning, Pruning Evergreen Trees; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2009. [Google Scholar]
- Herrera, L.; Pecht, W.; Olivares, F. Crecimiento Urbano de America Latina; Centro latinoamericano de demografia; Comisión Económica para América Latina y el Caribe CEPAL: Santiago, Chile, 1976. [Google Scholar]
- Ruiz, P.A.C.; Linar, J.P.L. Análisis del crecimiento urbano: Una aproximación al estudio de los factores de crecimiento de la ciudad de Manizales como aporte a la planificación. Gestión Y Ambiente 2010, 13, 53–66. [Google Scholar]
- García Catalá, R. Crecimiento Urbano y el Modelo de Ciudad; Centre de Política de Sòl i Valoracions: Lérida, España, 2009; pp. 51–58. [Google Scholar]
- Xiao, Y.; Zhang, T.; Liang, D.; Chen, J.M. Experimental study of water and dissolved pollutant runoffs on impervious surfaces. J. Hydrodyn. Ser. B 2016, 28, 162–165. [Google Scholar] [CrossRef]
- Butler, D.; Davies, J.W. Urban Drainage, 3rd ed.; Spon Press: London, UK; New York, NY, USA, 2011; ISBN 978-0-415-45525-1. [Google Scholar]
- Allen, A. Environmental planning and management of the peri-urban interface: Perspectives on an emerging field. Environ. Urban. 2003, 15, 135–148. [Google Scholar] [CrossRef]
Author | Country | Type of Application | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QRI | BUH | MPGA | CQR | PUH | EIS | RC | BMP | CWS | EEUA | EGE | QWTI | SPD | FS | ||
[51] | USA | X | |||||||||||||
[52] | Italy | X | X | X | |||||||||||
[53] | USA | X | X | X | X | ||||||||||
[26] | USA | X | X | ||||||||||||
[42] | USA | X | X | X | |||||||||||
[54] | USA | X | X | X | X | ||||||||||
[55] | Netherlands | X | X | X | X | ||||||||||
[56] | USA | X | X | X | X | ||||||||||
[57] | USA | X | X | X | X | X | |||||||||
[58] | USA | X | X | X | X |
Variable | Unit | Source | Observation |
---|---|---|---|
Digital elevation model (DEM) | - | NASA website | A resolution of 30 m in a study area delimited using ArcGis |
Area | km2 | Measured | Measured using ArcGis |
Percentage coverage of trees, shrubs, grass, bodies of water, soil, and impervious areas | # | Measured | Measured using ArcGis |
Leaf area index (LAI) | m2 m−2 | Literature | 3.8 for trees, 2 for shrubs and 1.2 for pastures [31,32]. |
Daily flow (m3 s−1) in the Fucha River | ft3 s−1 | Measured | Hydrological station |
Percent coverage of shrubs and evergreens | % | Literature | [59,60] |
Wind speed | Miles h−1 | Measured | Weather station |
Cloudiness | Octas | Measured | Weather station |
Air temperature | Degrees Fahrenheit | Measured | Weather station |
Dew point temperature | Degrees Fahrenheit | Measured | Weather station |
Atmospheric pressure at the study location | Millibar | Measured | Weather station |
Adjustment of altimetry by pressure and altitude | Inches | Measured | Weather station |
Atmospheric pressure at sea level | Millibar | Measured | Weather station |
Maximum temperature | Degrees Fahrenheit | Measured | Weather station |
Maximum temperature | Degrees Fahrenheit | Measured | Weather station |
Precipitation | Inches | Measured | Weather station |
Scenario | Strategy | Description |
---|---|---|
1 | Increase green space 20% | Increase plant coverage by 20% as a strategy promoting green roofs, resulting in codification of ground cover from an area of 0.22 km2 to 0.26 km2 plant coverage, and from 15.72 km2 to 15.68 km2 of impermeable coverage. |
2 | Increase green space 50% | Following the analysis of incorporating green roofs as a measure to reduce the number of impermeable areas in the town of Fontibón, a proposal was made to increase shrub cover by 50%, from 0.22 km2 to 0.33 km2, and from 15.72 km2 to 15.61 km2 of impermeable areas. |
3 | Fontibón area without green zones | A proposal was made to analyze the dynamics of the water resources in the Fontibón area for a total loss of green zones, assuming a hypothetical case in which urbanization increases in an uncontrolled way, completely covering pocket parks, small gardens, vacant land, and any other permeable zone. |
4 | Increase tree cover 50% | The coding was performed with 75% permeable area under trees and 25% impervious area. The current codification of the existing green areas in the Fontibón locality was not altered, only the area under the trees. |
5 | Increase tree cover 100% | The permeable coverage under trees was increased by 100% without changing the conditions of land use in the area. |
Land Cover in Fontibón | Base Scenario | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | |
Tree cover | 1.57 | 4.7 | 1.57 | 4.7 | 1.57 | 4.7 | 0 | 0 | 1.57 | 4.7 | 1.57 | 4.7 |
Shrub cover | 0.22 | 0.7 | 0.26 | 0.8 | 0.33 | 1.0 | 0 | 0 | 0.22 | 0.7 | 0.22 | 0.7 |
Herbaceous cover | 0.24 | 0.7 | 0.24 | 0.7 | 0.24 | 0.7 | 0 | 0 | 0.24 | 0.7 | 0.24 | 0.7 |
Water cover | 0.69 | 2.1 | 0.69 | 2.1 | 0.69 | 2.1 | 0.69 | 2.1 | 0.69 | 2.1 | 0.69 | 2.1 |
Soil cover | 14.84 | 44.6 | 14.84 | 44.6 | 14.84 | 44.6 | 0 | 0 | 14.84 | 44.6 | 14.84 | 44.6 |
Impervious over | 15.72 | 47.2 | 15.68 | 47.1 | 15.61 | 46.9 | 32.59 | 97.9 | 15.72 | 47.2 | 15.72 | 47.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista, D.; Peña-Guzmán, C. Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia. Resources 2019, 8, 68. https://doi.org/10.3390/resources8020068
Bautista D, Peña-Guzmán C. Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia. Resources. 2019; 8(2):68. https://doi.org/10.3390/resources8020068
Chicago/Turabian StyleBautista, David, and Carlos Peña-Guzmán. 2019. "Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia" Resources 8, no. 2: 68. https://doi.org/10.3390/resources8020068
APA StyleBautista, D., & Peña-Guzmán, C. (2019). Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia. Resources, 8(2), 68. https://doi.org/10.3390/resources8020068