Next Article in Journal
The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)
Next Article in Special Issue
Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia
Previous Article in Journal
Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors
Article Menu

Export Article

Open AccessFeature PaperArticle
Resources 2019, 8(2), 62; https://doi.org/10.3390/resources8020062

Urban Water Security Assessment Using an Integrated Metabolism Approach—Case Study of the National Capital Territory of Delhi in India

1
Research Associate, Centre for Sustainable Technologies, Belfast School of Architecture and the Built Environment, Ulster University, Belfast BT37 0QB, UK
2
Professor, Coca-Cola Department of Regional Water Studies, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, 110 070 New Delhi, India
3
Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
*
Authors to whom correspondence should be addressed.
Received: 20 February 2019 / Revised: 28 March 2019 / Accepted: 29 March 2019 / Published: 3 April 2019
(This article belongs to the Special Issue Integrated Urban Water Resources Management and Policy)
  |  
PDF [1167 KB, uploaded 3 April 2019]
  |     |  

Abstract

Water is a non substitutable resource and a social good, which governments must perforce provide to its citizens in the right quantity and quality. An integrated urban metabolism model is useful in understanding the status quo of an urban water and sanitation system. By defining and measuring the values of relevant hydrological performance indicators—deliverables of the model referred to—a thorough knowledge of the present performance and the gaps, which need to be plugged en route to a sustainable urban water infrastructure, can be obtained, as demonstrated in this paper. This then forms the bedrock for decision-making and policy formulation for change to be introduced top-down as well as advice, which would enable the much needed bottom-up support to policies. The authors have chosen Delhi as the case study city, but would like to point out that this application can be reproduced for any other town/city/region of the world. The water balance within the chosen system boundaries shows that the annual unutilized flows, amounting to 1443 million cubic meters, dominate the metabolic flows of water in Delhi, and the annual groundwater withdrawal, which exceeds 420 million cubic meters, is much greater than the recharge rate, resulting in a rapid depletion of the groundwater level. There is an urgent need thereby to improve the rate of infiltration of stormwater and reduce the rate of runoff by focusing on increasing the share of permeable surfaces in the city, as well as to consider the wastewater streams as potential sources of water, while not forgetting demand side of management measures, as the pressure on the urban water system in the city is likely to intensify with a combination of population growth, economic development, and climate change in the near future. The recommendations provided by the authors towards the end of the article, can, if suitable measures are undertaken and robust policies are implemented, result in Delhi’s enjoying a water surplus in the short term, and progressively attain complete sustainability with regard to the utilization of its water resources. View Full-Text
Keywords: hydrological performance; metabolic flow; urban water systems; water resources; water security hydrological performance; metabolic flow; urban water systems; water resources; water security
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ghosh, R.; Kansal, A.; Venkatesh, G. Urban Water Security Assessment Using an Integrated Metabolism Approach—Case Study of the National Capital Territory of Delhi in India. Resources 2019, 8, 62.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Resources EISSN 2079-9276 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top