Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends
Abstract
:1. Introduction
NARR Dataset
2. Methods
2.1. Power Curves
2.2. Applying Power Curves to NARR
3. Results and Discussion
3.1. Seasonal Variations in Turbine Power Output
3.2. Seasonal Wind Trends at Hub-Height
3.3. Trends in Electrical Output
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Canadian Wind Energy Association (CanWEA). Canadian Wind Energy Market; Canadian Wind Energy Association: Ottawa, ON, Canada, 2012; Available online: http://www.canwea.ca/pdf/canweafactsheet-FedProInitiatives-final.pdf (accessed on 15 July 2015).
- Independent Electricity System Operator (IESO). Supply Overview. 2012. Available online: http://www.ieso.ca/imoweb/media/md_supply.asp (accessed on 18 December 2012).
- Celik, A.N. Energy output estimation for small-scale wind power generators using Weibull-representative wind data. J. Wind Energy Ind. Aerodyn. 2003, 91, 693–707. [Google Scholar] [CrossRef]
- Lubitz, D.W. Impact of ambient turbulence on performance of a small wind turbine. Renew. Energy 2012. [Google Scholar] [CrossRef]
- Matsushima, T.; Takagi, S.; Muroyama, S. Characteristics of a highly efficient propeller type small wind turbine with a diffuser. Renew. Energy 2006, 31, 1343–1354. [Google Scholar] [CrossRef]
- Eggers, A.J. Modeling of yawing and furling behavior of small wind turbines. In Proceedings of the 2000 19th ASME Wind Energy Symposium and 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000.
- Bechly, M.E.; Clausen, P.D.; Lindeyer, J.; Wood, D.H. The Fort Scratchley wind turbine. In Proceedings of the 35th ANZSES Conference, Canberra, Australia, 1–3 December 1997.
- Bose, N. Icing on a small horizontal-axis wind turbine—Part 1: Glaze ice profiles. J. Wind Eng. Ind. Aerodyn. 1992, 45, 75–85. [Google Scholar] [CrossRef]
- Högström, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound. Layer Meteorol. 1988, 42, 55–78. [Google Scholar] [CrossRef]
- Li, M.; Li, X. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada. Energy Convers. Manag. 2005, 46, 3014–3033. [Google Scholar] [CrossRef]
- Reyers, M.; Moemken, J.; Pinto, J.G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol. 2016, 36, 783–796. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Assessing the vulnerability of wind energy to climate change and extreme events. Clim. Chang. 2013, 121, 79–91. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Akpinar, S. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics. Energy Convers. Manag. 2005, 46, 1848–1867. [Google Scholar] [CrossRef]
- Mesinger, F.; di Mego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis: A long-term, consistent, high-resolution climate dataset for the North American domain, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Mesinger, F.; Janjić, Z.I.; Nicković, S.; Gavrilov, D.; Deaven, D.G. The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Weather Rev. 1988, 116, 1493–1518. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Black, T.L. The Step-Mountain Eta Coordinate Regional Model: A Documentation; NOAA/NWS National Meteorological Center: Camp Springs, MD, USA, 1988; p. 47. [Google Scholar]
- Regional Reanalysis Questions and Answers. Available online: http://www.emc.ncep.noaa.gov/mmb/rreanl/faq.html#zero-30m-wind (accessed on 10 April 2016).
- Van den Berg, G.P. Wind turbine power and sound in relation to atmospheric stability. Wind Energy 2008, 11, 151–169. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Atmospheric stability affects wind turbine power collection. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Ashtine, M.I.; Bello, R.; Higuchi, K. Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012. Renew. Sustain. Energy Rev. 2016, 56, 272–282. [Google Scholar] [CrossRef]
- Seitzler, M. The Electrical and Mechanical Performance Evaluation of a Roof Mounted, One-Kilowatt Wind Turbine; Report CWEC-2009-003; California Wind Energy Collaborative, University of California: Davis, CA, USA, 2009. [Google Scholar]
- Summerville, B. Small Wind Turbine Performance in Western North Carolina; Appalachian State University: Boone, NC, USA, 2005; Available online: http://www.wind.appstate.edu/reports/researcharticlesmallwindperformanceBJS (accessed on 3 December 2012).
- Desai, A.R.; Austin, J.A.; Bennington, V.; McKinley, G.A. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci. 2009, 2, 855–858. [Google Scholar] [CrossRef]
- Gagnon, A.S.; Gough, W.A. Climate change scenarios for the Hudson Bay Region: An inter-model comparison. Clim. Chang. 2005, 69, 269–297. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. A century of temperature variability in Lake Superior. Limnol. Oceanogr. 2008, 53, 2724–2730. [Google Scholar] [CrossRef]
- Lu, L.; Yang, H.; Burnett, J. Investigation on wind power potential on Hong Kong islands—An analysis of wind power and wind turbine characteristics. Renew. Energy 2002, 27, 1–12. [Google Scholar] [CrossRef]
- Hicks, B.B. Wind profile relationships from the ‘Wangara’ experiment. Q. J. R. Meteorol. Soc. 1976, 102, 535–551. [Google Scholar]
- Ontario Hydro. Ontario Hydro Electricity Rates. Available online: http://www.hydroone.com/MyHome/MyAccount/UnderstandMyBill/Pages/ElectricityRates.aspx (accessed on 16 June 2015).
- Statistics Canada. Households and the Environment: Energy Use. Available online: http://www.statcan.gc.ca/pub/11-526-s/2010001/part-partie1-eng.htm (accessed on 16 June 2015).
- Ek, K.; Persson, L.; Johansson, M.; Waldo, A. Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities. Energy Policy 2013, 58, 135–141. [Google Scholar] [CrossRef]
- Toke, D.; Breukers, S.; Wolsink, M. Wind power deployment outcomes: How can we account for the differences? Renew. Sustain. Energy Rev. 2008, 12, 1129–1147. [Google Scholar] [CrossRef]
- Saheb-Koussa, D.; Haddadi, M.; Belhamel, M. Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Appl. Energy 2009, 86, 1024–1030. [Google Scholar] [CrossRef]
- Byrne, J.; Zhou, A.; Shen, B.; Hughes, K. Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS-and lifecycle cost-based assessment of Western China’s options. Energy Policy 2007, 35, 4391–4401. [Google Scholar] [CrossRef]
- Byrne, J.; Shen, B.; Wallace, W. The economics of sustainable energy for rural development: A study of renewable energy in rural China. Energy Policy 1998, 26, 45–54. [Google Scholar] [CrossRef]
Structural | Hub-height | 17.37 m |
Turbine type | HAWT, upwind | |
Manufacturer Rating | Rated Power | 1 kW |
Rated Wind Speed | 11 m·s−1 | |
Rotor Specifics | Rotor Diameter | 2.5 m |
Swept Area | 4.91 m2 | |
Rotor Speed (RPM) | 490 (rated rotor speed, no range applied) | |
Blade Material | Pultruded fiberglass | |
Wind | Cut-in Wind Speed | 2.5 m·s−1 |
Cut-out Wind Speed | 25 m·s−1 | |
Max Design Wind Speed | 54 m·s−1 | |
Protection | Furling Wind Speed | 13 m·s−1 |
Over-speed protection | Auto tail furl, electrical breaking system |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashtine, M.; Bello, R.; Higuchi, K. Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends. Resources 2016, 5, 44. https://doi.org/10.3390/resources5040044
Ashtine M, Bello R, Higuchi K. Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends. Resources. 2016; 5(4):44. https://doi.org/10.3390/resources5040044
Chicago/Turabian StyleAshtine, Masaō, Richard Bello, and Kaz Higuchi. 2016. "Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends" Resources 5, no. 4: 44. https://doi.org/10.3390/resources5040044
APA StyleAshtine, M., Bello, R., & Higuchi, K. (2016). Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends. Resources, 5(4), 44. https://doi.org/10.3390/resources5040044