Forest Health Management and Detection of Invasive Forest Insects
Abstract
:1. Introduction
2. Forest Health Overview
3. Causes and Symptoms of Forest Health Issues
4. Applied Forest Entomology
5. Detection Techniques of Invasive Insects
5.1. Dendrochronology
5.2. Near Infrared Spectroscopy
6. Case Study: Emerald Ash Borer
6.1. Life Cycle
6.2. Host Species and Spread
6.3. Past and Present Detection Methods and Treatment Options
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aukema, J.E.; McCullough, D.G.; Von Holle, B.; Liebhold, A.M.; Britton, K.; Frankel, S.J. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 2010, 60, 886–897. [Google Scholar] [CrossRef]
- Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J.; Haight, R.G.; Holmes, T.P.; Liebhold, A.M.; et al. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.; Teale, S.A. Alien invasions: The effects of introduced species on forest structure and function. In Forest Health: An Integrated Perspective; Castello, J.D., Teale, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 115–162. [Google Scholar]
- Brockerhoff, E.G.; Liebhold, A.M.; Richardson, B.; Suckling, D.M. Eradication of invasive forest insects: Concept, methods, costs and benefits. N. Z. J. For. Sci. 2010, 40, S117–S135. [Google Scholar]
- Edmonds, R.L.; Agee, J.K.; Gara, R.I. (Eds.) Forest Health and Protection; McGraw-Hill Companies, Inc.: Boston, MA, USA, 2000.
- Rausher, M.D. Co-evolution and plant resistance to natural enemies. Nature 2001, 411, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Liebhold, A.M.; Tobin, P.C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 2008, 53, 387–408. [Google Scholar] [CrossRef] [PubMed]
- Kolb, T.E.; Wagner, M.R.; Covington, W.W. Concepts of forest health. J. For. 1994, 92, 10–15. [Google Scholar]
- Teale, S.A.; Castello, J.D. The past as key to the future: A new perspective on forest health. In Forest Health: An Integrated Perspective; Castello, J.D., Teale, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 3–16. [Google Scholar]
- Raffa, K.F.; Aukema, B.; Bentz, B.J.; Carroll, A.; Erbilgin, N.; Herms, D.A.; Hicke, J.A.; Hofstetter, R.W.; Katovich, S.; Lindgren, B.S.; et al. A literal use of “forest health” safeguards against misuse and misapplication. J. For. 2009, 107, 276–277. [Google Scholar]
- Zhang, L.; Rubin, B.D.; Manion, P.D. Mortality: The essence of a healthy forest. In Forest Health: An Integrated Perspective; Castello, J.D., Teale, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 17–49. [Google Scholar]
- Cale, J.A.; Teale, S.A.; West, J.L.; Zhang, L.I.; Castello, D.R.; Devlin, P.; Castello, J.D. A quantitative index of forest structural sustainability. Forests 2014, 5, 1618–1634. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J.; Crow, T.R.; Merrick, L.C.; Cleland, D.T. Homogenization of northern U.S. Great Lakes forests due to land use. Landsc. Ecol. 2007, 22, 1089–1103. [Google Scholar] [CrossRef]
- Castello, J.D.; Leopold, D.J.; Smallidge, P.J. Pathogens, patterns, and processes in forest ecosystems: Pathogens influence and are influenced by forest development and landscape characteristics. Bioscience 1995, 45, 16–24. [Google Scholar] [CrossRef]
- Poland, T.M.; McCullough, D.G. Emerald ash borer: Invasion of the urban forest and the threat to North America’s ash resource. J. For. 2006, 104, 118–124. [Google Scholar]
- Gillner, S.; Bräuning, A.; Roloff, A. Dendrochronological analysis of urban trees: Climatic response and impact of drought on frequently used tree species. Trees 2014, 28, 1079–1093. [Google Scholar] [CrossRef]
- Teale, S.A.; Castello, J.D. Regulators and terminators: The importance of biotic factors to a healthy forest. In Forest Health: An Integrated Perspective; Castello, J.D., Teale, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 81–114. [Google Scholar]
- Sinclair, W.A.; Lyon, H.H. Diseases of Trees and Shrubs, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 2005; p. 660. [Google Scholar]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Williams, D.W.; Liebhold, A.M. Climate change and the outbreak ranges of two North American bark beetles. Agric. For. Entomol. 2002, 4, 87–99. [Google Scholar] [CrossRef]
- Davis, M.A. Invasion Biology; Oxford University Press Inc.: New York, NY, USA, 2009. [Google Scholar]
- Liebhold, A.M.; Brockerhoff, E.G.; Garrett, L.J.; Parke, J.L.; Britton, K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the U.S. Front. Ecol. Environ. 2012, 10, 135–143. [Google Scholar] [CrossRef]
- Liebhold, A.M.; McCullough, D.G.; Blackburn, L.M.; Frankel, S.J.; Von Holle, B.; Aukema, J.E. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 2013, 19, 1208–1216. [Google Scholar] [CrossRef]
- Haack, R.A. Exotic bark- and wood-boring Coleoptera in the United States: Recent establishments and interceptions. Can. J. For. Res. 2006, 36, 269–288. [Google Scholar] [CrossRef]
- Liebhold, A.M. Forest pest management in a changing world. Int. J. Pest Manag. 2012, 58, 289–295. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Sharov, A.A.; Leonard, D.S.; Liebhold, A.M.; Roberts, E.A.; Dickerson, W. “Slow the Spread”: A national program to contain the gypsy moth. J. For. 2002, 100, 30–35. [Google Scholar]
- Orwig, D.A.; Foster, D.R.; Mausel, D.L. Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. J. Biogeogr. 2002, 29, 1475–1487. [Google Scholar] [CrossRef]
- Dajoz, R. Insects and Forests; Intercept LTD: Paris, France, 2000. [Google Scholar]
- Knight, F.B.; Heikkenen, H.J. Principles of Forest Entomology, 5th ed.; McGraw-Hill, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Price, P.W.; Denno, R.F.; Eubanks, M.D.; Finke, D.L.; Kaplan, I. Insect Ecology: Behavior, Populations and Communities; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- McManus, M.; Schneeberger, N.; Reardon, R.; Mason, G. Forest Insect and Disease Leaflet 162: Gypsy Moth. Available online: http://na.fs.fed.us/spfo/pubs/fidls/gypsymoth/gypsy.htm (accessed on 3 May 2016).
- Fierke, M.; Nowak, D.; Hofstetter, R. Seeing the forest for the trees: Forest health monitoring. In Forest Health: An Integrated Perspective; Castello, J.D., Teale, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 321–343. [Google Scholar]
- USDA Forest Service. Early Detection Rapid Response Database (EDRR). USDA Forest Service, Forest Health Protection, 2016. Available online: http://foresthealth.fs.usda.gov/EDRR/ (accessed on 23 April 2016).
- Tobin, P.C.; Kean, J.M.; Suckling, D.M.; McCullough, D.G.; Herms, D.A.; Stringer, L.D. Determinants of successful arthropod eradication programs. Biol. Invasions 2014, 16, 401–414. [Google Scholar] [CrossRef]
- Pluess, T.; Cannon, R.; Jarošík, V.; Pergl, J.; Pyšek, P.; Bacher, S. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 2012, 14, 1365–1378. [Google Scholar] [CrossRef]
- Suckling, D.M.; Stringer, L.D.; Stephens, A.E.A.; Woods, B.; Williams, D.G.; Baker, G.; El-Sayed, A.M. From integrated pest management to integrated pest eradication: Technologies and future needs. Pest Manag. Sci. 2014, 70, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Brockerhoff, E.G.; Liebhold, A.M.; Jactel, H. The ecology of forest insect invasions and advances in their management. Can. J. For. Res. 2006, 36, 263–268. [Google Scholar] [CrossRef]
- Rassati, D.; Faccoli, M.; Marini, L.; Haack, R.A.; Battisti, A.; Petrucco Toffolo, E. Exploring the role of wood waste landfills in early detection of non-native wood-boring beetles. J. Pest Sci. 2014, 88, 563–572. [Google Scholar] [CrossRef]
- Siegert, N.W.; McCullough, D.G.; Liebhold, A.M.; Telewski, F.W. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 2014, 20, 847–858. [Google Scholar] [CrossRef]
- Muzika, R.M.; Liebhold, A.M. Changes in radial increment of host and nonhost tree species with gypsy moth defoliation. Can. J. For. Res. 1999, 29, 1365–1373. [Google Scholar] [CrossRef]
- Naidoo, R.; Lechowicz, M.J. Effects on gypsy moth on radial growth of deciduous trees. For. Sci. 2001, 47, 338–348. [Google Scholar]
- Rentch, J.; Fajvan, M.A.; Evans, R.A.; Onken, B. Using dendrochronology to model hemlock woolly adelgid effects on eastern hemlock growth and vulnerability. Biol. Invasions 2009, 11, 551–563. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Pontius, J.; Martin, M.; Plourde, L.; Hallett, R. Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies. Remote Sens. Environ. 2008, 112, 2665–2676. [Google Scholar] [CrossRef]
- Chen, Y.; Whitehill, J.G.A.; Bonello, P.; Poland, T.M. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry. Phytochemistry 2011, 72, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Speer, J.H. Fundamentals of Tree-Ring Research; The University of Arizona Press: Tucscon, AZ, USA, 2010. [Google Scholar]
- Zhang, Q.; Alfaro, R.I.; Hebda, R.J. Dendroecological studies of tree growth, climate and spruce beetle outbreaks in Central British Columbia, Canada. For. Ecol. Manag. 1999, 121, 215–225. [Google Scholar] [CrossRef]
- Chhin, S. Influence of Climate on the Growth of Hybrid Poplar in Michigan. Forests 2010, 1, 209–229. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; The Blackburn Press: Caldwell, NJ, USA, 1976. [Google Scholar]
- Fritts, H.C. Dendroclimatology and dendroecology. Quat. Res. 1971, 1, 419–449. [Google Scholar] [CrossRef]
- Sheppard, P.R. Dendroclimatology: Extracting climate from trees. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 343–352. [Google Scholar] [CrossRef]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Taylor, S.W.; Carroll, A.L.; Alfaro, R.I.; Safranyik, L. Forest, climate, and mountain pine beetle outbreak dynamics in western Canada. In The Mountain Pine Beetle: A Synthesis of Biology, Management and Impacts on Lodgepole Pine; Safranyik, L., Wilson, B., Eds.; Canadian Forest Service, Pacific Forestry Center: Victoria, BC, Canada, 2006; pp. 67–94. [Google Scholar]
- Mbow, C.; Chhin, S.; Sambou, B.; Skole, D. Potential of dendrochronology to assess annual rates of biomass productivity in savanna trees of West Africa. Dendrochronologia 2013, 31, 41–51. [Google Scholar] [CrossRef]
- David, E.; Chhin, S.; Skole, D. Dendrochronological potential and productivity of tropical tree species in Western Kenya. Tree Ring Res. 2014, 70, 119–135. [Google Scholar] [CrossRef]
- Bokobza, L. Origin of near-infrared absorption bands. In Near-Infrared Spectroscopy: Principles, Instruments, Applications; Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 11–41. [Google Scholar]
- Workman, J.; Shenk, J. Understanding and using the near-infrared spectrum as an analytical method. In Near-Infrared Spectroscopy in Agriculture; Roberts, C.A., Workman, J., Reeves, J.B., III, Eds.; Agronomy, American Societies of Agronomy, Crop and Soil Science: Madison, WI, USA, 2004; volume 44, pp. 3–10. [Google Scholar]
- Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Kramer, R.; Workman, J.; Reeves, J.B., III. Qualitative analysis. In Near-Infrared Spectroscopy in Agriculture; Roberts, C.A., Workman, J., Reeves, J.B., III, Eds.; Agronomy, American Societies of Agronomy, Crop and Soil Science: Madison, WI, USA, 2004; volume 44, pp. 175–206. [Google Scholar]
- Ertlen, D.; Schwartz, D.; Trautmann, M.; Webster, R.; Brunet, D. Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy. Eur. J. Soil Sci. 2010, 61, 207–216. [Google Scholar] [CrossRef]
- Evans, P.; Heady, R.; Cunningham, R. Identification of yellow stringybark (Eucalyptus muelleriana) and silvertop ash (E. sieberi) wood is improved by canonical variate analysis of ray anatomy. Aust. For. 2008, 71, 94–99. [Google Scholar] [CrossRef]
- Watanabe, K.; Mansfield, S.D.; Avramidis, S. Wet-pocket classification in Abies lasiocarpa using spectroscopy in the visible and near infrared range. Eur. J. Wood Wood Prod. 2010, 70, 61–67. [Google Scholar] [CrossRef]
- So, C.-L.; Via, B.K.; Groom, L.H.; Schimleck, L.R.; Shupe, T.F.; Kelley, S.S.; Rials, T.G. Near infrared spectroscopy in the forest products industry. For. Prod. J. 2004, 54, 6–16. [Google Scholar]
- Schimleck, L.R. Near-infrared spectroscopy: A rapid non-destructive method for measuring wood properties, and its application to tree breeding. N. Z. J. For. Sci. 2008, 38, 14–35. [Google Scholar]
- Schimleck, L.R.; Evans, R.; Ilic, J.; Matheson, A.C. Estimation of wood stiffness of increment cores by near-infrared spectroscopy. Can. J. For. Res. 2002, 32, 129–135. [Google Scholar] [CrossRef]
- Riggins, J.J.; Defibaugh, J.M.; Tullis, J.A.; Stephen, F.M. Spectral identification of previsual northern red oak (Quercus rubra L.) foliar symptoms related to oak decline and red oak borer (Coleoptera: Cerambycidae) attack. South. J. Appl. For. 2011, 35, 18–25. [Google Scholar]
- Fackler, K.; Schwanninger, M. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Appl. Microbiol. Biotechnol. 2012, 96, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.; Hallett, R.; Martin, M. Assessing hemlock decline using visible and near-infrared spectroscopy: Indices comparison and algorithm development. Appl. Spectrosc. 2005, 59, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Fackler, K.; Schwanninger, M.; Gradinger, C.; Srebotnik, E.; Hinterstoisser, B.; Messner, K. Fungal decay of spruce and beech wood assessed by near-infrared spectroscopy in combination with uni- and multivariate data analysis. Holzforschung 2007, 61, 680–687. [Google Scholar] [CrossRef]
- Green, B.; Jones, P.; Nicholas, D. Assessment of the early signs of decay of Populus deltoides wafers exposed to Trametes versicolor by near infrared spectroscopy. Holzforschung 2012, 66, 515–520. [Google Scholar] [CrossRef]
- Uto, K.; Seki, H.; Saito, G.; Kosugi, Y.; Komatsu, T. Development of a low-cost, lightweight hyperspectral imaging system based on a polygon mirror and compact spectrometers. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2016, 9, 861–875. [Google Scholar] [CrossRef]
- Eastman, J.R.; Zhu, H.; Lazar, A.; Williams, D.W. Progress on Remote Sensing Applications for Emerald Ash Borer Survey: Analysis of 2004 Hyperspectral Imagery. In Proceedings of the Emerald Ash Borer Research and Technology Development Meeting, Pittsburgh, PA, USA, 26–27 September 2005; pp. 66–67.
- Hallett, R.; Pontius, J.; Martin, M.; Plourde, L. The Practical Utility of Hyperspectral Remote Sensing for Early Detection of Emerald Ash Borer. In Proceedings of the Emerald Ash Borer Research and Development Review Meeting, Pittsburg, PA, USA, 23–24 October 2007; pp. 67–68.
- Bartels, D.; Williams, D.; Ellenwood, J.; Sapio, F. Accuracy Assessment of Remote Sensing Imagery for Mapping Hardwood Trees and Stressed Ash Trees. In Proceedings of the Emerald Ash Borer Research and Development Review Meeting, Pittsburg, PA, USA, 23–24 October 2007; pp. 63–65.
- Zhang, K.; Hu, B.; Robinson, J. Early detection of emerald ash borer infestation using multisourced data: A case study in the town of Oakville, Ontario, Canada. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Anulewicz, A.C.; McCullough, D.G.; Cappaert, D.L.; Poland, T.M. Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) in North America: Results of multiple-choice field experiments. Environ. Entomol. 2008, 37, 230–241. [Google Scholar] [CrossRef]
- Ryall, K. Detection and sampling of emerald ash borer (Coleoptera: Buprestidae) infestations. Can. Entomol. 2015, 147, 290–299. [Google Scholar] [CrossRef]
- Tluczek, A.R.; McCullough, D.G.; Poland, T.M. Influence of host stress on emerald ash borer (Coleoptera: Buprestidae) adult density, development, and distribution in Fraxinus pennsylvanica trees. Environ. Entomol. 2011, 40, 357–366. [Google Scholar] [CrossRef]
- Poland, T.M.; Chen, Y.; Koch, J.; Pureswaran, D. Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance. Can. Entomol. 2015, 147, 252–262. [Google Scholar] [CrossRef]
- Cappaert, D.; McCullough, D.G.; Poland, T.M.; Siegert, N.W. Emerald ash borer in North America: A research and regulatory challenge. Am. Entomol. 2005, 51, 152–165. [Google Scholar] [CrossRef]
- MacFarlane, D.W.; Meyer, S.P. Characteristics and distribution of potential ash tree hosts for emerald ash borer. For. Ecol. Manag. 2005, 213, 15–24. [Google Scholar] [CrossRef]
- DeSantis, R.D.; Moser, W.K.; Gormanson, D.D.; Bartlett, M.G.; Vermunt, B. Effects of climate on emerald ash borer mortality and the potential for ash survival in North America. Agric. For. Meteorol. 2013, 178–179, 120–128. [Google Scholar] [CrossRef]
- Tanis, S.R.; McCullough, D.G. Differential persistence of blue ash and white ash following emerald ash borer invasion. Can. J. For. Res. 2012, 42, 1542–1550. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Poland, T.M. Host selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp.). Environ. Entomol. 2009, 38, 757–765. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.G.; Poland, T.M.; Anulewicz, A.C.; Cappaert, D. Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees. Environ. Entomol. 2009, 38, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.G.; Poland, T.M.; Cappaert, D. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding. Can. J. For. Res. 2009, 39, 1331–1345. [Google Scholar] [CrossRef]
- Crook, D.J.; Francese, J.A.; Rietz, M.L.; Lance, D.R.; Hull-Sanders, H.M.; Mastro, V.C.; Silk, P.J.; Ryall, K.L. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): Comparison of multifunnel traps, prism traps, and lure types at varying population densities. J. Econ. Entomol. 2014, 107, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Crook, D.J.; Khrimian, A.; Francese, J.A.; Fraser, I.; Poland, T.M.; Sawyer, A.J.; Mastro, V.C. Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae). Environ. Entomol. 2008, 37, 356–365. [Google Scholar] [CrossRef]
- Crook, D.J.; Mastro, V.C. Chemical Ecology of the Emerald Ash Borer Agrilus planipennis. J. Chem. Ecol. 2010, 36, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Grant, G.G.; Ryall, K.L.; Lyons, D.B.; Abou-Zaid, M.M. Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. J. Appl. Entomol. 2010, 134, 26–33. [Google Scholar] [CrossRef]
- Domingue, M.J.; Lelito, J.P.; Fraser, I.; Mastro, V.C.; Tumlinson, J.H.; Baker, T.C. Visual and chemical cues affecting the detection rate of the emerald ash borer in sticky traps. J. Appl. Entomol. 2013, 137, 77–87. [Google Scholar] [CrossRef]
- Silk, P.J.; Ryall, K.; Barry Lyons, D.; Sweeney, J.; Wu, J. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Naturwissenschaften 2009, 96, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Silk, P.J.; Ryall, K.; Mayo, P.; MaGee, D.I.; Leclair, G.; Fidgen, J.; Lavallee, R.; Price, J.; McConaghy, J. A biologically active analog of the sex pheromone of the emerald ash borer, Agrilus planipennis. J. Chem. Ecol. 2015, 41, 294–302. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.G.; Siegert, N.W.; Poland, T.M.; Pierce, S.J.; Ahn, S.Z. Effects of trap type, placement and ash distribution on emerald ash borer captures in a low density site. Environ. Entomol. 2011, 40, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.G.; Siegert, N.W. Using Girdled Trap Trees Effectively for Emerald Ash Borer Detection, Delimitation and Survey. Available online: https://www.na.fs.fed.us/fhp/eab/survey/eab_handout.pdf (accessed on 3 May 2016).
- Francese, J.A.; Oliver, J.B.; Fraser, I.; Lance, D.R.; Youssef, N.; Sawyer, A.J.; Mastro, V.C. Influence of trap placement and design on capture of the emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entom. 2008, 101, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Poland, T.M.; McCullough, D.G.; Anulewicz, A.C. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 2011, 104, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Francese, J.A.; Rietz, M.L.; Crook, D.J.; Fraser, I.; Lance, D.R.; Mastro, V.C. Improving detection tools for the emerald ash borer (Coleoptera: Buprestidae): Comparison of prism and multifunnel traps at varying population densities. J. Econ. Entomol. 2013, 106, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.G.; Mercader, R.J. Evaluation of potential strategies to SLow Ash Mortality (SLAM) caused by emerald ash borer (Agrilus planipennis): SLAM in an urban forest. Int. J. Pest Manag. 2012, 58, 9–23. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (USDA APHIS PPQ). USDA APHIS PPQ: 2015 Emerald Ash Borer Survey Guidelines. Available online: https://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloads/survey_guidelines.pdf (accessed on 3 May 2016).
- Mercader, R.J.; McCullough, D.G.; Bedford, J.M. A comparison of girdled ash detection trees and baited artificial traps for Agrilus planipennis (Coleoptera: Buprestidae) detection. Environ. Entomol. 2013, 42, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Ryall, K.L.; Fidgen, J.G.; Turgeon, J.J. Detectability of the emerald ash borer (Coleoptera: Buprestidae) in asymptomatic urban trees by using branch samples. Environ. Entomol. 2011, 40, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Herms, D.; McCullough, D.G.; Smitley, D.R.; Clifford, C.S.; Cranshaw, W. Insecticide Options for Protecting Ash Trees from Emerald Ash Borer Insecticide, 2nd ed.; North Central IPM Center: USA, 2014; pp. 1–16. [Google Scholar]
- USDA-APHIS/ARS/FS. Emerald Ash Borer, Agrilus planipennis (Fairmaire), Biological Control Release and Recovery Guidelines; USDA-APHIS-ARS-FS: Riverdale, MD, USA, 2012. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finley, K.; Chhin, S. Forest Health Management and Detection of Invasive Forest Insects. Resources 2016, 5, 18. https://doi.org/10.3390/resources5020018
Finley K, Chhin S. Forest Health Management and Detection of Invasive Forest Insects. Resources. 2016; 5(2):18. https://doi.org/10.3390/resources5020018
Chicago/Turabian StyleFinley, Kaelyn, and Sophan Chhin. 2016. "Forest Health Management and Detection of Invasive Forest Insects" Resources 5, no. 2: 18. https://doi.org/10.3390/resources5020018
APA StyleFinley, K., & Chhin, S. (2016). Forest Health Management and Detection of Invasive Forest Insects. Resources, 5(2), 18. https://doi.org/10.3390/resources5020018