An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria
Abstract
:1. Introduction
2. Results
Stored OMW | PPs (g/L) | COD (g/L) | Color (ABS395)* | pH |
---|---|---|---|---|
Before pretreatment | 4.23 ± 0.12 | 66.00 ± 2.1 | 9.35 ± 0.22 | 4.20 ± 0.1 |
After pretreatment | 0.15 ± 0.03 | 23.36 ± 1.4 | 1.04 ± 0.01 | 5.26 ± 0.1 |
Culture broths | Proteins (%) | Carbohydrates (%) | Lipids (%) | Ashes (%) | Dry Biomass Production (mg/L) | YH (mL H2/L MMeff) | YB (g dw/L MMeff) |
---|---|---|---|---|---|---|---|
MMeff 25% | 48.3 ± 1.9 | 10.3 ± 0.7 | 29.9 | 13.6 ± 1.1 | 570 ± 15 | 43 ± 00 | 2.28 ± 0.06 |
MMeff 50% | 42.6 ± 2.1 | 14.2 ± 1.0 | 28.7 * | 14.5 ± 1.5 | 580 ± 25 | 1308 ± 35 | 1.16 ± 0.05 |
MMeff 100% | 43.2 ± 2.4 | 11.2 ± 0.6 | 28.3 * | 17.3 ± 1.3 | 1060 ± 45 | 334 ± 15 | 1.06 ± 0.03 |
MMeff 100% + NH4Cl | 42.6 ± 1.5 | 13.8 ± 0.9 | 22.7 | 18.8 ± 1.1 | 1840 ± 50 | – | 1.84 ± 0.07 |
3. Discussion
4. Experimental Section
4.1. Experimental Design
4.2. Olive-Mill Wastewater Pretreatment
4.3. Compound Removal Efficiencies
4.4. Microorganism and Culture Operation Conditions
4.5. Analytical Methods
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
Abbreviations
ABS | Absorbance |
Az | Azolla |
Bchl | Bacteriochlorophyll (mg/L) |
COD | Chemical oxygen demand (mg/L) |
Dw | Dry-weight (g/L) |
GAC | Granular active carbon |
GACeff | GAC effluent |
HPR | Hydrogen production rate (mL H2/Lculture/h) |
MMeff | Multi-matrix effluent |
OMW | Olive-mill wastewater |
PHAs | Polyhydroxyalkanoates |
PNSB | Purple non-sulfur photosynthetic bacteria |
PPs | Polyphenols (g/L) |
RE | Removal efficiency (%) |
VFAs | Volatile fatty acids (mg/L) |
X0 | Amount of each compound inside OMW before pretreatment |
Xf | Amount of each compound inside OMW after pretreatment |
YB | Biomass yield (g·dw/L MMeff) |
YH | Hydrogen yield (mL H2/L MMeff) |
Z | Zeolite |
µe | Specific growth rate (h−1) |
References
- Keskin, T.; Abo-Hashesh, M.; Hallenbeck, P.C. Photofermentative hydrogen production from wastes. Bioresour. Technol. 2011, 102, 8557–8568. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Kumar, P.; Kalia, V.C. Enhancing biological hydrogen production through complementary microbial metabolisms. Int. J. Hydrog. Energy 2012, 37, 10590–10603. [Google Scholar]
- Eroğlu, E.; Eroğlu, I.; Gündüz, U.; Turker, L.; Yücel, M. Biological hydrogen production from olive mill wastewater with two-stage processes. Int. J. Hydrog. Energy 2006, 3, 1527–1535. [Google Scholar] [CrossRef]
- Eroğlu, E.; Eroğlu, I.; Gündüz, U.; Yücel, M. Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour. Technol. 2008, 99, 6799–6808. [Google Scholar] [CrossRef] [PubMed]
- Pintucci, C.; Giovannelli, A.; Traversi, M.L.; Ena, A.; Padovani, G.; Carlozzi, P. Fresh olive mill waste deprived of polyphenols as feedstock for hydrogen photo-production by means of Rhodopseudomonas palustris 42OL. Renew. Energy 2013, 51, 358–363. [Google Scholar] [CrossRef]
- ElMekawy, A.; Diels, L.; Bertin, L.; De Wever, H.; Pant, D. Potential biovalorization techniques for olive mill biorefinery wastewater. Biofuels Bioprod. Biorefining 2014, 8, 283–293. [Google Scholar] [CrossRef]
- Hamdi, M. Future prospect and constraints of olive mill wastewater use and treatment: A review. Bioprocess Eng. 1993, 8, 209–214. [Google Scholar] [CrossRef]
- El Hajjouji, H.; Ait Baddi, G.; Yaacoubi, A.; Hamdi, H.; Winterton, P.; Revel, J.C.; Hafidi, M. Optimisation of biodegradation conditions for the treatment of olive mill wastewater. Bioresour. Technol. 2008, 99, 5505–5510. [Google Scholar]
- Antizar-Ladislao, B.; Turrion-Gomez, J.L. Second generation biofuels and local bio-energy systems. Biofuels Bioprod. Biorefining 2008, 2, 455–469. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahrin, B.K.; Deng, H.; Schmidt, J.E. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors. Water Sci. Technol. 2002, 45, 213–218. [Google Scholar]
- Fezzani, B.; Cheikh, R.B. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour. Technol. 2010, 101, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Sobro, I.F.; Hallenbeck, P.C. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresour. Technol. 2012, 123, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.F.; Ren, N.Q.; Xing, D.F.; Ding, G.; Zheng, G.X.; Guo, W.Q.; Xu, J.F.; Xie, G.J. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresour. Technol. 2009, 100, 2719–2723. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Liu, F.; Ren, H.Y.; Xing, D.F.; Nan, J.; Ren, N.Q. Material flow analysis of feedstock for enhancing its conversion efficiency during continuous photo-hydrogen production. GCB Bioenergy 2013, 6, 621–628. [Google Scholar] [CrossRef]
- Padovani, G.; Pintucci, C.; Carlozzi, P. Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production. Bioresour. Technol. 2013, 138, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, E.; Gündüz, U.; Yücel, M.; Turker, L.; Eroğlu, I. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int. J. Hydrog. Energy 2004, 29, 163–171. [Google Scholar] [CrossRef]
- Carraro, G.; Barreca, D.; Bekermann, D.; Montini, T.; Gasparotto, A.; Gombac, V.; Maccato, C.; Fornasiero, P. Supported F-doped α-Fe2O3 nanomaterials: Synthesis, characterization and photo-assisted H2 production. J. Nanosci. Nanotechnol. 2013, 13, 4962–4968. [Google Scholar] [CrossRef] [PubMed]
- Hallenbeck, P.C.; Abo-Hashesh, M.; Ghosh, D. Strategies for improving biological hydrogen production. Bioresour. Technol. 2012, 110, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Keskin, T.; Hallenbeck, P.C. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour. Technol. 2012, 112, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Basak, N.; Jana, A.K.; Das, D.; Saikia, D. Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. Int. J. Hydrog. Energy 2014, 39, 6853–6871. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumari, S.; Reddy, K.; Bux, F. Trends in biohydrogen production: Major challenges and state-of-the-art developments. Environ. Technol. 2013, 34, 1653–1670. [Google Scholar] [CrossRef] [PubMed]
- Hallenbeck, P.C.; Ghosh, D. Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol. 2009, 27, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Manish, S.; Banerjee, R. Comparison of biohydrogen production processes. Int. J. Hydrog. Energy 2008, 33, 279–286. [Google Scholar] [CrossRef]
- Redwood, M.D.; Beedle, M.P.; Macaskie, L.E. Integrating dark and light biohydrogen production strategies: Towards the hydrogen economy. Rev. Environ. Sci. Biotechnol. 2009, 8, 149–185. [Google Scholar] [CrossRef]
- Achak, M.; Mandi, L.; Ouazzani, N. Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. J. Environ. Manag. 2009, 90, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Iakovides, I.C.; Pantziaros, A.G.; Dimitris, P.; Zagklis, D.P.; Christakis, A.; Paraskeva, C.A. Effect of electrolytes/polyelectrolytes on the removal of solids and organics from olive mill wastewater. J. Chem. Technol. Biotechnol. 2014. [Google Scholar] [CrossRef]
- Shi, X.Y.; Yu, H.Q. Optimization of volatile fatty acid compositions for hydrogen production by Rhodopseudomonas capsulata. J. Chem. Technol. Biotechnol. 2005, 80, 1198–1203. [Google Scholar] [CrossRef]
- Carlozzi, P.; Lambardi, M.; Pushparaj, B.; Piccardi, R.; Sacchi, A. Indoor and outdoor photobiological hydrogen production by Rhodopseudomonas palustris, strain 42OL. Curr. Top. Biotechnol. 2008, 4, 93–100. [Google Scholar]
- Chen, C.Y.; Lu, W.B.; Liu, C.H.; Chang, J.S. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour. Technol. 2008, 99, 3609–3616. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.H.P.; Liu, H.; Zhang, T. Phototrophic hydrogen production from acetate and butyrate in wastewater. Int. J. Hydrog. Energy 2005, 30, 785–793. [Google Scholar] [CrossRef]
- PowerPlant CCS Report. A comprehensive report on emerging CO2 sequestration technologies at power plants. Available online: http://www.powerplantccs.com/ccs/cap/fut/alg/costs_of_pbr.html (accessed on 22 April 2015).
- Carlozzi, P. Hydrogen photoproduction by Rhodopseudomonas palustris 42OL cultured at high irradiance under a semicontinuous regime. J. Biomed. Biotechnol. 2012. [Google Scholar] [CrossRef]
- Ena, A.; Pintucci, C.; Carlozzi, P. The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices. J. Biotechnol. 2012, 157, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Pintucci, C.; Padovani, G.; Giovannelli, A.; Traversi, M.L.; Ena, A.; Pushparaj, B.; Carlozzi, P. Hydrogen photo-evolution by Rhodopseudomonas palustris 6A using pre-treated olive mill wastewater and a synthetic medium containing sugars. Energy Convers. Manag. 2015, 90, 499–505. [Google Scholar] [CrossRef]
- Carlozzi, P. The effect of irradiance growing on hydrogen photoevolution and on the kinetic growth in Rhodopseudomonas palustris, strain 42OL. Int. J. Hydrog. Energy 2009, 34, 7949–7958. [Google Scholar] [CrossRef]
- Carlozzi, P.; Pushparaj, B.; Degl’Innocenti, A.; Capperucci, A. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor and investigation on photosynthetic efficiency. Appl. Microbiol. Biotechnol. 2006, 73, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophan determination in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar]
- Fluori, F.; Sotirchos, D.; Ioannidou, S.; Balis, C. Decolorization of olive oil mill liquid wastes by chemical and biological means. Int. Biodeterior. Biodegrad. 1996, 38, 189–192. [Google Scholar] [CrossRef]
- Pham Quang, L.; Laur, M.H.; Paquot, C. A new method for lipid extraction and its use on two species of brown algae. Olèagineux 1970, 25, 223–225. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlozzi, P.; Padovani, G.; Cinelli, P.; Lazzeri, A. An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria. Resources 2015, 4, 621-636. https://doi.org/10.3390/resources4030621
Carlozzi P, Padovani G, Cinelli P, Lazzeri A. An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria. Resources. 2015; 4(3):621-636. https://doi.org/10.3390/resources4030621
Chicago/Turabian StyleCarlozzi, Pietro, Giulia Padovani, Patrizia Cinelli, and Andrea Lazzeri. 2015. "An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria" Resources 4, no. 3: 621-636. https://doi.org/10.3390/resources4030621
APA StyleCarlozzi, P., Padovani, G., Cinelli, P., & Lazzeri, A. (2015). An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria. Resources, 4(3), 621-636. https://doi.org/10.3390/resources4030621