Increasing Valley Retention as an Element of Water Management: The Opinion of Residents of Southeastern Poland
Abstract
1. Introduction
2. Literature Review
2.1. Water Retention as an Element of Security and Adaptation to Climate Change
2.2. Perception of Safety and River Valley Development Strategies
2.2.1. River Valley Development Models
2.2.2. Social Expectations Regarding the Development of River Valleys and the Perception of Flood Safety
2.3. Water Management in Poland
- Our study simultaneously compares two water management models (MWAfP and LSfR) and such a systems approach is rare in the literature.
- Our research covers the broad context of river valley development (social and natural functions, retention and flood safety, and spatial planning), whereas many studies focus on a single aspect, either the acceptance of technical solutions or the effects of water spillage into nearby areas.
- In our study, sociodemographic factors are treated as an explanatory variable, not merely a descriptive one, as is the case in other similar studies.
- Our research questions also encompass perceptions of flood effects and attitudes toward retention, making our questionnaire more comprehensive than in other articles.
3. Materials and Methods
3.1. Purpose and Scope of the Research
- What are respondents’ expectations, regarding river valley management, in the context of ensuring flood safety?
- Are there sociodemographic patterns associated with the perception of river valley management?
- What factors shape the perception of flood safety strategies among residents of southeastern Poland?
- (a)
- sociodemographic characteristics of respondents,
- (b)
- assessment of river valley development methods,
- (c)
- assessment of the subsequent impact of floods on crop yields,
- (d)
- preferred flood safety strategy.
3.2. Research Tools and Research Procedure
3.3. Data Analysis Methods
- (a)
- Descriptive statistics—determining the sample structure and measures of central tendency [121].
- (b)
- Mann–Whitney U test—for dichotomous variables (e.g., sex, having children, flood experience) [122].
- (c)
- Kruskal–Wallis H test—for ordinal variables (e.g., education, place of residence, professional status), with post hoc testing and pairwise comparisons, using the Mann–Whitney U test [123].
- (d)
- K-means cluster analysis—identifying types of respondents by strategy perception [124].
- (e)
- Spearman’s correlations—assessing the consistency of flood perceptions and retention strategies [125].
- (f)
3.4. Research Limitations
4. Results
4.1. Sociodemographic Characteristics of the Study Group
4.2. Respondents’ Expectations Regarding the Development of River Valleys and Sociodemographic Patterns in the Perception of Ensuring Flood Safety
4.3. Analysis of the Relationships Between the Studied Elements of Perception of the Economy in River Valleys
4.4. Identification of Determinants of the Choice of River Valley Development Strategies
5. Discussion
6. Summary, Conclusions, and Recommendations
- (a)
- In the study area, there is a need to improve social capital through awareness-raising and educational activities, primarily aimed at rural residents. Education should be focused on highlighting the benefits of the alluvial process in riparian areas being used as semi-natural flood meadows. These programs should emphasize benefits such as free fertilization through the alluvial process, the potential for using the resulting green mass for feed and energy, and, above all, improved safety resulting from increased water retention.
- (b)
- Since most of the study area is used for agriculture, convincing farmers to change their floodplain use is crucial to increasing valley retention. We propose introducing incentives for farmers to engage in agricultural activities that slow down water runoff, primarily by cultivating semi-natural flood meadows. This will require systemic solutions that recognize this form of economic use of floodplains as social goods, co-financed from state budget funds.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Maeen, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Inwald, J.F.; de Bruin, W.B.; Yaggi, M. Disaster Preparedness and Perceptions of People who Experienced Water Insecurity: Insights from the Lloyd’s Register Foundation’s World Risk Poll. Environ. Sci. Technol. 2025, 59, 16889–16899. [Google Scholar] [CrossRef]
- Ministerstwo Infrastruktury. Program Przeciwdziałania Niedoborowi Wody na Lata 2022–2030 z Perspektywą do Roku 2030; Ministry of Infrastructure: Warsaw, Poland, 2021. Available online: https://www.gov.pl/attachment/8530a475-f8dc-4ae0-af57-1ff5b7da7342 (accessed on 20 October 2025).
- Dingkun, Y.; Xiaoyue, Z.; Haifeng, J.; Lili, X.; Qimeng, J.; Ye, Y. A New Framework to Assess and Optimize Urban Flood Resilience with Green-Grey-Blue System. J. Hydrol. 2025, 651, 132614. [Google Scholar] [CrossRef]
- Banach, A.M.; Banach, K.; Visser, E.J.W.; Stępniewska, Z.; Smits, A.J.M.; Roelofs, J.G.M.; Lamers, L.P.M. Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency. Biogeochemistry 2009, 92, 247–262. [Google Scholar] [CrossRef]
- Bullinger-Weber, G.; Gobat, J.-M. Identification of facies models in alluvial soil formation: The case of a Swiss alpine floodplain. Geomorphology 2006, 74, 181–195. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Jaguś, P. Water retention in geographically diverse area of mountain catchments. Pol. J. Mater. Environ. Eng. 2023, 6, 1–12. [Google Scholar] [CrossRef]
- Tammar, A.; Abosuliman, S.S.; Rahaman, K.R. Social Capital and Disaster Resilience Nexus: A Study of Flash Flood Recovery in Jeddah City. Sustainability 2020, 12, 4668. [Google Scholar] [CrossRef]
- Mioduszewski, W. Small (natural) water retention in rural areas. J. Water Land Dev. 2014, 20, 19–29. [Google Scholar] [CrossRef]
- Peng, X.; Wen, S.; He, Y.; Wu, S. A Framework for Watershed Flood Resilience in the Context of Climate Change: Concept, Assessment, and Application. Hydroecol. Eng. 2025, 2, 10007. [Google Scholar] [CrossRef]
- Mariano, C.; Marino, M. Urban Planning for Climate Change: A Toolkit of Actions for an Integrated Strategy of Adaptation to Heavy Rains, River Floods, and Sea Level Rise. Urban Sci. 2022, 6, 63. [Google Scholar] [CrossRef]
- Paprotny, D.; Tilloy, A.; Treu, S.; Buch, A.; Vousdoukas, M.I.; Feyen, L.; Kreibich, H.; Merz, B.; Frieler, K.; Mengel, M. Attribution of flood impacts shows strong benefits of adaptation in Europe since 1950. Sci. Adv. 2025, 11, eadt7068. Available online: https://www.science.org/doi/epdf/10.1126/sciadv.adt7068 (accessed on 1 September 2025). [CrossRef]
- Supreme Audit Office. Realizacja Programu Kształtowania Zasobów Wodnych na Terenach Rolniczych; Supreme Audit Office: Warsaw, Poland, 2024. Available online: https://www.nik.gov.pl/plik/id,28824,vp,31655.pdf (accessed on 2 February 2025).
- Biedroń, I. Analiza Stopnia Uwzględnienia “Krajowego Programu Renaturyzacji Wód Powierzchniowych” Dla Rzek w Drugiej Aktualizacji Planów Gospodarowania Wodami na Obszarach Dorzeczy; Fundacja WWF Polska: Warsaw, Poland, 2024; Available online: https://www.wwf.pl/sites/default/files/2025-03/renaturyzacja-rzek_raport-wwf.pdf (accessed on 20 October 2025).
- Biernacki, W.; Bokwa, A.; Działek, J.; Padło, T. Społeczności Lokalne Wobec Zagrożeń Przyrodniczych i Klęsk Żywiołowych; IGiGP UJ: Kraków, Poland, 2009. [Google Scholar]
- Lechowska, E. Approaches in research on flood risk perception and their importance in flood risk management: A review. Nat. Hazards 2022, 111, 2343–2378. [Google Scholar] [CrossRef]
- Lechowska, E. What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Nat. Hazards 2018, 94, 1341–1366. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Wang, Y.; Cui, T.; Zhong, J.; Zhou, Z.; Gao, X. Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin. Land 2025, 14, 1328. [Google Scholar] [CrossRef]
- Abbott, K.M.; Roy, A.H.; Magilligan, F.J.; Nislow, K.H.; Quiñones, R.M. Incorporating climate change into restoration decisions: Perspectives from dam removal practitioners. Ecol. Soc. 2024, 29, 21. [Google Scholar] [CrossRef]
- Chiu, Y.-Y.; Raina, N.; Chen, H.-E. Evolution of Flood Defense Strategies: Toward Nature-Based Solutions. Environments 2022, 9, 2. [Google Scholar] [CrossRef]
- Renn, O. Risk Governance: Coping with Uncertainty in a Complex World, 1st ed.; Routledge: Abingdon, UK, 2008. [Google Scholar] [CrossRef]
- Aven, T. Foundations of Risk Analysis: A Knowledge and Decision-Oriented Perspective, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Wohl, E. Odporność korytarzy rzecznych: Ile potrzebujemy? Perspekt. Nauk. Zajmujących Się Ziemią I Kosmosem 2024, 5, e2023CN000226. [Google Scholar] [CrossRef]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Munang, R.; Thiaw, I.; Alverson, K.; Liu, J.; Han, Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 2013, 5, 47–52. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Change 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Elgendy, M.; Hassini, S.; Coulibaly, P. Review of Climate Change AdaptationStrategies in Water Manageme. J. Hydrol. Eng. 2024, 29, 03123001. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5, Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 20 October 2025).
- European Environment Agency (EEA). Scaling Up Nature-Based Solutions for Climate Resilience in Europe. EEA Report No. 09/2023. 2023. Available online: https://www.preventionweb.net/media/91718/download?startDownload=20251024 (accessed on 20 October 2025).
- Geissdoerfer, M.; Savaget, P.; Bockenn, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2022, 197, 107–129. [Google Scholar] [CrossRef]
- Beck, U. Risk Society: Towards a New Modernity; SAGE Publications: Thousand Oaks, CA, USA, 1992. [Google Scholar]
- Beck, U. From Industrial Society to the Risk Society: Questions of Survival, Social Structure and Ecological Enlightenment. Theory Cult. Soc. 1992, 9, 97–123. [Google Scholar] [CrossRef]
- Walters, C.J. Adaptive Management of Renewable Resources; Macmillan Publishing Company: New York, NY, USA, 1986; Available online: https://pure.iiasa.ac.at/id/eprint/2752/1/XB-86-702.pdf (accessed on 20 October 2025).
- Tullos, D.; Baker, D.W.; Crowe, C.J.; Schwar, M.; Schwartz, J. Enhancing resilience of river restoration design in systems undergoing change. J. Hydraul. Eng. 2021, 147, 03121001. [Google Scholar] [CrossRef]
- Agarwal, A.; de los Angeles, M.S.; Bhatia, R.; Chéret, I.; Davila-Poblete, S.; Falkenmark, M.; Villarreal, F.G.; Jønch-Clausen, T.; Aït Kadi, M.; Kindler, J.; et al. Integrated Water Resources Management; Global Water Partnership: Stockholm, Sweden, 2000; Available online: https://www.gwp.org/globalassets/global/toolbox/publications/background-papers/04-integrated-water-resources-management-2000-english.pdf (accessed on 20 October 2025).
- Nagata, K.; Shoji, I.; Arima, T.; Otsuka, T.; Kato, K.; Matsubayashi, M.; Omura, M. Practicality of integrated water resources management (IWRM) in different contexts. International. J. Water Resour. Dev. 2021, 38, 897–919. [Google Scholar] [CrossRef]
- Arthur, W.B. Competing Technologies, Increasing Returns, and Lock-In by Historical Events. Econ. J. 1989, 99, 116–131. [Google Scholar] [CrossRef]
- Page, S.E. Path Dependence. Q. J. Political Sci. 2006, 1, 87–115. [Google Scholar] [CrossRef]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- DeCaro, D.A.; Schlager, E.C.; Boamah, E.F. The State-reinforced self-governance framework: Conceptualizing and diagnosing legal and other institutional foundations of adaptive and transformative environmental governance. Ecol. Soc. 2025, 30, 1. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; AlexandeR, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Darre, M.E.; Constantinides, P.; Domisch, S.; Floury, M.; Hermoso, V.; Ørsted, M.; Langhans, S.D. Evaluating the readiness for river barrier removal: A scoping review under the EU nature restoration law. Sci. Total Environ. 2025, 959, 178180. [Google Scholar] [CrossRef] [PubMed]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Entman, R.M. Framing: Toward Clarification of a Fractured Paradigm. J. Commun. 1993, 43, 51–58. [Google Scholar] [CrossRef]
- Gisevius, K.; Niesters, L.M.; Larasati, A.; Braun, B. Local and translocal social capital in flood adaptation: Evidence from Indonesian coastal communities. Environ. Hazards 2024, 1–21. [Google Scholar] [CrossRef]
- Putnam, R.D. Bowling Alone: The Collapse and Revival of American Community; Simon and Schuster: New York, NY, USA, 2000. [Google Scholar]
- Hudson, P.; Hagedoorn, L.; Bubeck, P. Potential Linkages Between Social Capital, Flood Risk Perceptions, and Self-Efficacy. Int. J. Disaster Risk Sci. 2020, 11, 251–262. [Google Scholar] [CrossRef]
- Pelletier, M.C.; Ebersole, J.; Mulvaney, K.; Rashleigh, B.; Gutierrez, M.N.; Chintala, M.; Kuhn, A.; Molina, M.; Bagley, M.; Lane, C. Resilience of aquatic systems: Review and management implications. Aquatic Sciences 2020, 82, 44. [Google Scholar] [CrossRef]
- Greene, R.H.; Thoms, M.C.; Parsons, M. We cannot turn back time: A framework for restoring and recovering rivers in the Anthropocene. Front. Environ. Sci. 2023, 11, 1162908. [Google Scholar] [CrossRef]
- Fernandez, M. Risk perceptions and management strategies in a post-disaster landscape of Guatemala: Social conflict as an opportunity to understand disaster. Int. J. Disaster Risk Reduct. 2021, 57, 102153. [Google Scholar] [CrossRef]
- Fuchs, S.; Karagiorgos, K.; Kitikidou, K.; Maris, F.; Paparrizos, S.; Thaler, T. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrol. Earth Syst. Sci. 2017, 21, 3183–3198. [Google Scholar] [CrossRef]
- Brown, P. Risk perception: It’s personal. Environ. Health Perspect. 2014, 122, A184–A189. [Google Scholar] [CrossRef]
- Kumaresen, M.; Teo, F.Y.; Selvarajoo, A.; Sivapalan, S.; Falconer, R.A. Assessing Community Perception, Preparedness, and Adaptation to Urban Flood Risks in Malaysia. Water 2025, 17, 2323. [Google Scholar] [CrossRef]
- Askari, E.; Moslem, S.; Marzieh, R. Application of construal level theory in identifying factors affecting individual decision-making in implementing flood protection measures in rural areas of Iran. Sci. Rep. 2025, 15, 29873. [Google Scholar] [CrossRef] [PubMed]
- Waseem, H.B.; Mirza, M.N.E.E.; Rana, I.A. Exploring the role of social capital in flood risk reduction: Insights from a systematic review. Environ. Impact Assess. Rev. 2024, 105, 107390. [Google Scholar] [CrossRef]
- Zhao, G.; Hui, X.; Zhao, F.; Feng, L.; Lu, Y.; Zhang, Y. How does social capital facilitate community disaster resilience? A systematic review. Front. Environ. Sci. 2025, 12, 1496813. [Google Scholar] [CrossRef]
- Peck, A.J.; Adams, S.L.; Armstrong, A.; Bartlett, A.K.; Bortman, M.L.; Branco, A.B.; Brown, M.L.; Donohue, J.L.; Kodis, M.; McCann, M.J.; et al. A new framework for flood adaptation: Introducing the Flood Adaptation Hierarchy. Ecol. Soc. 2022, 7, 5. [Google Scholar] [CrossRef]
- Tabasi, N.; Fereshtehpour, M.; Roghani, B. A review of flood risk assessment frameworks and the development of hierarchical structures for risk components. Discov. Water 2025, 5, 10. [Google Scholar] [CrossRef]
- Penny, J.S.; Khadka, D.; Babel, M.S.; Chen, A.S.; Djordjević, S. Integrated Assessment of Flood and Drought Hazards for Current and Future Climate in a Tributary of the Mekong River Basin. Available online: https://ssrn.com/abstract=4314659 (accessed on 1 September 2025).
- Serra-Llobet, A.; Jähnig, S.C.; Geist, J.; Kondolf, G.M.; Damm, C.; Scholz, M.; Lund, J.; Opperman, J.J.; Yarnell, S.M.; Pawley, A.; et al. Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany. Front. Environ. Sci. 2022, 9, 778568. [Google Scholar] [CrossRef]
- Cortiços, N.D.; Duarte, C.C. Climate Resilience and Adaptive Strategies for Flood Mitigation: The Valencia Paradigm. Sustainability 2025, 17, 4980. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, L.; Feyen, L. Cost-effective adaptation strategies to rising river flood risk in Europe. Nat. Clim. Change 2023, 13, 196–202. [Google Scholar] [CrossRef]
- Drought Risk Map. Available online: https://susza.iung.pulawy.pl/mapy/2025,14/ (accessed on 20 October 2025).
- Edwards, E.; Sanchez, L.; Sekhri, S. The Economics of Drought. Annu. Rev. Resour. Econ. 2024, 16, 105–124. [Google Scholar] [CrossRef]
- Klijn, F.; Marchand, M.; Meijer, K.; van der Most, H.; Stuparu, D. Tailored flood risk management: Accounting for socio-economic and cultural differences when designing strategies. Water Secur. 2021, 12, 100084. [Google Scholar] [CrossRef]
- Andráško, I. Why People (Do Not) Adopt the Private Precautionary and Mitigation Measures: A Review of the Issue from the Perspective of Recent Flood Risk Research. Water 2021, 13, 140. [Google Scholar] [CrossRef]
- Supreme Audit Office. Prevention of Agricultural Drought WITHOUT a Coherent Plan. 2021. Available online: https://www.nik.gov.pl/en/news/prevention-of-agricultural-drought-without-a-coherent-plan.html?utm_source=chatgpt.com (accessed on 20 October 2025).
- Wicher-Dysarz, J.; Dysarz, T.; Sojka, M.; Jaskuła, J.; Kundzewicz, Z.W.; Kaiwong, S. Various Indices of Meteorological and Hydrological Drought in the Warta Basin in Poland. Water 2025, 17, 3035. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Januchta-Szostak, A.; Nachlik, E.; Pińskwar, I.; Zaleski, J. Challenges for Flood Risk Reduction in Poland’s Changing Climate. Water 2023, 15, 2912. [Google Scholar] [CrossRef]
- Krasiński, W. Natural disasters and civil protection in Poland: Response to large scale flooding. Secur. Forum WSB Univ. 2020, 1–8. [Google Scholar] [CrossRef]
- Vazin, F.; Chan, D.W.M.; Hanaee, T.; Sarvari, H. Nature-Based Solutions and Climate Resilience: A Bibliographic Perspective through Science Mapping Analysis. Buildings 2024, 14, 1492. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K. Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management. Geosci. Lett. 2022, 9, 14. [Google Scholar] [CrossRef]
- Delgado, A.; Rodriguez, D.J.; Amadei, C.A.; Makino, M. Water in Circular Economy and Resilience (WICER) Framework. Util. Policy 2024, 87, 101604. [Google Scholar] [CrossRef]
- Magnier, J.; Fribourg-Blanc, B.; Lemann, T.; Witing, F.; Critchley, W.; Volk, M. Natural/Small Water Retention Measures: Their Contribution to Ecosystem-Based Concepts. Sustainability 2024, 16, 1308. [Google Scholar] [CrossRef]
- Elba, E.; Urban, B.; Ettmer, B.; Farghaly, D. Mitigating the Impact of Climate Change by Reducing Evaporation Losses: Sediment Removal from the High Aswan Dam Reservoir. Am. J. Clim. Change 2017, 6, 230–246. [Google Scholar] [CrossRef]
- Breen, M.J.; Kebede, A.S.; König, C.S. The Safe Development Paradox in Flood Risk Management: A Critical Review. Sustainability 2022, 14, 16955. [Google Scholar] [CrossRef]
- Kud, K. Biomass of riparian meadows as an integrator of energy policy, spatial and water. Stud. I Mater. Wydział Zarządzania Uniw. Warsz 2018, 3, 80–89. [Google Scholar] [CrossRef]
- Kretz, L.; Bondar-Kunze, E.; Hein, T.; Richter, R.; Schulz-Zunkel, C.; Seele-Dilbat, C.; van der Plas, F.; Vieweg, M.; Wirth, C. Vegetation characteristics control local sediment and nutrient retention on but not underneath vegetation in floodplain meadows. PLoS ONE 2021, 16, e0252694. [Google Scholar] [CrossRef]
- Chou, R.-J.; Huang, F.-T. Building Community Resilience via Developing Community Capital toward Sustainability: Experiences from a Hakka Settlement in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 9012. [Google Scholar] [CrossRef]
- European Union. Guidelines for Co-Creation and Co-Governance of Nature-Based Solutions—Insights form EU-Funded Projects; Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2777/157060 (accessed on 2 June 2025).
- Kenngott, K.G.J.; Riess, K.; Muñoz, K.; Schaumann, G.E.; Buhk, C.; Diehl, D. Flood Pulse Irrigation of Meadows Shapes Soil Chemical and Microbial Parameters More Than Mineral Fertilization. Soil Syst. 2021, 5, 24. [Google Scholar] [CrossRef]
- Suchara, I. The Impact of Floods on the Structure and Functional Processes of Floodplain Ecosystems. J. Soil Plant Biol. 2019, 1, 44–60. [Google Scholar] [CrossRef]
- Global Water Partnership (GWP). Annual Progress Review 2022; GWP Secretariat: Stockholm, Sweden, 2023; Available online: https://www.gwp.org/contentassets/a7871dbc40f54d4d993b688abc453b2a/gwp_progress_review_2022_final.pdf (accessed on 1 May 2025).
- Kundzewicz, Z.W.; Szamalek, K.; Kowalczak, P. The Great Flood of 1997 in Poland. Hydrol. Sci. J. 1999, 44, 855–870. [Google Scholar] [CrossRef]
- Goffman, E. Frame Analysis: An Essay on the Organization of Experience; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Cook, H.F. Floodplain agricultural systems: Functionality, heritage and conservation. J. Flood Risk Manag. 2010, 3, 192–200. [Google Scholar] [CrossRef]
- Jawgiel, K. Rzeka Wrześnica Naturalne i Antropogeniczne Przemiany; Stowarzyszenie Projekt Września Września: Poznań, Poland, 2023; Available online: https://www.projektwrzesnia.pl/wordpress/wp-content/uploads/2024/12/2023_wrzesnica_pdf_mini.pdf (accessed on 20 October 2025).
- Netzel, L.M.; Heldt, S.; Engler, S.; Denecke, M. The importance of public risk perception for the effective management of pluvial floods in urban areas: A case study from Germany. J. Flood Risk Manag. 2021, 14, e12688. [Google Scholar] [CrossRef]
- Cockerill, K. Environmental Reviews and Case Studies: Public Perception of a High-Quality River: Mixed Messages. Environ. Pract. 2016, 18, 44–52. [Google Scholar] [CrossRef]
- Goeldner-Gianella, L.; Grancher, D.; D’Avdeew, M.; de Godoy Leski, C.; Douillard, T. Dykes and ‘nature’. Results of a survey on the perception of dykes and their evolution in 21st-century France. Cybergeo Eur. J. Geogr. 2024, 3, 1073. [Google Scholar] [CrossRef]
- Raikes, J.; Henstra, D.; Thistlethwaite, J. Public attitudes toward policy instruments for flood risk management. Environ. Manag. 2023, 72, 1050–1060. [Google Scholar] [CrossRef]
- Santoro, S.; Lovreglio, R.; Totaro, V.; Camarda, D.; Iacobellis, V.; Fratino, U. Community risk perception for flood management: A structural equation modelling approach. Int. J. Disaster Risk Reduct. 2023, 97, 104012. [Google Scholar] [CrossRef]
- D’Souza, M.; Johnson, M.F.; Ives, C.D. Values influence public perceptions of flood management schemes. J. Environ. Manag. 2021, 291, 112636. [Google Scholar] [CrossRef]
- Munawar, H.S.; Khan, S.I.; Anum, N.; Qadir, Z.; Kouzani, A.Z.; Parvez Mahmud, M.A. Post-Flood Risk Management and Resilience Building Practices: A Case Study. Appl. Sci. 2021, 11, 4823. [Google Scholar] [CrossRef]
- Huang, J.; Xu, G.; Gou, X.; You, S. Affect path to flood protective coping behaviors using SEM based on a survey in Shenzhen, China. Int. J. Environ. Res. Public Health 2020, 17, 940. [Google Scholar] [CrossRef] [PubMed]
- Zandersen, M.; Oddershede, J.S.; Pedersen, A.B.; Nielsen, H.Ø.; Termansen, M. Nature-Based Solutions for Climate Adaptation—Paying Farmers for Flood Control. Ecol. Econ. 2021, 179, 106705. [Google Scholar] [CrossRef]
- Bark, R.H. Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management? Water 2021, 13, 2604. [Google Scholar] [CrossRef]
- Bark, R.H.; Martin-Ortega, J.; Waylen, K.A. Stakeholders’ views on natural flood management: Implications for the nature-based solutions paradigm shift? Environ. Sci. Policy 2021, 115, 91–98. [Google Scholar] [CrossRef]
- Morris, S.A.; Tippett, J. Perceptions and practice in natural flood management: Unpacking differences in community and practitioner perspectives. J. Environ. Plan. Manag. 2024, 67, 2528–2552. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Zaleski, J.; Nachlik, E.; Januchta-Szostak, A. Managing water–challenges for Poland. Nauka 2021, 1, 79–102. [Google Scholar] [CrossRef]
- Szałkiewicz, E.; Sucholas, J.; Grygoruk, M. Feeding the Future with the Past: Incorporating Local Ecological Knowledge in River Restoration. Resources 2020, 9, 47. [Google Scholar] [CrossRef]
- Jasnowska, J. Konsekwencje Melioracji Wodnych w Świetle Badań Geobotanicznych. In Ekologiczne aspekty Melioracji Wodnych; Tomiałojć, L., Ed.; Wydawnictwo Instytutu Ochrony Przyrody PAN: Krakow, Poland, 1995; pp. 27–35. Available online: https://rcin.org.pl/Content/115558/KR038_135797_r1995_EkolAMW-Janowska-27-36.pdf (accessed on 20 October 2025).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- WWF European Policy Office. WWF Report: The Potential of Barrier Removal to Reconnect Europe’s Rivers; World Wildlife Fund; WWF European Policy Office: Brussels, Belgium, 2021; Available online: https://wwfeu.awsassets.panda.org/downloads/wwf_potential_of_barrier_removal_report.pdf (accessed on 20 October 2025).
- Szałkiewicz, E.; Jusik, S.; Grygoruk, M. Status of and Perspectives on River Restoration in Europe: 310,000 Euros per Hectare of Restored River. Sustainability 2018, 10, 129. [Google Scholar] [CrossRef]
- Apostolaki, E.T.; Lavery, P.S.; Litsi-Mizan, V.; Serrano, V.; Inostroza, K.; Gerakaris, V.; Gerakaris, T.; Glampedakis, J.; Holitzki, T.; Johnson, E.; et al. Patterns of Carbon and Nitrogen Accumulation in Seagrass (Posidonia oceanica) Meadows of the Eastern Mediterranean Sea. J. Geophys. Res. Biogeosciences 2024, 129, e2024JG008163. [Google Scholar] [CrossRef]
- Chardon, V.; Euzen, C.; Schmitt, L. Functional river restoration as a lever for adapting to climate change from an interdisciplinary emblematic showcase on the Upper Rhine. J. Environ. Manag. 2025, 393, 127151. [Google Scholar] [CrossRef]
- Anderson, C.C.; Renaud, F.G.; Hanscomb, S.; Munro, K.E.; Gonzalez-Ollauri, A.; Thomson, C.S.; Pouta, E.; Soini, K.; Loupis, M.; Panga, D.; et al. Public Acceptance of Nature-Based Solutions for Natural Hazard Risk Reduction: Survey Findings From Three Study Sites in Europe. Front. Environ. Sci. 2021, 9, 678938. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Marchetto, A.; Boggero, A. Water Resources Management under Climate Change: A Review. Sustainability 2024, 16, 3590. [Google Scholar] [CrossRef]
- Lindner, A.; Stamm, J. Integrating Climate Change Adaptation and Water Resource Management: A Critical Overview. Standards 2025, 5, 4. [Google Scholar] [CrossRef]
- Priest, S.J.; Suykens, C.; Van Rijswick, H.F.M.W.; Schellenberger, T.; Goytia, S.; Kundzewicz, Z.W.; van Doorn-Hoekveld, W.J.; Beyers, J.-C.; Homewood, S. The European Union approach to flood risk management and improving societal resilience: Lessons from the implementation of the Floods Directive in six European countries. Ecol. Soc. 2016, 21, 1–16. Available online: https://www.jstor.org/stable/26270028 (accessed on 20 January 2025). [CrossRef]
- European Parliament and Council of the European Union. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. Official Journal of the European Union, L, 2024-06-24, 1991. 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R1991 (accessed on 2 February 2025).
- Vávra, J.; Lapka, M.; Cudlínová, E.; Dvořáková-Líšková, Z. Local perception of floods in Czech Republic. J. Flood Risk Manag. 2017, 10, 238–252. [Google Scholar] [CrossRef]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Żelaziński, J. Nauczmy się żyć z powodziami. Infos Zagadnienia Społeczno-Gospod. 2011, 2, 1–4. Available online: https://orka.sejm.gov.pl/WydBAS.nsf/0/6815B396AF35DBA9C12578B00043CA11/$file/Infos_94.pdf (accessed on 20 October 2025).
- Statistics Poland. Information Society in Poland. 2024. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/en/defaultaktualnosci/3417/2/14/1/information_society_in_poland_2024.pdf?utm_source=chatgpt.com (accessed on 20 October 2025).
- Rogalińska, D. (Ed.) Statistical Yearbook of the Regions—Poland; Central Statistical Office: Warsaw, Poland, 2024. [Google Scholar]
- Adam, A.M. Sample Size Determination in Survey Research. J. Sci. Res. Rep. 2020, 26, 90–97. [Google Scholar] [CrossRef]
- Kincaid, D.; Cheney, W. Analiza Numeryczna (Numerical Analysis); Wydawnictwa Naukowo-Techniczne: Warsaw, Poland, 2002. [Google Scholar]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, J.M. Testy istotności różnic i wskaźniki wielkości efektu ES—Wybrane zagadnienia (Significance of Difference Tests and Effect Size Indicators (ES)—Selected Issues). In Metodologia Badań Psychologicznych (Psychological Research Methodology); Wydawnictwo Naukowe PWN: Warsaw, Poland, 2021; pp. 205–234. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- StatSoft Electronic Statistics Textbook. Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 20 October 2025).
- Creswell, J.W.; Plano Clark, V.L. Designing and Conducting Mixed Methods Research, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Babyak, M.A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 2024, 66, 411–421. [Google Scholar] [CrossRef]
- Krajowa Strategia Rozwoju Regionalnego 2030. Rozwój Społecznie Wrażliwy i Terytorialnie Zrównoważony (Socially Sensitive and Territorially Sustainable Development); Ministry of Investment and Development: Warsaw, Poland, 2019; pp. 53–54. Available online: https://www.gov.pl/web/ia/krajowa-strategia-rozwoju-regionalnego-2030-ksrr (accessed on 20 October 2025).
- Skidmore, P.; Wheaton, J. Riverscapes as natural infrastructure: Meeting challenges of climate adaptation and ecosystem restoration. Anthropocene 2022, 38, 100334. [Google Scholar] [CrossRef]
- Morote, Á.-F.; Hernández, M. Water and flood adaptation education: From theory to practice. Water Product. J. 2021, 1, 37–50. Available online: https://hdl.handle.net/10045/113724 (accessed on 1 January 2025).
- Ao, Y.; Tan, L.; Feng, Q.; Tan, L.; Li, H.; Wang, Y.; Wang, T.; Chen, Y. Livelihood Capital Effects on Famers’ Strategy Choices in Flood-Prone Areas—A Study in Rural China. Int. J. Environ. Res. Public Health 2022, 19, 7535. [Google Scholar] [CrossRef]
- Chisty, M.A.; Rahman, M.M.; Khan, N.A.; Dola, S.E.A. Assessing Community Disaster Resilience in Flood-Prone Areas of Bangladesh: From a Gender Lens. Water 2022, 14, 40. [Google Scholar] [CrossRef]
- Gideon, N.-A.; Qi, Y.; Kwarko, A.E.; Yunqiang, L.; Martinson, A.T.; Wonder, A.; Dingde, X.; Stephen, A.; Rabia, M.; Kimayong, G.V. Farm households’ flood risk perception and adoption of flood disaster adaptation strategies in northern Ghana. Int. J. Disaster Risk Reduct. 2022, 80, 103223. [Google Scholar] [CrossRef]
- Turkelboom, F.; Demeyer, R.; Vranken, L.; De Becker, P.; Raymaekers, F.; De Smet, L. How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium. Ambio 2021, 50, 1431–1445. [Google Scholar] [CrossRef]
- Han, Q.; Wang, X.; Li, Y.; Zhang, Z. River Ecological Corridor: A Conceptual Framework and Review of the Spatial Management Scope. Int. J. Environ. Res. Public Health 2022, 19, 7752. [Google Scholar] [CrossRef]
- Pollock, M.M.; Norman, L.M. Wet meadow regeneration through restoration of biophysical feedbacks. Front. Environ. Sci. 2025, 13, 1592036. [Google Scholar] [CrossRef]
- Kanianska, R.; Benková, N.; Ševčíková, J.; Masný, M.; Kizeková, M.; Jančová, Ľ.; Feng, J. Fluvisols Contribution to Water Retention Hydrological Ecosystem Services in Different Floodplain Ecosystems. Land 2022, 11, 1510. [Google Scholar] [CrossRef]
- Kud, K.; Woźniak, L. Selected Trace Elements in Soil and Plants from Marshy Meadows of the San River Valley. Ecol. Chem. Eng. A 2012, 19, 97–104. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. [Google Scholar] [CrossRef]
- De Feudis, M.; Trenti, W.; Manfredi, P.; Cassinari, C.; Vianello, G.; Antisari, L.V. Negative impact of alluvial sediments on physical properties of agricultural soils affected by flooding in May 2023 in Emilia Romagna Region (Northern Italy). J. Soils Sediments 2025, 25, 103–115. [Google Scholar] [CrossRef]
- Jakubínský, J.; Prokopová, M.; Raška, P.; Salvati, L.; Bezak, N.; Cudlín, O.; Cudlín, P.; Purkyt, J.; Vezza, P.; Camporeale, C.; et al. Managing floodplains using nature-based solutions to support multiple ecosystem functions and services. Wiley Interdiscip. Rev. Water 2021, 8, e1545. [Google Scholar] [CrossRef]
- Kawasaki, A.; Shimomura, N. Accelerated widening of economic disparity due to recurrent floods. Int. J. Disaster Risk Reduct. 2024, 102, 104273. [Google Scholar] [CrossRef]
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: Sterling, VA, USA, 2000; Available online: https://awsassets.panda.org/downloads/wcd_dams_final_report.pdf (accessed on 20 October 2025).
- Rothero, E.; Tatarenko, I.; Jefferson, R.; Skinner, A.; Wallace, H.; Gowing, D.; Clarke, S.; Johnson, M.; Davies, G. Floodplain meadow partnership—A working model of effective communication between practitioners, academics and policymakers. Ecol. Solut. Evid. 2021, 2, e12072. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Phil. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Associated Programme on Flood Management (APFM). Conservation and Restoration of Rivers and Floodplains (APFM Tool No. 13); World Meteorological Organization (WMO): Geneva, Switzerland; Global Water Partnership (GWP): Stockholm, Sweden, 2007; Available online: https://www.floodmanagement.info/publications/tools/APFM_Tool_13.pdf (accessed on 20 October 2025).
- Zini, V.; Johnson, N.; Crouch, A.; Lenagan, G.; Cooper, C.; Naura, M.; Speck, I.; Rouquette, J. Rivers as Natural Capital Assets: A Quick Scoping Review to Assess the Evidence Linking River Asset Condition to Changes in the Flow of Ecosystem Services. River Res Applic. 2025, 41, 1207–1227. [Google Scholar] [CrossRef]
- Kam, H.; Smith, H.; Potter, C. Public money for public goods: The role of ideas in driving agriculture policy in the EU and post-Brexit UK. Land Use Policy 2023, 129, 106618. [Google Scholar] [CrossRef]



| Theory/Concept | Brief Description of the Theory/Concept, Along with Literature References |
|---|---|
| Water retention as an element of security, and adaptation to climate change | |
| Risk theory | Analysis of threats, and ways to minimize socio-economic losses; justifies the need for retention in the context of floods and droughts [21,22]. |
| Resilience theory | The ability of systems to adapt and recover from disturbances; retention increases socio-ecological resilience [23,24]. |
| Environmental economics | Analysis of the economic value of ecosystem services and external costs of disasters; retention as an investment in security [25,26]. |
| Climate adaptation theory | Strategies for adaptation to the effects of climate change; water retention as an adaptation tool [27,28]. |
| Ecosystem services theory | Ecosystems provide benefits (retention, filtration, biomass production); they justify the protection of river valleys [29,30]. |
| Circular economy | Efficient use of natural resources and processes; use of flood meadows for fodder and energy purposes [31,32]. |
| Perception of safety and river valley development strategies | |
| Risk society theory | Modern societies create risks themselves and have to manage them; a change in approach from embankments to polders [33,34]. |
| Adaptive management | Flexible water and landscape management in changing climatic conditions [35,36]. |
| Integrated Water Resources Management (IWRM) | An integrated approach combining environmental, economic, and social aspects in water management [37,38]. |
| Path dependency | Consolidation of old hydrotechnical decisions (e.g., land improvement) in current water management practices [39,40]. |
| Institutional theory | The influence of norms, institutions, and law on the consolidation of traditional solutions in water management [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]. |
| River restoration | Restoring natural river processes as an alternative to regulating and straightening rivers [43,44]. |
| Risk perception theory | The public perception of risk differs from the expert perception; it is important for the acceptance of retention measures [17,45]. |
| Framing theory | The way a problem is presented influences its social perception and political decisions [46,47]. |
| Social capital theory | The importance of trust, and cooperation, for the implementation of new solutions in water management [48,49]. |
| Abbreviations for Item Names | Item Names | Measurement Scales |
|---|---|---|
| Sociodemographic data | ||
| Ag | Age | Quantitative variable |
| Sx | Sex | 0 = Female; 1 = Male |
| Ed | Education | 0 = Elementary; 1 = Vocational; 2 = Secondary; 3 = Higher |
| PoR | Place of residence | 0 = Village; 1 = City up to 100,000; 2 = City over 100,000 |
| PS | Professional status | 0 = Employed in agriculture; 1 = Employed outside agriculture; 2 = Others (students, retirees, unemployed) |
| HC | Has children | 0 = No; 1 = Yes |
| DR | Distance to the river | Quantitative variable |
| OFH | Occurrence of flood hazard | 0 = No.; 1 = Yes. |
| Assessment of river valley development methods | ||
| NAFSP | Negative assessment of flood safety in Poland | 1 = definitely safe; 2 = rather safe; 3 = neither yes nor no; 4 = rather dangerous; 5 = definitely dangerous |
| RRR | Rivers require regulation | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| SDFW | Slow down the flow of water | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| EBA | Embankment of built-up areas | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| EAL | Embankment of agricultural land | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| BLD | It is necessary to build large dams on the main rivers | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| ARFU | Allowing the river to flood undeveloped areas | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| LFEAA | Limiting flood embankments in agricultural areas | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| CFP_DRR | Creation of flood polders and construction of dry retention reservoirs | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| FEM | Flooded areas should have meadows that increase water retention and provide fodder or energy biomass. | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| DFEP | Development in flood areas should be prohibited | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| Assessment of the subsequent impact of floods on crop yields | ||
| FACIC | Floods on sown area cause increased yields in subsequent years | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| FACRC | Floods in sown areas cause reduced yields in subsequent years | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| FMCIC | Floods in permanent meadows increased yields in subsequent years | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| FMCRC | Floods in permanent meadows reduced crop yields in subsequent years | 1 = definitely not; 2 = rather not; 3 = neither yes nor no; 4 = rather yes; 5 = definitely yes |
| Preferred flood safety strategy | ||
| EFPM | Effective flood protection measures | 0 = Moving water away from people (MWAP); 1 = Leaving space for rivers (LSfR) |
| Statistics | Ag 1 | DR 1 [km] |
|---|---|---|
| Minimum | 18 | 0.001 |
| Maximum | 85 | 92 |
| Range | 67 | 91.999 |
| Mean (M) | 44.23 | 5.75 |
| Median (Me) | 47 | 3 |
| Modal (Mo) | 21 | 1 |
| Modal frequency | 48 | 75 |
| Standard deviation (SD) | 18.61 | 8.549 |
| Quartile 25 (Q1) | 23 | 1 |
| Quartile 75 (Q3) | 61 | 6 |
| Variables 1 | Participation in the Structure | Variables 1 | Participation in the Structure |
|---|---|---|---|
| Sx | PS | ||
| women | 54.88% | 0 = working in agriculture | 5.33% |
| men | 45.12% | 1 = working outside agriculture | 48.31% |
| HC | 2 = others (students, retirees, unemployed) | 46.36% | |
| 0 = No | 39.61% | PoR | |
| 1 = Yes | 60.39% | 0 = village | 49.73% |
| Ed | 1 = city up to 100 thousand | 30.91% | |
| 0 = primary | 5.33% | 2 = city over 100 thousand | 19.36% |
| 1 = vocational | 23.80% | OFH | |
| 2 = secondary | 41.74% | 0 = No | 65.19% |
| 3 = higher | 29.13% | 1 = Yes | 34.81% |
| Variables 1 | Total Rank Group 1 | Total Rank Group 2 | U | Z Corrected | p-Value | n Group 1 | n Group 2 |
|---|---|---|---|---|---|---|---|
| Sx | W | M | |||||
| RRR | 91,223.00 | 67,543.00 | 35,158.00 | 2.22479 | 0.02609 * | 309 | 254 |
| FEM | 82,179.50 | 76,586.50 | 34,284.50 | −2.73666 | 0.00621 * | 309 | 254 |
| FACIC | 83,156.50 | 75,609.50 | 35,261.50 | −2.12819 | 0.03332 * | 309 | 254 |
| HC | No | Yes | |||||
| EBA | 100,098.5 | 58,667.50 | 33,691.50 | 2.42656 | 0.01524 * | 340 | 223 |
| OFH | No | Yes | |||||
| EAL | 98,850.50 | 59,915.50 | 31,322.50 | −2.64656 | 0.00813 * | 367 | 196 |
| DFEP | 107,523.00 | 51,243.00 | 31,937.00 | 2.29033 | 0.02200 * | 367 | 196 |
| EFPM | 106,734.00 | 52,032.00 | 32,726.00 | 2.64098 | 0.00827 * | 367 | 196 |
| Variables 1 | Ed | Variables 1 | PS |
|---|---|---|---|
| CFP_DRR | H (3, n = 563) =9.998676 p = 0.0186 * | RRR | H (2, n = 563) =9.158335 p = 0.0103 * |
| DFEP | H (3, n = 563) =9.357683 p = 0.0249 * | SDFW | H (2, n = 563) =9.410665 p = 0.0090 * |
| PoR | EBA | H (2, n = 563) =14.23217 p = 0.0008 * | |
| CFP_DRR | H (2, n = 563) =7.722789 p = 0.0210 * | ARFU | H (2, n = 563) =6.873955 p = 0.0322 * |
| FMCRC | H (2, n = 563) =6.717507 p = 0.0348 * | FEM | H (2, n = 563) =11.81338 p = 0.0027 * |
| DFEP | H (2, n = 563) =6.194389 p = 0.0452 * | ||
| FACIC | H (2, n = 563) =14.13463 p = 0.0009 * | ||
| FACRC | H (2, n = 563) =7.091708 p = 0.0288 * |
| Variables 1 | Group 1 vs. Group 2 | Total Rank Group 1 | Total Rank Group 2 | U | Z Corrected | p-Value | n Group 1 | n Group 2 |
|---|---|---|---|---|---|---|---|---|
| CFP_DRR | Ed: 0 vs. 2 | 465 | 27,730 | 2764 | −1.925 | 0.0405 * | 30 | 235 |
| CFP_DRR | Ed: 1 vs. 2 | 9045 | 27,730 | 13,218.5 | −2.564 | 0.0062 * | 134 | 235 |
| DFEP | Ed: 2 vs. 3 | 27,730 | 13,530 | 16,128.5 | −2.772 | 0.0037 * | 235 | 164 |
| CFP_DRR | PoR: 0 vs. 1 | 39,340 | 15,225 | 20,823.5 | −2.602 | 0.0056 * | 280 | 174 |
| FMCRC | PoR: 0 vs. 1 | 39,340 | 15,225 | 21,284.5 | −2.263 | 0.0190 * | 280 | 174 |
| RRR | PS: 0 vs. 2 | 465 | 34,191 | 4908.5 | 2.276 | 0.0174 * | 30 | 261 |
| RRR | PS: 1 vs. 2 | 37,128 | 34,191 | 39,482 | 2.243 | 0.0190 * | 272 | 261 |
| SDFW | PS: 0 vs. 2 | 465 | 34,191 | 4853.5 | 2.15 | 0.0218 * | 30 | 261 |
| SDFW | PS: 1 vs. 2 | 37,128 | 34,191 | 39,800 | 2.422 | 0.0105 * | 272 | 261 |
| EBA | PS: 0 vs. 2 | 465 | 34,191 | 4972 | 2.422 | 0.0091 * | 30 | 261 |
| EBA | PS: 1 vs. 2 | 37,128 | 34,191 | 40,785 | 2.976 | 0.0013 * | 272 | 261 |
| ARFU | PS: 0 vs. 2 | 465 | 34,191 | 5012.5 | 2.514 | 0.0086 * | 30 | 261 |
| FEM | PS: 0 vs. 1 | 465 | 37,128 | 5129.5 | 2.312 | 0.0143 * | 30 | 272 |
| FEM | PS: 0 vs. 2 | 465 | 34,191 | 5311 | 3.198 | 0.0007 * | 30 | 261 |
| DFEP | PS: 0 vs. 2 | 465 | 34,191 | 4763 | 1.943 | 0.0436 * | 30 | 261 |
| FACIC | PS: 0 vs. 1 | 465 | 37,128 | 2538.5 | −3.396 | 0.0005 * | 30 | 272 |
| FACIC | PS: 0 vs. 2 | 465 | 34,191 | 2650.5 | −2.897 | 0.0029 * | 30 | 261 |
| FACRC | PS: 0 vs. 1 | 465 | 37,128 | 5223.5 | 2.519 | 0.0098 * | 30 | 272 |
| FACRC | PS: 0 vs. 2 | 465 | 34,191 | 4935 | 2.337 | 0.0161 * | 30 | 261 |
| Variables 1 | DR | NAFSP | RRR | SDFW | EBA | EAL | BLD | ARFU | LFEAA | CFP_DRR | FEM | DFEP |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ag | 0.0348 | 0.0707 | −0.0075 | 0.0020 | 0.1017 | 0.0252 | −0.0465 | 0.0877 | 0.0630 | −0.0108 | 0.0155 | 0.0385 |
| p = 0.410 | p = 0.094 | p = 0.859 | p = 0.962 | p = 0.016 | p = 0.551 | p = 0.271 | p = 0.037 | p = 0.135 | p = 0.798 | p = 0.713 | p = 0.362 | |
| DR | −0.0533 | −0.0415 | −0.0585 | −0.0430 | −0.0500 | 0.1276 | −0.0133 | 0.0437 | −0.0305 | −0.0364 | −0.0320 | |
| p = 0.206 | p = 0.325 | p = 0.166 | p = 0.309 | p = 0.236 | p = 0.002 | p = 0.752 | p = 0.300 | p = 0.470 | p = 0.389 | p = 0.449 | ||
| NAFSP | 0.2751 | 0.1608 | 0.2046 | 0.1556 | 0.1859 | 0.0479 | −0.0626 | 0.1704 | 0.0548 | 0.0693 | ||
| p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.256 | p = 0.138 | p = 0.000 | p = 0.195 | p = 0.101 | |||
| RRR | 0.1720 | 0.2245 | 0.2640 | 0.3017 | 0.0116 | −0.1056 | 0.2317 | 0.0802 | 0.1111 | |||
| p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.784 | p = 0.012 | p = 0.000 | p = 0.057 | p = 0.008 | ||||
| SDFW | 0.1100 | 0.0300 | 0.2109 | 0.1784 | 0.1576 | 0.1966 | 0.0958 | 0.1220 | ||||
| p = 0.009 | p = 0.478 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | p = 0.023 | p = 0.004 | |||||
| EBA | 0.3003 | 0.1878 | 0.1253 | −0.1372 | 0.2741 | 0.2050 | 0.1787 | |||||
| p = 0.000 | p = 0.000 | p = 0.003 | p = 0.001 | p = 0.000 | p = 0.000 | p = 0.000 | ||||||
| EAL | 0.2389 | −0.1191 | −0.3308 | 0.0998 | 0.0096 | 0.0144 | ||||||
| p = 0.000 | p = 0.005 | p = 0.000 | p = 0.018 | p = 0.820 | p = 0.733 | |||||||
| BLD | 0.0951 | −0.0307 | 0.1967 | 0.1820 | 0.0813 | |||||||
| p = 0.024 | p = 0.468 | p = 0.000 | p = 0.000 | p = 0.054 | ||||||||
| ARFU | 0.1812 | 0.2803 | 0.2937 | 0.2679 | ||||||||
| p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | |||||||||
| LFEAA | 0.0281 | 0.0453 | 0.0578 | |||||||||
| p = 0.506 | p = 0.283 | p = 0.171 | ||||||||||
| CFP_DRR | 0.4106 | 0.2516 | ||||||||||
| p = 0.00 | p = 0.000 | |||||||||||
| FEM | 0.2800 | |||||||||||
| p = 0.000 | ||||||||||||
| Very weak correlation | Weak dependence | Moderate dependence | Strong dependence | Very strong dependence | Statistically significant coefficients | |||||||
| 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | p ≤ 0.05 | |||||||
| Variable 1 | Ag | DR | NAFSP | RRR | SDFW | EBA | EAL | BLD | ARFU | LFEAA | CFP_DRR | FEM | DFEP |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| FACIC | −0.0480 | 0.0498 | −0.0828 | −0.1581 | 0.0664 | −0.0484 | −0.1680 | −0.0303 | 0.1200 | 0.2075 | −0.0097 | 0.0713 | −0.0171 |
| p = 0.255 | p = 0.238 | p = 0.049 | p = 0.000 | p = 0.116 | p = 0.252 | p = 0.000 | p = 0.473 | p = 0.004 | p = 0.000 | p = 0.818 | p = 0.091 | p = 0.686 | |
| FACRC | 0.0456 | −0.0366 | 0.1157 | 0.1832 | 0.0218 | 0.0675 | 0.1985 | 0.0953 | −0.0343 | −0.1614 | 0.0803 | −0.0237 | 0.0896 |
| p = 0.280 | p = 0.386 | p = 0.006 | p = 0.000 | p = 0.605 | p = 0.110 | p = 0.000 | p = 0.024 | p = 0.417 | p = 0.000 | p = 0.057 | p = 0.575 | p = 0.033 | |
| FMCIC | 0.0131 | −0.0041 | 0.0131 | −0.1083 | 0.0708 | 0.0616 | −0.1108 | 0.0223 | 0.0918 | 0.0950 | 0.0651 | 0.1135 | 0.0067 |
| p = 0.757 | p = 0.922 | p = 0.757 | p = 0.010 | p = 0.093 | p = 0.144 | p = 0.008 | p = 0.598 | p = 0.029 | p = 0.024 | p = 0.123 | p = 0.007 | p = 0.875 | |
| FMCRC | −0.0257 | 0.0180 | 0.0079 | 0.1273 | −0.0219 | −0.0543 | 0.1381 | 0.0373 | −0.0765 | −0.0357 | −0.0502 | −0.0776 | −0.0188 |
| p = 0.542 | p = 0.671 | p = 0.851 | p = 0.002 | p = 0.604 | p = 0.198 | p = 0.001 | p = 0.377 | p = 0.070 | p = 0.398 | p = 0.234 | p = 0.066 | p = 0.657 | |
| Very weak correlation | Weak dependence | Moderate dependence | Strong dependence | Very strong dependence | Statistically significant coefficients | ||||||||
| 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | p ≤ 0.05 | ||||||||
| Variables 1 | FACRC | FMCIC | FMCRC | ||
|---|---|---|---|---|---|
| FACIC | −0.8302 | 0.5212 | −0.4316 | ||
| p = 0.00 | p = 0.00 | p = 0.00 | |||
| FACRC | −0.4633 | 0.4859 | |||
| p = 0.00 | p = 0.00 | ||||
| FMCIC | −0.8396 | ||||
| p = 0.00 | |||||
| Very weak correlation | weak dependence | moderate dependence | strong dependence | very strong dependence | statistically significant coefficients |
| 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | p ≤ 0.05 |
| Variables 1 | B (β) 2 | SE 3 | z 4 | p-Value 5 | 95% CI (Lower) 6 | 95% CI (Upper) 6 | OR 7 | 95% CI (Lower) 8 | 95% CI (Upper) 8 |
|---|---|---|---|---|---|---|---|---|---|
| Ed | 0.853 | 0.217 | 3.925 | 0.0001 * | 0.427 | 1.278 | 2.346 | 1.533 | 3.591 |
| PoR | −0.460 | 0.232 | −1.983 | 0.0474 * | −0.915 | −0.005 | 0.631 | 0.401 | 0.995 |
| RRR | −1.943 | 0.232 | −8.364 | 0.0000 * | −2.398 | −1.487 | 0.143 | 0.091 | 0.226 |
| SDFW | 0.796 | 0.200 | 3.983 | 0.0001 * | 0.404 | 1.188 | 2.217 | 1.498 | 3.281 |
| EBA | −0.706 | 0.210 | −3.362 | 0.0008 * | −1.118 | −0.295 | 0.494 | 0.327 | 0.745 |
| EAL | −0.612 | 0.172 | −3.564 | 0.0004 * | −0.948 | −0.275 | 0.542 | 0.387 | 0.759 |
| BLD | −0.617 | 0.181 | −3.404 | 0.0007 * | −0.972 | −0.262 | 0.540 | 0.379 | 0.770 |
| ARFU | 0.720 | 0.190 | 3.782 | 0.0002 * | 0.347 | 1.094 | 2.055 | 1.415 | 2.985 |
| FEM | 0.933 | 0.237 | 3.937 | 0.0001 * | 0.469 | 1.398 | 2.542 | 1.598 | 4.045 |
| DFEP | 0.342 | 0.160 | 2.141 | 0.0323 * | 0.029 | 0.655 | 1.408 | 1.029 | 1.925 |
| FACIC | 0.613 | 0.244 | 2.517 | 0.0118 * | 0.136 | 1.091 | 1.846 | 1.146 | 2.976 |
| FACRC | 0.585 | 0.256 | 2.281 | 0.0226 * | 1.087 | 1.087 | 1.795 | 1.086 | 2.967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kud, K.; Badora, A. Increasing Valley Retention as an Element of Water Management: The Opinion of Residents of Southeastern Poland. Resources 2025, 14, 181. https://doi.org/10.3390/resources14120181
Kud K, Badora A. Increasing Valley Retention as an Element of Water Management: The Opinion of Residents of Southeastern Poland. Resources. 2025; 14(12):181. https://doi.org/10.3390/resources14120181
Chicago/Turabian StyleKud, Krzysztof, and Aleksandra Badora. 2025. "Increasing Valley Retention as an Element of Water Management: The Opinion of Residents of Southeastern Poland" Resources 14, no. 12: 181. https://doi.org/10.3390/resources14120181
APA StyleKud, K., & Badora, A. (2025). Increasing Valley Retention as an Element of Water Management: The Opinion of Residents of Southeastern Poland. Resources, 14(12), 181. https://doi.org/10.3390/resources14120181
