Assessing the Factors of Natural Afforestation on Postagrogenic Lands in the Forest-Steppe over the Last Decades
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Research Methodology
2.2. Assessment of Afforestation on Abandoned Agricultural Lands
2.3. Estimating the Relationship Between Geomorphological Conditions and Forest Cover of Abandoned Agricultural Lands
2.4. Assessment of the Relationship Between Climatic Factors and Forest Cover of Abandoned Agricultural Lands
2.5. Assessment of the Relationship Between Soil Conditions and Afforestation on Abandoned Agricultural Lands
2.6. Statistical Analysis of Abandoned Agricultural Lands Forest Cover Based on Complex of Environmental Factors
3. Results
3.1. Relationship Between Afforestation on Abandoned Agricultural Lands and Geomorphological Conditions
3.2. Relationship Between Abandoned Agricultural Lands Forest Cover and Climatic Factors
3.3. Relationship Between Forest Cover of Abandoned Agricultural Lands and Soil Characteristics
3.4. Forest Cover of Postagrogenic Lands as a Response to Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baxter, R.E.; Calvert, K.E. Estimating Available Abandoned Cropland in the United States: Possibilities for Energy Crop Production. Ann. Am. Assoc. Geogr. 2017, 107, 1162–1178. [Google Scholar] [CrossRef]
- Frei, T.; Derks, J.; Rodríguez Fernández-Blanco, C.; Winkel, G. Narrating Abandoned Land: Perceptions of Natural Forest Regrowth in Southwestern Europe. Land Use Policy 2020, 99, 105034. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, X.; Sun, Q.; Hu, X.; Gao, Y. Analysis of the Spatial and Temporal Pattern of Changes in Abandoned Farmland Based on Long Time Series of Remote Sensing Data. Remote Sens. 2021, 13, 2549. [Google Scholar] [CrossRef]
- Zhou, T.; Koomen, E.; Ke, X. Determinants of Farmland Abandonment on the Urban-Rural Fringe. Environ. Manag. 2020, 65, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.-H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for Land System Science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial Variation in Determinants of Agricultural Land Abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Terres, J.-M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Källström, H.N.; Pointereau, P.; et al. Farmland Abandonment in Europe: Identification of Drivers and Indicators, and Development of a Composite Indicator of Risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C. Historical Cropland Expansion and Abandonment in the Continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 2018, 27, 322–333. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing Abandoned Farmland to Control the Impact of Re-Vegetation on the Environment. The State of the Art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef]
- Rey Benayas, J.; Martins, A.; Nicolau, J.; Schulz, J. Abandonment of Agricultural Land: An Overview of Drivers and Consequences. CABI Rev. 2007, 2, 14. [Google Scholar] [CrossRef]
- Nechaeva, T.V. Abandoned Lands in Russia: Distribution, Agroecological Status and Perspective Use (a Review). J. Soil. Environ. 2023, 6, e215. [Google Scholar] [CrossRef]
- WMO Climate Normals. Available online: https://www.ncei.noaa.gov/products/wmo-climate-normals (accessed on 29 April 2025).
- Karelin, D.V.; Goryachkin, S.V.; Kudikov, A.V.; Lopes de Gerenu, V.O.; Lunin, V.N.; Dolgikh, A.V.; Lyuri, D.I. Changes in Carbon Pool and CO2 Emission in the Course of Postagrogenic Succession on Gray Soils (Luvic Phaeozems) in European Russia. Eurasian Soil. Sci. 2017, 50, 559–572. [Google Scholar] [CrossRef]
- Cortijos-López, M.; Sánchez-Navarrete, P.; Lasanta, T.; Cammeraat, E.L.H.; Nadal-Romero, E. Afforestation, Natural Secondary Forest or Dehesas? Looking for the Best Post-Abandonment Forest Management for Soil Organic Carbon Accumulation in Mediterranean Mountains. Forests 2024, 15, 166. [Google Scholar] [CrossRef]
- Terekhin, E.A. Natural Afforestation of Postagrogenic Lands in the South of the Central Russian Upland. Reg. Geosystems 2024, 48, 405–415. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Smekalova, T.N.; Marinina, O.A. Biogeochemical Features of Fallow Lands in the Steppe Zone. Contemp. Probl. Ecol. 2016, 9, 366–375. [Google Scholar] [CrossRef]
- Danilov, D.A.; Yakovlev, A.A.; Krylov, I.A. Formation of Natural Plant Associations on Post-Agrogenic Lands. Izv. St.-Peterbg. Lesotekhnich. Akad. 2023, 242, 60–82. (In Russian) [Google Scholar] [CrossRef]
- Anselmetto, N.; Weisberg, P.J.; Garbarino, M. Global Change in the European Alps: A Century of Post-Abandonment Natural Reforestation at the Landscape Scale. Landsc. Urban Plan. 2024, 243, 104973. [Google Scholar] [CrossRef]
- Kudryavtsev, A.Y. Vegetation Restoration Dynamics in the Forest-Steppe System of the Middle Volga Region. Russ. J. Ecol. 2007, 38, 299–305. [Google Scholar] [CrossRef]
- Ershov, D.V.; Gavrilyuk, E.A.; Koroleva, N.V.; Belova, E.I.; Tikhonova, E.V.; Shopina, O.V.; Titovets, A.V.; Tikhonov, G.N. Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus. Remote Sens. 2022, 14, 322. [Google Scholar] [CrossRef]
- Terekhin, E.A. Comparative Analysis of Reforestation Indicators on Abandoned Agricultural Lands in the Central Russian Forest Steppe Based on Remote Sensing Data. Izv. Atmos. Ocean. Phys. 2024, 60, 1113–1121. [Google Scholar] [CrossRef]
- Band, L.E. Effect of Land Surface Representation on Forest Water and Carbon Budgets. J. Hydrol. 1993, 150, 749–772. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Baker, T.P.; Jordan, G.J.; Steel, E.A.; Fountain-Jones, N.M.; Wardlaw, T.J.; Baker, S.C. Microclimate through Space and Time: Microclimatic Variation at the Edge of Regeneration Forests over Daily, Yearly and Decadal Time Scales. For. Ecol. Manag. 2014, 334, 174–184. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and Erosive Consequences of Farmland Abandonment in Europe, with Special Reference to the Mediterranean Region—A Review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Sorokina, O.A. Diagnostic Parameters of Soil Formation in Gray Forest Soils of Abandoned Fields Overgrowing with Pine Forests in the Middle Reaches of the Angara River. Eurasian Soil. Sci. 2010, 43, 867–875. [Google Scholar] [CrossRef]
- Chendev, Y.G.; Lupo, A.R.; Terekhin, E.A.; Smirnova, M.A.; Gennadiev, A.N.; Narozhnyaya, A.G.; Lebedeva, M.G.; Belevantsev, V.G. Spatiotemporal Dynamics of Forest Vegetation and Their Impacts on Soil Properties in the Forest-Steppe Zone of Central Russian Upland: A Remote Sensing, GIS Analysis, and Field Studies Approach. Forests 2023, 14, 2079. [Google Scholar] [CrossRef]
- Khorchani, M.; Gaspar, L.; Nadal-Romero, E.; Arnaez, J.; Lasanta, T.; Navas, A. Effects of Cropland Abandonment and Afforestation on Soil Redistribution in a Small Mediterranean Mountain Catchment. Int. Soil. Water Conserv. Res. 2023, 11, 339–352. [Google Scholar] [CrossRef]
- Karelin, D.V.; Lyuri, D.I.; Goryachkin, S.V.; Lunin, V.N.; Kudikov, A.V. Changes in the Carbon Dioxide Emission from Soils in the Course of Postagrogenic Succession in the Chernozems Forest-Steppe. Eurasian Soil. Sci. 2015, 48, 1229–1241. [Google Scholar] [CrossRef]
- Bell, S.M.; Terrer, C.; Barriocanal, C.; Jackson, R.B.; Rosell-Melé, A. Soil Organic Carbon Accumulation Rates on Mediterranean Abandoned Agricultural Lands. Sci. Total Environ. 2021, 759, 143535. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, E.; Martínez-Jaraíz, C.; Wheeler, C.; Mitchard, E.T.A.; Bravo, F. Forest Expansion in Abandoned Agricultural Lands Has Limited Effect to Offset Carbon Emissions from Central-North Spain. Reg. Environ. Change 2022, 22, 132. [Google Scholar] [CrossRef]
- Khorchani, M.; Nadal-Romero, E.; Lasanta, T.; Tague, C. Carbon Sequestration and Water Yield Tradeoffs Following Restoration of Abandoned Agricultural Lands in Mediterranean Mountains. Environ. Res. 2022, 207, 112203. [Google Scholar] [CrossRef]
- Ivanov, A.I.; Ivanova, Z.A.; Sokolov, I.V. Secondary Development of Unused Land. Russ. Agric. Sci. 2020, 46, 274–278. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-Offs of European Agricultural Abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. What Is the Future of Abandoned Agricultural Lands? A Systematic Review of Alternative Trajectories in Europe. Land Use Policy 2022, 112, 105833. [Google Scholar] [CrossRef]
- Gafurov, A.; Ivanov, M. Deep Learning and Remote Sensing for Restoring Abandoned Agricultural Lands in the Middle Volga (Russia). Land 2024, 13, 2054. [Google Scholar] [CrossRef]
- Morkovina, S.S.; Yakovenko, N.V.; Sheshnitsan, S.S.; Kuznetsov, D.; Shashkin, A.; Tretyakov, A.; Stepanova, J. Potential and Investment Attractiveness of Implementing Climate Projects on Disturbed Lands. Sustainability 2024, 16, 8562. [Google Scholar] [CrossRef]
- Mogonong, B.P.; Twine, W.; Feig, G.T.; Van der Merwe, H.; Fisher, J.T. Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa. Remote Sens. 2024, 16, 1200. [Google Scholar] [CrossRef]
- Rytter, R.-M.; Rytter, L. Carbon Sequestration at Land Use Conversion—Early Changes in Total Carbon Stocks for Six Tree Species Grown on Former Agricultural Land. For. Ecol. Manag. 2020, 466, 118129. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Telesnina, V.M.; Lopes de Gerenyu, V.O.; Lichko, V.I.; Karavanova, E.I. The Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution. Eurasian Soil. Sci. 2021, 54, 337–351. [Google Scholar] [CrossRef]
- Fedorov, N.; Shirokikh, P.; Zhigunova, S.; Baisheva, E.; Tuktamyshev, I.; Bikbaev, I.; Komissarov, M.; Zaitsev, G.; Giniyatullin, R.; Gabbasova, I.; et al. Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region. Agriculture 2023, 13, 1427. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Llena, M.; Cortijos-López, M.; Lasanta, T. Afforestation after Land Abandonment as a Nature-Based Solution in Mediterranean Mid-Mountain Areas: Implications and Research Gaps. Curr. Opin. Environ. Sci. Health 2023, 34, 100481. [Google Scholar] [CrossRef]
- Fedorov, N.; Tuktamyshev, I.; Bikbaev, I.; Shirokikh, P.; Zhigunova, S.; Baisheva, E.; Martynenko, V. Spatiotemporal Dynamics of Betula Pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural. Forests 2024, 15, 34. [Google Scholar] [CrossRef]
- Tama, A.Y.; Manourova, A.; Mohammad, R.K.; Podrázský, V. Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic. Forests 2025, 16, 1113. [Google Scholar] [CrossRef]
- Perring, M.P.; Standish, R.J.; Hulvey, K.B.; Lach, L.; Morald, T.K.; Parsons, R.; Didham, R.K.; Hobbs, R.J. The Ridgefield Multiple Ecosystem Services Experiment: Can Restoration of Former Agricultural Land Achieve Multiple Outcomes? Agric. Ecosyst. Environ. 2012, 163, 14–27. [Google Scholar] [CrossRef]
- Anpilogova, D.; Pakina, A. Assessing Ecosystem Services of Abandoned Agricultural Lands: A Case Study in the Forested Zone of European Russia. One Ecosyst. 2022, 7, e77969. [Google Scholar] [CrossRef]
- Cojzer, M.; Diaci, J.; Brus, R. Tending of Young Forests in Secondary Succession on Abandoned Agricultural Lands: An Experimental Study. Forests 2014, 5, 2658–2678. [Google Scholar] [CrossRef]
- Tabeni, S.; Yannelli, F.A.; Vezzani, N.; Mastrantonio, L.E. Indicators of Landscape Organization and Functionality in Semi-Arid Former Agricultural Lands under a Passive Restoration Management over Two Periods of Abandonment. Ecol. Indic. 2016, 66, 488–496. [Google Scholar] [CrossRef]
- Szirmai, O.; Saláta, D.; Benedek, L.K.; Czóbel, S. Investigation of the Secondary Succession of Abandoned Areas from Different Cultivation in the Pannonian Biogeographic Region. Agronomy 2022, 12, 773. [Google Scholar] [CrossRef]
- Bowen, M.E.; McAlpine, C.A.; House, A.P.N.; Smith, G.C. Regrowth Forests on Abandoned Agricultural Land: A Review of Their Habitat Values for Recovering Forest Fauna. Biol. Conserv. 2007, 140, 273–296. [Google Scholar] [CrossRef]
- Kolecka, N. Greening Trends and Their Relationship with Agricultural Land Abandonment across Poland. Remote Sens. Environ. 2021, 257, 112340. [Google Scholar] [CrossRef]
- Frei, T.; Edou, K.; Rodríguez Fernández-Blanco, C.; Winkel, G. Governing Abandoned Land: Storylines on Natural Forest Regrowth in France and Spain. Environ. Sci. Policy 2022, 135, 58–66. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. The Potential of European Abandoned Agricultural Lands to Contribute to the Green Deal Objectives: Policy Perspectives. Environ. Sci. Policy 2022, 133, 44–53. [Google Scholar] [CrossRef]
- Trofimov, I.A.; Trofimova, L.S.; Yakovleva, E.P. Preservation and Optimization of Agrolandscapes of the Central Chernozem Zone. Izv. Ross. Akad. Nauk. Seriya Geogr. 2017, 1, 103–109. (In Russian) [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Trofimov, I.A.; Trofimova, L.S.; Yakovleva, E.P. Agrolandscapes of Central Chernozem Region. Zoning and Management; Publishing House «Science»: Moscow, Russia, 2015. (In Russian) [Google Scholar]
- Buryak, Z.A.; Grigoreva, O.I.; Gusarov, A.V. A Predictive Model for Cropland Transformation at the Regional Level: A Case Study of the Belgorod Oblast, European Russia. Resources 2023, 12, 127. [Google Scholar] [CrossRef]
- Terekhin, E.A. Spatial Analysis of Tree Vegetation of Abandoned Arable Lands Using Their Spectral Response in Forest-Steppe Zone of Central Chernozem Region. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2020, 17, 142–156. [Google Scholar] [CrossRef]
- Terekhin, E.A. Reforestation on Abandoned Agricultural Lands in the Central Russian Forest–Steppe. Izv. Ross. Akad. Nauk. Seriya Geogr. 2022, 86, 594–604. (In Russian) [Google Scholar] [CrossRef]
- Yermolaev, O.P.; Mukharamova, S.S.; Maltsev, K.A.; Ivanov, M.A.; Ermolaeva, P.O.; Gayazov, A.I.; Mozzherin, V.V.; Kharchenko, S.V.; Marinina, O.A.; Lisetskii, F.N. Geographic Information System and Geoportal «River Basins of the European Russia». IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 012108. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Buryak, Z.A. Runoff of Water and Its Quality under the Combined Impact of Agricultural Activities and Urban Development in a Small River Basin. Water 2023, 15, 2443. [Google Scholar] [CrossRef]
- Nechetova, Y.V.; Narozhnyaya, A.G. Study of Gullies and Ravines Network within Belgorod Region Using GIS Technology. Land. Manag. Monit. Cadastre 2010, 96–100. (In Russian) [Google Scholar]
- Sablina, O.M.; Chendev, Y.G. Ravine Network Research Practice Using Multi-Temporal Plane Surveying. Nauch. Ved. Belgorod. Gos. Univ. Ser. Estestv. Nauk. 2018, 42, 507–515. [Google Scholar] [CrossRef]
- McKnight, T.L.; Hess, D. Climate Zones and Types. In Physical Geography: A Landscape Appreciation; Prentice Hal: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Lebedeva, M.G.; Krymskaya, O.V.; Lupo, A.R.; Chendev, Y.G.; Petin, A.N.; Solovyov, A.B. Trends in Summer Season Climate for Eastern Europe and Southern Russia in the Early 21st Century. Adv. Meteorol. 2015, 2016, 5035086. [Google Scholar] [CrossRef]
- Buryak, Z.A.; Krymskaya, O.V.; Krymskaya, A.A.; Terekhin, E.A. Spatiotemporal Variability of the Bioclimatic Potential in the Central Chernozem Region. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauki. 2024, 166, 126–144. [Google Scholar] [CrossRef]
- Bugaev, V.A.; Musievskii, A.L.; Tsaralunga, V.V. Oak Forests of the Forest-Steppe; Voronezhskaya gosudarstvennaya lesotekhnicheskaya akademiya: Voronezh, Russia, 2013. (In Russian) [Google Scholar]
- Solovichenko, V.D.; Uvarov, G.I. Soil-Geographical Zoning of the Territory of the Belgorod Oblast; Otchii krai: Belgorod, Russia, 2010. (In Russian) [Google Scholar]
- Khitrov, N.; Smirnova, M.; Lozbenev, N.; Levchenko, E.; Gribov, V.; Kozlov, D.; Rukhovich, D.; Kalinina, N.; Koroleva, P. Soil Cover Patterns in the Forest-Steppe and Steppe Zones of the East European Plain. Soil. Sci. Annu. 2019, 70, 198–210. [Google Scholar] [CrossRef]
- EarthExplorer. Available online: http://earthexplorer.usgs.gov (accessed on 15 May 2025).
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Riley, S.J.; De Gloria, S.D.; Elliot, R. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- All-Russian Research Institute of Hydrometeorological Information. Available online: http://meteo.ru/data/ (accessed on 23 April 2025).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Report No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Lisetsky, F.N. Soil-Formation Potential of Forest Stands Under Sands Afforestation in Forest-Steppe and Steppe Environment. Lesnoy Zhurnal–For. J. 2008, 4, 13–20. [Google Scholar]





| Geomorphometric Factors | Spearman’s Correlation Coefficient | Significance Level |
|---|---|---|
| Absolute height | 0.43 | 0.000 |
| Terrain slope | −0.26 | 0.000 |
| The cosine of slope exposure | 0.11 | 0.140 |
| Topographic Position Index (TPI) | −0.20 | 0.005 |
| Terrain Ruggedness Index (TRI) | −0.24 | 0.001 |
| Soil Type | Mean | Standard Deviation | Coefficient of Variation, % |
|---|---|---|---|
| Gray forest | 0.54 | 0.30 | 55 |
| Chernozem | 0.26 | 0.25 | 96 |
| No. | Model | R2 |
|---|---|---|
| 1 | F = 1.61 – 0.00063Tak + 0.0021H + 0.21ST | 0.54 |
| 2 | F = 0.49 − 0.12Tav + 0.0030H + 0.25ST | 0.53 |
| 3 | F = −0.7 + 0.28HTC + 0.0036H + 0.20ST | 0.48 |
| 4 | F = 4.31 − 0.17Tm + 0.0023H + 0.17ST | 0.51 |
| Model No. | Lilliefors (Kolmogorov–Smirnov) Statistic | Significance Level |
|---|---|---|
| 1 | 0.058 | 0.22 |
| 2 | 0.056 | 0.26 |
| 3 | 0.047 | 0.55 |
| 4 | 0.065 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terekhin, E.A.; Lisetskii, F.N. Assessing the Factors of Natural Afforestation on Postagrogenic Lands in the Forest-Steppe over the Last Decades. Resources 2025, 14, 168. https://doi.org/10.3390/resources14110168
Terekhin EA, Lisetskii FN. Assessing the Factors of Natural Afforestation on Postagrogenic Lands in the Forest-Steppe over the Last Decades. Resources. 2025; 14(11):168. https://doi.org/10.3390/resources14110168
Chicago/Turabian StyleTerekhin, Edgar A., and Fedor N. Lisetskii. 2025. "Assessing the Factors of Natural Afforestation on Postagrogenic Lands in the Forest-Steppe over the Last Decades" Resources 14, no. 11: 168. https://doi.org/10.3390/resources14110168
APA StyleTerekhin, E. A., & Lisetskii, F. N. (2025). Assessing the Factors of Natural Afforestation on Postagrogenic Lands in the Forest-Steppe over the Last Decades. Resources, 14(11), 168. https://doi.org/10.3390/resources14110168

