Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Plant and Soil Sampling
2.3. ICP-MS Analysis on Plant and Soil Samples
2.4. Estimating Fluctuating Asymmetry (FA)
2.5. Data Analyses
3. Results
3.1. Patterns of Soil Trace Elements and Air Quality among Study Sites
3.2. Patterns of Foliar Trace Elements among Study Sites and Relationships with Soil Contamination
3.3. Between-Site Patterns of Fluctuating Asymmetry and Relationships with HMs in Soil and Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorrentino, M.C.; Capozzi, F.; Wuyts, K.; Joosen, S.; Mubiana, V.K.; Giordano, S.; Samson, R.; Spagnuolo, V. Mobile biomonitoring of atmospheric pollution: A new perspective for the moss-bag approach. Plants 2021, 10, 2384. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. Declining urban and community tree cover in the United States. Urban For. Urban Green. 2018, 32, 32–55. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.; Pigna, M. Mobility and biovailability of Heavy Metals and metalloids in soil environments. J. Soil. Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Luo, X.; Yu, S.; Li, X. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Appl. Geochem. 2012, 27, 995–1004. [Google Scholar] [CrossRef]
- Barreca, S.; Orecchio, S.; Orecchio, S.; Abbate, I.; Pellerito, C. Macro and micro elements in traditional meals of Mediterranean diet: Determination, estimated intake by population, risk assessment and chemometric analysis. J. Food Comp. Anal. 2023, 123, 1–16. [Google Scholar] [CrossRef]
- Shields, H.J.; Traa, A.; Van Raamsdonk, M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Remon, E.; Bouchardon, J.L.; Le Guédard, M.; Bessoule, J.J.; Conord, C.; Faure, O. Are plants useful as accumulation indicators of metal bioavailability? Environ. Pollut. 2013, 175, 1–7. [Google Scholar] [CrossRef]
- Harmsen, J. Measuring Bioavailability: From a Scientific Approach to Standard Methods. J. Environ. Qual. 2007, 36, 1420–1428. [Google Scholar] [CrossRef]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Ugolini, F.; Tognetti, R.; Raschi, A.; Bacci, L. Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For. Urban Green. 2013, 12, 576–584. [Google Scholar] [CrossRef]
- Isinkaralar, K. The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor. Biomass Convers. Biorefinery 2022, 5, 6455–6464. [Google Scholar] [CrossRef]
- Levei, L.; Cadar, O.; Babalau-Fuss, V.; Kovacs, E.; Torok, A.I.; Levei, E.A.; Ozunu, A. Use of black poplar leaves for the biomonitoring of air pollution in an urban agglomeration. Plants 2021, 10, 548. [Google Scholar] [CrossRef]
- Chandra, R.; Kang, H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 2016, 12, 55–61. [Google Scholar] [CrossRef]
- He, J.; Ma, C.; Ma, Y.; Li, H.; Kang, J.; Liu, T.; Polle, A.; Peng, C.; Luo, Z.B. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 2013, 20, 163–174. [Google Scholar] [CrossRef]
- Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustoš, P.; Zupan, M.; Wenzel, W.W. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 2007, 148, 107–114. [Google Scholar] [CrossRef]
- Masson, P.; Dalix, T.; Bussière, S. Determination of major and trace elements in plant samples by inductively coupled plasma-mass spectrometry. Commun. Soil Sci. Plant Anal. 2010, 41, 231–243. [Google Scholar] [CrossRef]
- Yener, I.; Temel, H.; Tokul-Olmez, O.; Firat, M.; Oral, E.V.; Akdeniz, M.; Senturk, K.; Kaplaner, E.; Ozturk, M.; Ertaş, A. Trace element analysis by icp-ms and chemometric approach in some euphorbia species: Potential to become a biomonitor. Iran. J. Pharm. Res. 2019, 18, 1704–1724. [Google Scholar]
- Graham, J.H.; Raz, S.; Hel-Or, H.; Nevo, E. Fluctuating Asymmetry: Methods, theory, and applications. Symmetry 2010, 2, 466–540. [Google Scholar] [CrossRef]
- Abeli, T.; Zubani, L.; Bonomi, C.; Parolo, G.; Gargano, D. Is phenotypic canalization involved in the decline of the endemic Aquilegia thalictrifolia? Rethinking relationships between fluctuating asymmetry and species conservation status. Plant Species Biol. 2016, 31, 247–255. [Google Scholar] [CrossRef]
- Mendes, G.; Boaventura, M.G.; Cornelissen, T. Fluctuating Asymmetry as a Bioindicator of Environmental Stress Caused by Pollution in a Pioneer Plant Species. Environ. Entomol. 2018, 47, 1479–1484. [Google Scholar] [CrossRef]
- Mabrouk, L.; Mabrouk, W.; Mansour, H.B. High leaf fluctuating asymmetry in two native plants growing in heavy metal-contaminated soil: The case of Metlaoui phosphate mining basin (Gafsa, Tunisia). Environ. Monit. Assess. 2020, 192, 406. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Cannata, C.B.; Apollaro, C.; Dominici, R.; De Rosa, R. Analysis of groundwater pollution in the Sant’Eufemia plain (Calabria-South Italy). Ital. J. Eng. Geol. Environ. 2016, 16, 5–15. [Google Scholar]
- Calabrese, S.; D’alessandro, W.; Bellomo, S.; Brusca, L.; Martin, R.S.; Saiano, F.; Parello, F. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1–Major and trace element composition. Chemosphere 2015, 119, 1447–1455. [Google Scholar] [CrossRef]
- Palmer, A.R. Fluctuating asymmetry analyses: A primer. In Developmental Instability: Its Origins and Evolutionary Implications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 335–364. [Google Scholar]
- Palmer, A.R.; Strobeck, C. Fluctuating Asymmetry: Measurement, Analysis, Patterns. Ann. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Graham, J.H. Fluctuating asymmetry and developmental instability, a guide to best practice. Symmetry 2021, 13, 9. [Google Scholar] [CrossRef]
- Di Vaio, P.; Magli, E.; Caliendo, G.; Corvino, A.; Fiorino, F.; Frencetese, F.; Saccone, I.; Santagada, V.; Severino, B.; Onorati, G.; et al. Heavy Metals Size Distribution in PM10 and Environmental-Sanitary Risk Analysis in Acerra (Italy). Atmosphere 2018, 9, 58. [Google Scholar] [CrossRef]
- Markert Bernd, A. Establishing of “reference plant” for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut. 1992, 64, 533–538. [Google Scholar] [CrossRef]
- Markert Bernd, A.; Breure, A.M.; Zechmeister, H. Bioindicators and biomonitors: Chapter 1 Definitions, strategies and principles for bioindication/biomonitoring of the environment. Trace Met. Other Contam. Environ. 2003, 6, 3–39. [Google Scholar]
- Luoma, S.N.; Bryan, G.W. Trace metal bioavailability: Modeling chemical and biological interactions of sediment bound zinc. In Chemical Modeling—Speciation, Sorption, Solubility, and Kinetics in Aqueous Systems; Jenne, E.A., Ed.; American Chemical Society: Washington, DC, USA, 1979; pp. 577–611. [Google Scholar]
- Rong, G.; Chu, Y.; Liu, S.; Kataweteetham, L.; Zhu, J. Cd uptake in upright/leaning trees. BioResources 2021, 16, 3422–3436. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Mantese, S.; Yayintas, Ö.T.; Bas, B.; Irkin, L.C.; Yilmaz, S. Heavy Metal and Composition of Soil, Atmospheric Deposition, and Moss with Regard to Integrated Pollution Assessment approach. Environ. Manag. 2021, 67, 833–851. [Google Scholar] [CrossRef]
- Alahabadi, A.; Ehrampoush, M.H.; Miri, M.; Aval, H.E.; Yousefzadeh, S.; Ghaffari, H.R.; Ahmadi, E.; Talebi, P.; Fathabadi, Z.A.; Babai, F.; et al. A comparative study on capability of different tree species iin accumulating heavy metals from soil and ambient air. Chemosphere 2017, 172, 459–467. [Google Scholar] [CrossRef]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Curr. Pollut. Rep. 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC: Boca Raton, FL, USA, 2010; pp. 143–149. [Google Scholar]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Lidon, F.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E.A.; Nikolic, M. Interactions of Silicon with Essential and Beneficial Elements in Plants. Front. Plant Sci. 2021, 12, 697592. [Google Scholar] [CrossRef]
- Hajar, E.W.I.; Bin Sulaiman, A.Z.; Sakinah, A.M.M. Assessment of Heavy Metals Tolerance in Leaves, Stems and Flowers of Stevia Rebaudiana Plant. Procedia Environ. Sci. 2014, 20, 386–393. [Google Scholar] [CrossRef]
- Seregin, I.V.; Ivanov, V.B. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 2001, 48, 523–544. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Orecchio, S. Voltammetry for Monitoring Platinum, Palladium and Rhodium in Environmental and Food Matrices. Chem. Sel. 2023, 8, 1–13. [Google Scholar] [CrossRef]
Sites | Acronym | Coordinates | Altitude (m. a.s.l.) | Sampled Individuals | Leaf Sample per Individuals | Individual Leaf Sample for FA Estimations | Individual Leaf Sample for ICP-MS | No. Soil Samples for ICP-MS |
---|---|---|---|---|---|---|---|---|
1 | NIC | 38°57′52.2″ N 16°17′44.0″ E | 172 | 5 | 40 | 10 | 5 | 2 |
2 | LAM | 38°55′11.5″ N 16°14′04.4″ E | 18 | 5 | 40 | 10 | 5 | 2 |
3 | REN | 39°21′03.8″ N 16°14′16.9″ E | 203 | 5 | 40 | 10 | 5 | 2 |
TRACE ELEMENT | SOIL | LEAVES | ||||
---|---|---|---|---|---|---|
NIC | LAM | REN | NIC | LAM | REN | |
Li | 31.31 | 26.67 | 14.25 | 0.11 | 0.14 | 0.11 |
Be | 2.51 | 0.72 | 0.64 | 0.03 | 0.00 | 0.00 |
B | 16.92 | 16.47 | 10.45 | 91.04 | 36.70 | 50.32 |
Na | 487.62 | 496.16 | 786.79 | 406.17 | 472.70 | 9.08 |
Mg | 13,595.36 | 9410.58 | 11,486.60 | 6230.54 | 3452.88 | 3756.93 |
Al | 64,542.31 | 28,453.70 | 29,699.13 | 153.46 | 205.72 | 78.56 |
Si | 1294.83 | 1435.64 | 1486.37 | 3930.42 | 5939.85 | 834.98 |
S | 376.39 | 216.96 | 280.54 | 2347.50 | 1568.73 | 2103.70 |
K | 7457.15 | 6038.80 | 5542.54 | 19,870.50 | 17,552.39 | 18,793.11 |
Ca | 33,352.84 | 8212.64 | 22,914.60 | 27,676.87 | 14,894.28 | 15,717.31 |
Ti | 1396.60 | 59.03 | 895.47 | 4.45 | 6.02 | 2.00 |
V | 97.79 | 33.82 | 59.03 | 0.17 | 0.18 | 0.15 |
Cr | 45.27 | 37.19 | 78.75 | 0.25 | 0.25 | 0.23 |
Mn | 1871.21 | 767.95 | 910.08 | 156.42 | 59.66 | 72.48 |
Fe | 39,083.52 | 33,172.29 | 25,419.80 | 150.86 | 181.01 | 110.04 |
Co | 16.93 | 15.21 | 14.76 | 0.89 | 1.06 | 0.70 |
Ni | 37.08 | 46.34 | 36.10 | 0.57 | 1.29 | 1.19 |
Cu | 79.24 | 37.00 | 20.99 | 8.31 | 8.36 | 7.31 |
Zn | 111.52 | 87.61 | 84.14 | 173.28 | 157.24 | 101.54 |
As | 20.14 | 24.23 | 6.95 | 0.21 | 0.20 | 0.09 |
Se | 7.87 | 5.97 | 5.12 | 1.26 | 0.81 | 0.15 |
Br | 12.48 | 6.39 | 6.67 | 8.87 | 5.95 | 2.90 |
Rb | 94.49 | 31.04 | 35.91 | 22.44 | 5.10 | 13.27 |
Sr | 51.95 | 35.93 | 86.73 | 213.27 | 40.47 | 87.15 |
Mo | 1.27 | 0.38 | 0.38 | 0.43 | 0.14 | 0.27 |
Cd | 0.23 | 0.12 | 0.15 | 0.37 | 0.66 | 0.30 |
Sn | 0.66 | 0.03 | 0.26 | 0.15 | 0.04 | 0.07 |
Sb | 0.03 | 0.05 | 0.02 | 0.04 | 0.12 | 0.02 |
Te | 0.16 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 |
Cs | 7.06 | 1.67 | 1.53 | 0.03 | 0.01 | 0.03 |
Ba | 319.75 | 97.77 | 147.95 | 38.96 | 3.40 | 14.46 |
Tl | 1.98 | 0.21 | 0.25 | 0.01 | 0.00 | 0.00 |
Pb | 33.38 | 14.52 | 12.47 | 0.23 | 0.23 | 0.20 |
Bi | 0.71 | 0.18 | 0.08 | 0.02 | 0.00 | 0.00 |
U | 3.02 | 0.22 | 0.73 | 0.01 | 0.01 | 0.01 |
Heavy Metal | Site | Present Study (ppm) | RP (ppm) |
---|---|---|---|
As | NIC | 0.2 | 0.1 |
LAM | 0.2 | ||
REN | 0.1 | ||
Cd | NIC | 0.4 | 0.05 |
LAM | 0.7 | ||
REN | 0.3 | ||
Co | NIC | 0.9 | 0.2 |
LAM | 1.1 | ||
REN | 0.7 | ||
Ni | LAM | 1.3 | 1.5 |
NIC | 0.6 | ||
REN | 1.2 | ||
Pb | LAM | 0.2 | 1 |
NIC | 0.2 | ||
REN | 0.2 | ||
Zn | NIC | 173.3 | 50 |
LAM | 157.2 | ||
REN | 101.5 |
TRACE ELEMENT | FA1 | FA2 | TRACE ELEMENT | FA1 | FA2 | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
Li [soil] | 0.89 | 0.019 | 0.86 | 0.029 | Li [leaf] | −0.05 | 0.867 | −0.29 | 0.298 |
Be [soil] | 0.91 | 0.012 | 0.94 | 0.006 | Be [leaf] | 0.58 | 0.022 | 0.67 | 0.006 |
B [soil] | 0.69 | 0.131 | 0.65 | 0.161 | B [leaf] | 0.42 | 0.115 | 0.61 | 0.016 |
Na [soil] | −0.53 | 0.277 | −0.50 | 0.310 | Na [leaf] | 0.46 | 0.085 | 0.60 | 0.019 |
Mg [soil] | 0.37 | 0.476 | 0.40 | 0.427 | Mg [leaf] | 0.54 | 0.038 | 0.62 | 0.015 |
Al [soil] | 0.87 | 0.023 | 0.90 | 0.013 | Al [leaf] | 0.17 | 0.546 | 0.22 | 0.435 |
Si [soil] | −0.75 | 0.088 | −0.75 | 0.083 | Si [leaf] | 0.29 | 0.291 | 0.29 | 0.300 |
S [soil] | 0.58 | 0.223 | 0.63 | 0.178 | S [leaf] | 0.40 | 0.139 | 0.38 | 0.161 |
K [soil] | 0.61 | 0.194 | 0.62 | 0.189 | K [leaf] | 0.76 | 0.001 | 0.49 | 0.065 |
Ca [soil] | 0.36 | 0.478 | 0.41 | 0.417 | Ca [leaf] | 0.39 | 0.154 | 0.62 | 0.013 |
Ti [soil] | 0.46 | 0.363 | 0.52 | 0.286 | Ti [leaf] | 0.36 | 0.182 | 0.38 | 0.166 |
V [soil] | 0.67 | 0.149 | 0.72 | 0.107 | V [leaf] | −0.12 | 0.658 | −0.17 | 0.557 |
Cr [soil] | −0.68 | 0.140 | −0.62 | 0.190 | Cr [leaf] | −0.07 | 0.796 | 0.05 | 0.864 |
Mn [soil] | 0.84 | 0.035 | 0.88 | 0.021 | Mn [leaf] | 0.42 | 0.120 | 0.60 | 0.018 |
Fe [soil] | 0.87 | 0.024 | 0.86 | 0.030 | Fe [leaf] | 0.39 | 0.152 | 0.31 | 0.257 |
Co [soil] | 0.41 | 0.414 | 0.42 | 0.406 | Co [leaf] | 0.17 | 0.551 | 0.17 | 0.546 |
Ni [soil] | −0.01 | 0.982 | −0.07 | 0.889 | Ni [leaf] | −0.31 | 0.265 | −0.42 | 0.123 |
Cu [soil] | 0.92 | 0.009 | 0.93 | 0.007 | Cu [leaf] | 0.56 | 0.029 | 0.28 | 0.305 |
Zn [soil] | 0.85 | 0.034 | 0.86 | 0.027 | Zn [leaf] | 0.58 | 0.022 | 0.69 | 0.004 |
As [soil] | 0.60 | 0.205 | 0.55 | 0.262 | As [leaf] | 0.31 | 0.267 | 0.45 | 0.091 |
Se [soil] | 0.75 | 0.085 | 0.76 | 0.083 | Se [leaf] | 0.64 | 0.010 | 0.79 | 0.001 |
Br [soil] | 0.77 | 0.076 | 0.79 | 0.059 | Br [leaf] | 0.46 | 0.082 | 0.55 | 0.032 |
Rb [soil] | 0.86 | 0.028 | 0.89 | 0.016 | Rb [leaf] | 0.47 | 0.075 | 0.55 | 0.032 |
Sr [soil] | −0.58 | 0.231 | −0.51 | 0.298 | Sr [leaf] | 0.32 | 0.238 | 0.54 | 0.037 |
Mo [soil] | 0.89 | 0.016 | 0.92 | 0.009 | Mo [leaf] | 0.32 | 0.248 | 0.39 | 0.153 |
Cd [soil] | 0.69 | 0.131 | 0.74 | 0.096 | Cd [leaf] | 0.01 | 0.974 | 0.16 | 0.569 |
Sn [soil] | 0.70 | 0.124 | 0.75 | 0.086 | Sn [leaf] | 0.36 | 0.194 | 0.48 | 0.067 |
Sb [soil] | 0.19 | 0.712 | 0.13 | 0.810 | Sb [leaf] | −0.30 | 0.276 | −0.24 | 0.394 |
Te [soil] | 0.95 | 0.003 | 0.97 | 0.001 | Te [leaf] | 0.19 | 0.499 | 0.00 | 1.000 |
Cs [soil] | 0.91 | 0.012 | 0.94 | 0.006 | Cs [leaf] | 0.11 | 0.698 | 0.04 | 0.883 |
Ba [soil] | 0.79 | 0.059 | 0.84 | 0.037 | Ba [leaf] | 0.34 | 0.220 | 0.54 | 0.039 |
Tl [soil] | 0.90 | 0.014 | 0.93 | 0.007 | Tl [leaf] | 0.29 | 0.293 | 0.47 | 0.074 |
Pb [soil] | 0.89 | 0.018 | 0.91 | 0.012 | Pb [leaf] | −0.01 | 0.983 | −0.09 | 0.740 |
Bi [soil] | 0.95 | 0.003 | 0.97 | 0.001 | Bi [leaf] | 0.33 | 0.227 | 0.49 | 0.065 |
U [soil] | 0.83 | 0.043 | 0.87 | 0.025 | U [leaf] | −0.25 | 0.367 | −0.17 | 0.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perri, G.; Gargano, D.; Randazzo, L.; Calabrese, S.; Brusca, L.; Fuoco, I.; Apollaro, C.; La Russa, M.F. Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts. Resources 2024, 13, 85. https://doi.org/10.3390/resources13060085
Perri G, Gargano D, Randazzo L, Calabrese S, Brusca L, Fuoco I, Apollaro C, La Russa MF. Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts. Resources. 2024; 13(6):85. https://doi.org/10.3390/resources13060085
Chicago/Turabian StylePerri, Gilda, Domenico Gargano, Luciana Randazzo, Sergio Calabrese, Lorenzo Brusca, Ilaria Fuoco, Carmine Apollaro, and Mauro Francesco La Russa. 2024. "Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts" Resources 13, no. 6: 85. https://doi.org/10.3390/resources13060085
APA StylePerri, G., Gargano, D., Randazzo, L., Calabrese, S., Brusca, L., Fuoco, I., Apollaro, C., & La Russa, M. F. (2024). Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts. Resources, 13(6), 85. https://doi.org/10.3390/resources13060085