Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Plant Material
2.3. Antioxidant Capacity and Total Phenolic Content
2.4. Analysis of Individual Phenolic Compounds by Reverse Phase-High-Performance Liquid Chromatography (RP-HPLC)
2.5. Data Analyses
3. Results
3.1. Antioxidant Capacity and Total Phenolic Content
3.2. Analysis of Individual Phenolic Compounds by Reverse Phase-High-Performance Liquid Chromatography (RP-HPLC)
3.3. Correlations and Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simionca Mărcășan, L.I.; Pop, R.; Somsai, P.A.; Olteanu, I.; Popa, S.; Sestraş, A.F.; Militaru, M.; Mihai, B.; Sestraş, R.E. Comparative Evaluation of Pyrus Species to Identify Possible Resources of Interest in Pear Breeding. Agronomy 2023, 13, 1264. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2016; pp. 573–608. [Google Scholar]
- Cedro, A.; Antkowiak, W. Dendroclimatological analysis of wild pear Pyrus pyraster (L.) Burgsd. from Biedrusko Military area (West Poland)—Preliminary study. Geochronometria 2016, 43, 18–23. [Google Scholar] [CrossRef]
- Özderin, S. Determination of some chemical properties of wild pear (Pyrus spinosa Forsk.). BioResources 2022, 17, 1659. [Google Scholar] [CrossRef]
- Alexandri, S.; Tsaktsira, M.; Hatzilazarou, S.; Kostas, S.; Nianiou-Obeidat, I.; Economou, A.; Scaltsoyiannes, A.; Tsoulpha, P. Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants. Sustainability 2023, 15, 4511. [Google Scholar] [CrossRef]
- Arrigoni, P.V. Flora dell’Isola di Sardegna; Carlo Delfino Editore: Sassari, Italy, 2006; Volume 1, pp. 55–58. [Google Scholar]
- Wolko, Ł.; Bocianowski, J.; Antkowiak, W.; Słomski, R. Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland. Open Life Sci. 2014, 10, 19–29. [Google Scholar] [CrossRef]
- Reim, S.; Lochschmidt, F.; Proft, A.; Wolf, H.; Wolf, H. Species delimitation, genetic diversity and structure of the European indigenous wild pear (Pyrus pyraster) in Saxony, Germany. Genet. Resour. Crop Evol. 2017, 64, 1075–1085. [Google Scholar] [CrossRef]
- Vidaković, A.; Šatović, Z.; Tumpa, K.; Idžojtić, M.; Liber, Z.; Pintar, V.; Radunić, M.; Runjić, T.N.; Runjić, M.; Rošin, J.; et al. Phenotypic variation in European wild pear (Pyrus pyraster (L.) Burgsd.) populations in the North-Western Part of the Balkan Peninsula. Plants 2022, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Vidaković, A.; Poljak, I. Fruit morphological variability and chemical composition in European wild pear (Pyrus pyraster (L.) Burgsd.) natural populations. Genet. Resour. Crop Evol. 2024, 2024, 1–16. [Google Scholar]
- Puddu, G.; Falcucci, A.; Maiorano, L. Forest changes over a century in Sardinia: Implications for conservation in a Mediterranean hotspot. Agrofor. Syst. 2012, 85, 319–330. [Google Scholar] [CrossRef]
- Sau, S.; Pastore, C.; D’hallewin, G.; Dondini, L.; Bacchetta, G. Characterisation of microsatellite loci in Sardinian pears (Pyrus communis L. and P. spinosa Forssk.). Sci. Hortic. 2020, 270, 109443. [Google Scholar] [CrossRef]
- Chessa, I.; Nieddu, G. Analysis of diversity in the fruit tree genetic resources from a Mediterranean island. Genet. Resour. Crop Evol. 2005, 52, 267–276. [Google Scholar] [CrossRef]
- Atzei, A.D. Le Piante nella Tradizione Popolare della Sardegna: Documentazione Sugli Usi Alimentari, Aromatizzanti, Profumieri, Artigianali, Cosmetici, Medicinali, Veterinari, Magici, Ornamentali, Rituali, Religiosi, Tintori, Antiparassitari e Vari, delle Piante; Carlo Delfino Editore: Sassari, Italy, 2003; pp. 386–387. [Google Scholar]
- Versini, G.; Franco, M.A.; Moser, S.; Manca, G. Characterisation of pear distillates from wild and cultivated varieties in Sardinia. Int. J. Food Sci. Technol. 2012, 47, 2519–2531. [Google Scholar] [CrossRef]
- Piluzza, G.; Campesi, G.; D’hallewin, G.; Molinu, M.G.; Re, G.A.; Sanna, F.; Sulas, L. Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules 2023, 28, 3559. [Google Scholar] [CrossRef] [PubMed]
- Sulas, L.; Re, G.A.; D’hallewin, G. Agroforestry & Transumance in Sardinia. In World Agroforestry in Practice Platform; Association Française d‘Agroforesterie: Auch, France, 2019; Available online: https://www.agroforesterie.fr/World-Agroforestry-In-Practice.php (accessed on 1 February 2024).
- Loru, L.; D’hallewin, G.; Satta, A.; Sulas, L.; Molinu, M.G.; Piluzza, G.; Pusceddu, M.; Pantaleoni, R.A. FOR[m]AGE, BEES & FRUITS: Bee-fruit synergies with forage farming systems in rainfed Mediterranean environment. In Proceedings of the Agroforestry for the Transition towards Sustainability and Bioeconomy, P3.3-5_216, 5th European Agroforestry Conference, Nuoro, Italy, 17–19 May 2021. [Google Scholar]
- Bueno, R.S.; Badalamenti, E.; Gristina, L.; Novara, A.; La Mantia, T. The Role of Almond-Leaved Pear Pyrus spinosa Forssk. in Mediterranean Pasturelands Carbon Storage and Woodlands Restoration. Land 2023, 12, 2135. [Google Scholar] [CrossRef]
- Saadatian, M.; Mohammad, R.H.; Jumaah, A.A.; Oagaz, J.A. Evaluation of Nutritional Value, Fatty Acids and Polyphenols Profiles of Pyrus amygdaliformis L. Grown in North-East Kurdistan Regional Government, Iraq. J. Oleo Sci. 2022, 71, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Stoenescu, A.M.; Trandafir, I.; Cosmulescu, S. Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Sulas, L.; Petretto, G.L.; Pintore, G.; Piluzza, G. Bioactive compounds and antioxidants from a Mediterranean garland harvested at two stages of maturity. Nat. Prod. Res. 2017, 31, 2941–2944. [Google Scholar] [CrossRef] [PubMed]
- Re, G.A.; Piluzza, G.; Sulas, L.; Franca, A.; Porqueddu, C.; Sanna, F.; Bullitta, S. Condensed tannin accumulation and nitrogen fixation potential of Onobrychis viciifolia Scop. grown in a Mediterranean environment. J. Sci. Food Agric. 2014, 94, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Piluzza, G.; Sulas, L.; Bullitta, S. Dry matter yield, feeding value, and antioxidant activity in Mediterranean chicory (Cichorium intybus L.) germplasm. Turk. J. Agric. For. 2014, 38, 506–514. [Google Scholar]
- Re, G.A.; Piluzza, G.; Sanna, F.; Molinu, M.G.; Sulas, L. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system. J. Sci. Food Agric. 2019, 99, 191–198. [Google Scholar] [CrossRef]
- StatPoint Technologies Inc. Statgraphics Centurion XVI, User Manual; StatPoint Technologies Inc.: Warrenton, VA, USA, 2009. [Google Scholar]
- Øyvind, H.; Harper, D.A. Past: Paleontological statistics software package for educaton and data anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- The Jamovi Project. Jamovi, Version 2.3. 2022. Computer Software. Available online: https://www.jamovi.org (accessed on 1 February 2024).
- Kundaković, T.; Ciric, A.; Stanojkovic, T.; Sokovic, M.; Kovacevic, N. Cytotoxicity and antimicrobial activity of Pyrus pyraster Burgsd. and Pyrus spinosa Forssk. (Rosaceae). Afr. J. Microbiol. Res. 2014, 8, 511–518. [Google Scholar]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidant 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Montanari, S.; Postman, J.; Bassil, N.V.; Neale, D.B. Reconstruction of the largest pedigree network for pear cultivars and evaluation of the genetic diversity of the USDA-ARS national Pyrus collection. G3 Genes Genomes Genet. 2020, 10, 3285–3297. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, T.; Zhou, B.; Gao, W.; Cao, J.; Huang, L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014, 152, 531–538. [Google Scholar] [CrossRef]
- Tzanakis, E.; Kalogeropoulos, T.; Tzimas, S.; Chatzilazarou, A.; Katsoyannos, E. Phenols and antioxidant activity of apple, quince, pomegranate, bitter orange and almond-leaved pear methanolic extracts. J. Sci. Technol. 2006, 1, 16–28. [Google Scholar]
- Ušjak, L.J.; Milutinović, V.M.; Đorđić Crnogorac, M.J.; Stanojković, T.P.; Niketić, M.S.; Kukić-Marković, J.M.; Petrović, S.D. Barks of Three Wild Pyrus Taxa: Phenolic Constituents, Antioxidant Activity, and in Vitro and in Silico Investigations of α-Amylase and α-Glucosidase Inhibition. Chem. Biodivers. 2021, 18, e2100446. [Google Scholar] [CrossRef]
- Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics 2021, 13, 999. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.E.; Cho, J.Y.; Lee, Y.G.; Jeong, H.Y.; Lee, H.J.; Moon, J.H. Isolation of five proanthocyanidins from pear (Pyrus pyrifolia Nakai) fruit peels. Food Sci. Biotechnol. 2017, 26, 1209–1215. [Google Scholar] [CrossRef]
- He, W.; Laaksonen, O.; Tian, Y.; Haikonen, T.; Yang, B. Chemical composition of juices made from cultivars and breeding selections of European pear (Pyrus communis L.). J. Agric. Food Chem. 2022, 70, 5137–5150. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.; Renard, C.M.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef]
- Brahem, M.; Eder, S.; Renard, C.M.; Loonis, M.; Le Bourvellec, C. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT-Food Sci. Technol. 2017, 85, 380–384. [Google Scholar] [CrossRef]
- Vidaković, A.; Liber, Z.; Šatović, Z.; Idžojtić, M.; Volenec, I.; Zegnal, I.; Pintar, V.; Radunić, M.; Poljak, I. Phenotypic diversity of almond-leaved pear (Pyrus spinosa Forssk.) along Eastern Adriatic Coast. Forests 2021, 12, 1630. [Google Scholar] [CrossRef]
- Mitic, V.; Ilic, M.; Dimitrijevic, M.; Cvetkovic, J.; Ciric, S.; Jovanovic, V.S. Chemometric characterization of peach, nectarine and plum cultivars according to fruit phenolic content and antioxidant activity. Fruits 2016, 71, 57–66. [Google Scholar] [CrossRef]
- Guimarães, A.C.G.; de Souza Gomes, M.; Zacaroni Lima, L.M.; Sales, P.F.; da Cunha, M.C.; Rodrigues, L.J.; de Barros, H.; Pires, C.R.F.; dos Santos, V.F.; Lima, N.; et al. Application of Chemometric Techniques in The Evaluation of Bioactive Compounds and Antioxidant Activity of Fruit From Brazilian Cerrado. J. Food Meas. Charact. 2023, 17, 2095–2106. [Google Scholar] [CrossRef]
- Zarei, A.; Erfani-Moghadam, J.; Jalilian, H. Assessment of variability within and among four Pyrus species using multivariate analysis. Flora 2019, 250, 27–36. [Google Scholar] [CrossRef]
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Flesh | |||||||
P. spinosa | 21.1 ± 1.0 a | 21.4 ± 1.4 a | 88.2 ± 2.0 a | 66.3 ± 1.1 a | 21.9 ± 1.3 a | 20.5 ± 0.7 b | 34.4 ± 0.8 a |
P. pyraster | 22.0 ± 0.6 a | 23.0 ± 0.2 a | 88.7 ± 3.1 a | 67.1 ± 0.9 a | 21.6 ± 3.7 a | 22.5 ± 0.1 a | 28.1 ± 1.5 b |
Peel | |||||||
P. spinosa | 19.6 ± 0.9 a | 24.7 ± 0.7 a | 88.7 ± 2.5 a | 44.9 ± 2.7 a | 43.9 ± 0.2 a | 22.5 ± 3.5 a | 32.9 ± 0.8 a |
P. pyraster | 18.9 ± 0.5 a | 18.9 ± 1.6 b | 81.0 ± 2.8 b | 48.1 ± 0.7 a | 32.9 ± 2.2 b | 17.3 ± 0.2 a | 14.2 ± 0.8 b |
Core | |||||||
P. spinosa | 25.8 ± 1.2 a | 25.3 ± 1.2 a | 107.2 ± 2.3 a | 65.4 ± 1.7 a | 41.8 ± 1.2 b | 25.8 ± 3.4 a | 29.1 ± 1.2 a |
P. pyraster | 15.6 ± 1.1 b | 11.8 ± 0.5 b | 63.7 ± 1.1 b | 14.3 ± 0.9 b | 49.4 ± 0.8 a | 13.5 ± 0.2 b | 21.4 ± 0.4 b |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 2.63 ± 0.01 | 0.85 ± 0.07 | * |
Gallic acid | 6.50 | 280 | 0.01 ± 0.00 | 0.01 ± 0.00 | ns |
Chlorogenic acid | 10.69 | 330 | 1.82 ± 0.08 | 1.94 ± 0.18 | ns |
Catechin | 11.40 | 280 | ≤LOQ | 0.03 ± 0.00 | |
Epicatechin | 13.06 | 280 | 0.07 ± 0.00 | 0.11 ± 0.01 | * |
Quercetin 3-galattoside | 20.90 | 350 | 0.05 ± 0.00 | ND | |
Quercetin 3- glucoside | 21.40 | 350 | 0.04 ± 0.00 | 0.13 ± 0.01 | * |
Di-O-caffeolylquinic acid | 23.50 | 330 | 0.08 ± 0.00 | 0.13 ± 0.01 | * |
Isorhamnetin derivative | 23.97 | 350 | ND | 0.05 ± 0.00 | |
Flavanol | 31.90 | 280 | 17.13 ± 0.67 | 8.90 ± 0.67 | * |
Flavanol | 39.00 | 280 | 0.47 ± 0.01 | ND | |
Sum | 22.30 | 12.15 |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 4.58 ± 0.27 | 2.96 ± 0.10 | * |
Gallic acid | 6.50 | 280 | 0.04 ± 0.00 | 0.03 ± 0.00 | * |
Chlorogenic acid | 10.69 | 330 | 3.53 ± 0.05 | 1.94 ± 0.10 | * |
Catechin | 11.40 | 280 | ND | 0.05 ± 0.00 | |
Epicatechin | 13.06 | 280 | 0.27 ± 0.03 | 0.12 ± 0.00 | * |
Flavonol | 18.60 | 350 | 0.41 ± 0.04 | 0.21 ± 0.01 | * |
Rutin | 20.40 | 350 | 0.19 ± 0.03 | ND | |
Quercetin 3-galattoside | 20.90 | 350 | 1.97 ± 0.07 | ND | |
Quercetin 3 glucoside | 21.40 | 350 | 0.95 ± 0.23 | 1.24 ± 0.14 | ns |
Isorhamnetin 3-rutinoside | 23.09 | 350 | 0.62 ± 0.06 | 0.54 ± 0.02 | ns |
Isorhamnetin derivative | 23.97 | 350 | 0.55 ± 0.04 | 1.08 ± 0.07 | * |
Isorhamnetin derivative | 24.40 | 350 | 0.46 ± 0.06 | 1.15 ± 0.03 | * |
Flavanol | 31.90 | 280 | 14.01 ± 1.40 | 6.10 ± 0.40 | * |
Flavanol | 39.00 | 280 | 0.50 ± 0.01 | ND | |
Sum | 28.08 | 15.42 |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 9.04 ± 0.09 | 2.91 ± 0.11 | * |
Gallic acid | 6.50 | 280 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Chlorogenic acid | 10.69 | 330 | 2.80 ± 0.03 | 2.41 ± 0.04 | * |
Catechin | 11.40 | 280 | 0.08 ± 0.00 | 0.20 ± 0.01 | * |
Epicatechin | 13.06 | 280 | 0.25 ± 0.01 | 0.27 ± 0.01 | * |
Rutin | 20.40 | 350 | ≤LOQ | ND | |
Quercetin 3-galattoside | 20.90 | 350 | 0.03 ± 0.00 | 0.04 ± 0.00 | * |
Quercetin 3-glucoside | 21.40 | 350 | 0.02 ± 0.00 | 0.03 ± 0.00 | * |
Isorhamnetin 3-rutinoside | 23.09 | 350 | 0.12 ± 0.00 | 0.26 ± 0.01 | * |
Di-O-caffeolylquinic acid | 23.50 | 330 | 0.08 ± 0.01 | 0.18 ± 0.01 | * |
Isorhamnetin derivative | 23.97 | 350 | ND | 0.06 ± 0.01 | |
Isorhamnetin derivative | 24.40 | 350 | ND | 0.06 ± 0.01 | |
Flavanol | 31.90 | 280 | 15.59 ± 0.33 | 4.37 ± 0.16 | * |
Flavanol | 39.00 | 280 | 0.33 ± 0.01 | 0.32 ± 0.03 | ns |
Sum | 28.36 | 11.13 |
P. pyraster | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ABTS | — | |||||||||||||||||||
2 | DPPH | 0.961 *** | — | ||||||||||||||||||
3 | TotP | 0.952 *** | 0.977 *** | — | |||||||||||||||||
4 | NTP | 0.964 *** | 0.987 *** | 0.980 *** | — | ||||||||||||||||
5 | TP | −0.942 *** | −0.962 *** | −0.928 *** | −0.983 *** | — | |||||||||||||||
6 | TotF | 0.967 *** | 0.953 *** | 0.936 *** | 0.967 *** | −0.962 *** | — | ||||||||||||||
7 | CT | ns | ns | ns | ns | ns | ns | — | |||||||||||||
8 | Arbutin | −0.810 ** | −0.758 * | −0.709 * | −0.759 * | 0.780 * | −0.896 ** | −0.860 ** | — | ||||||||||||
9 | Gallic acid | ns | ns | ns | ns | ns | ns | −0.906 *** | 0.805 ** | — | |||||||||||
10 | Chlorogenic acid | −0.742 * | −0.819 ** | −0.794 * | −0.860 ** | 0.892 ** | −0.746 * | ns | ns | ns | — | ||||||||||
11 | Catechin | −0.886 ** | −0.944 *** | −0.960 *** | −0.967 *** | 0.940 *** | −0.876 ** | ns | ns | ns | 0.918 *** | — | |||||||||
12 | Epicatechin | −0.869 ** | −0.933 *** | −0.948 *** | −0.952 *** | 0.922 *** | −0.844 ** | ns | ns | ns | 0.926 *** | 0.996 *** | — | ||||||||
13 | Flavonol | ns | ns | ns | ns | ns | ns | −0.869 ** | ns | 0.812 ** | ns | ns | ns | — | |||||||
14 | Quercetin 3-galattoside | −0.853 ** | −0.916 *** | −0.937 *** | −0.933 *** | 0.896 ** | −0.815 ** | ns | ns | ns | 0.910 *** | 0.987 *** | 0.995 *** | ns | — | ||||||
15 | Quercetin 3-glucoside | ns | ns | ns | ns | ns | ns | −0.818 ** | ns | 0.794 * | ns | ns | ns | 0.988 *** | ns | — | |||||
16 | Isorhamnetin 3-rutinoside | ns | ns | ns | ns | ns | ns | −0.991 *** | 0.859 ** | 0.921 *** | ns | ns | ns | 0.881 ** | ns | 0.835 ** | — | ||||
17 | Di-O-caffeolylquinic acid | ns | ns | ns | ns | ns | ns | 0.717 * | ns | −0.669 * | ns | ns | ns | −0.964 *** | 0.699 * | −0.973 *** | −0.732 * | — | |||
18 | Isorhamnetin, derivat_23.97 | ns | ns | ns | ns | ns | ns | −0.873 ** | ns | 0.800 ** | ns | ns | ns | 0.999 *** | ns | 0.980 *** | 0.884 ** | −0.960 *** | — | ||
19 | Isorhamnetin, derivat_24.40 | ns | ns | ns | ns | ns | ns | −0.889 ** | ns | 0.831 ** | ns | ns | ns | 0.999 *** | ns | 0.984 *** | 0.901 *** | −0.952 *** | 0.998 *** | — | |
20 | Flavanol_31.90 | 0.943 *** | 0.935 *** | 0.932 *** | 0.934 *** | −0.904 *** | 0.979 *** | ns | −0.898 ** | ns | ns | −0.837 ** | −0.800 ** | ns | −0.770 * | ns | ns | ns | ns | ns | — |
21 | Flavanol_39.00 | −0.829 ** | −0.907 *** | −0.933 *** | −0.929 *** | 0.892 ** | −0.811 ** | ns | ns | ns | 0.919 *** | 0.992 *** | 0.995 *** | ns | 0.990 *** | ns | ns | 0.696 * | ns | ns | −0.774 * |
P. spinosa | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ABTS | — | ||||||||||||||||||||
2 | DPPH | ns | — | |||||||||||||||||||
3 | TotP | 0.881 ** | ns | — | ||||||||||||||||||
4 | NTP | ns | ns | ns | — | |||||||||||||||||
5 | TP | ns | 0.860 ** | ns | ns | — | ||||||||||||||||
6 | TotF | ns | ns | ns | ns | ns | — | |||||||||||||||
7 | CT | −0.834 ** | −0.694 * | −0.834 ** | ns | ns | −0.722 * | — | ||||||||||||||
8 | Arbutin | 0.821 ** | 0.746 * | 0.947 *** | ns | 0.671 * | 0.673 * | −0.937 *** | — | |||||||||||||
9 | Gallic acid | ns | ns | ns | −0.929 *** | 0.730 * | ns | ns | ns | — | ||||||||||||
10 | Chlorogenic acid | ns | 0.739 * | ns | −0.826 ** | 0.938 *** | ns | ns | ns | 0.905 *** | — | |||||||||||
11 | Catechin | 0.921 *** | ns | 0.978 *** | ns | ns | ns | −0.906 *** | 0.952 *** | ns | ns | — | ||||||||||
12 | Epicatechin | ns | 0.877 ** | ns | ns | 0.987 *** | ns | ns | 0.676 * | 0.693 * | 0.923 *** | ns | — | |||||||||
13 | Flavonol | ns | ns | ns | −0.972 *** | ns | ns | ns | ns | 0.915 *** | 0.811 ** | ns | ns | — | ||||||||
14 | Rutin | ns | ns | ns | −0.955 *** | ns | ns | ns | ns | 0.894 ** | 0.802 ** | ns | ns | 0.996 *** | — | |||||||
15 | Quercetin 3-galattoside | ns | ns | ns | −0.982 *** | ns | ns | ns | ns | 0.923 *** | 0.809 ** | ns | ns | 0.998 *** | 0.992 *** | — | ||||||
16 | Quercetin 3-glucoside | ns | ns | ns | −0.930 *** | ns | ns | ns | ns | 0.865 ** | 0.780 * | ns | ns | 0.988 *** | 0.996 *** | 0.979 *** | — | |||||
17 | Isorhamnetin 3-rutinoside | ns | ns | ns | −0.961 *** | 0.704 * | ns | ns | ns | 0.937 *** | 0.898 ** | ns | 0.709 * | 0.984 *** | 0.983 *** | 0.980 *** | 0.973 *** | — | ||||
18 | Di-O-caffeolylquinic acid | ns | ns | ns | 0.985 *** | ns | ns | ns | ns | −0.939 *** | −0.819 ** | ns | ns | −0.993 *** | −0.984 *** | −0.996 *** | −0.968 *** | −0.977 *** | — | |||
19 | Isorhamnetin, derivat_23.97 | ns | ns | ns | −0.977 *** | ns | ns | ns | ns | 0.919 *** | 0.812 ** | ns | ns | 0.999 *** | 0.995 *** | 0.999 *** | 0.985 *** | 0.983 *** | −0.995 *** | — | ||
20 | Isorhamnetin, derivat_24.40 | ns | ns | ns | −0.966 *** | ns | ns | ns | ns | 0.905 *** | 0.806 ** | ns | ns | 0.998 *** | 0.999 *** | 0.996 *** | 0.992 *** | 0.983 *** | −0.990 *** | 0.998 *** | — | |
21 | Flavanol_31.90 | ns | ns | ns | 0.701 * | −0.764 * | ns | ns | ns | −0.737 * | −0.832 ** | ns | −0.826 ** | −0.783 * | −0.813 ** | −0.760 * | −0.829 ** | −0.853 ** | 0.758 * | −0.777 * | −0.797 * | — |
22 | Flavanol_39.00 | −0.962 *** | ns | −0.960 *** | −0.620 | ns | ns | 0.828 ** | −0.882 ** | ns | ns | −0.974 *** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
Eigenvalue | 11.27 | 5.41 | 3.34 | 1.55 | 1.32 | 0.69 |
Variance (%) | 45.08 | 21.66 | 13.38 | 6.19 | 5.30 | 2.75 |
Cumulative (%) | 45.08 | 66.73 | 80.11 | 86.30 | 91.60 | 94.35 |
Variables | Loadings | |||||
TotP | 0.28 | −0.04 | 0.09 | −0.16 | 0.11 | −0.03 |
NTP | 0.25 | −0.09 | 0.01 | −0.37 | 0.04 | −0.09 |
TP | 0.25 | 0.06 | 0.18 | 0.22 | 0.17 | 0.08 |
ABTS | 0.28 | −0.07 | 0.06 | −0.20 | 0.11 | −0.01 |
DPPH | 0.29 | −0.05 | 0.02 | −0.18 | 0.03 | −0.10 |
TotF | 0.28 | −0.06 | 0.07 | −0.16 | 0.05 | −0.05 |
CT | 0.27 | −0.12 | 0.11 | −0.04 | −0.07 | −0.22 |
Arbutin | 0.24 | −0.04 | 0.09 | −0.06 | −0.07 | 0.23 |
Gallic acid | 0.24 | 0.12 | −0.03 | 0.16 | −0.13 | 0.44 |
Chlorogenic acid | 0.28 | −0.01 | 0.05 | 0.09 | −0.11 | 0.18 |
Catechin | −0.02 | 0.11 | 0.35 | 0.42 | 0.33 | −0.20 |
Epicatechin | 0.09 | 0.25 | 0.36 | 0.20 | 0.11 | 0.04 |
Flavonol | 0.20 | 0.15 | −0.29 | 0.23 | −0.18 | −0.14 |
Rutin | −0.01 | 0.38 | 0.12 | −0.14 | −0.29 | 0.12 |
Quercetin 3-galattoside | 0.16 | 0.20 | −0.09 | 0.22 | −0.49 | −0.25 |
Quercetin 3-glucoside | 0.18 | 0.15 | −0.36 | 0.09 | 0.15 | 0.04 |
Quercetin 3-O-(6″-O-malonyl)-β-glucoside | −0.04 | 0.31 | 0.24 | −0.16 | 0.11 | −0.44 |
Isorhamnetin derivative (tR = 22.87) | −0.05 | 0.35 | 0.25 | −0.21 | 0.00 | −0.06 |
Isorhamnetin derivative (tR = 23.40) | −0.08 | 0.32 | 0.15 | −0.26 | −0.13 | 0.41 |
Isorhamnetin 3-rutinoside | 0.14 | 0.37 | −0.04 | 0.01 | 0.04 | 0.01 |
Di-O-caffeolylquinic acid | 0.10 | −0.24 | 0.28 | 0.12 | 0.22 | 0.31 |
Isorhamnetin derivative (tR = 23.97) | 0.15 | 0.22 | −0.31 | 0.04 | 0.32 | 0.00 |
Isorhamnetin derivative (tR = 24.40) | 0.13 | 0.23 | −0.31 | 0.01 | 0.37 | 0.02 |
Flavanol (tR = 31.90) | 0.26 | −0.11 | 0.04 | −0.16 | −0.15 | −0.17 |
Flavanol (tR = 39.00) | 0.20 | −0.12 | 0.15 | 0.35 | −0.26 | −0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinu, M.G.; Sanna, F.; D’hallewin, G.; Re, G.A.; Sulas, L.; Piluzza, G. Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources 2024, 13, 72. https://doi.org/10.3390/resources13060072
Molinu MG, Sanna F, D’hallewin G, Re GA, Sulas L, Piluzza G. Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources. 2024; 13(6):72. https://doi.org/10.3390/resources13060072
Chicago/Turabian StyleMolinu, Maria Giovanna, Federico Sanna, Guy D’hallewin, Giovanni Antonio Re, Leonardo Sulas, and Giovanna Piluzza. 2024. "Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds" Resources 13, no. 6: 72. https://doi.org/10.3390/resources13060072
APA StyleMolinu, M. G., Sanna, F., D’hallewin, G., Re, G. A., Sulas, L., & Piluzza, G. (2024). Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources, 13(6), 72. https://doi.org/10.3390/resources13060072