Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Plant Material
2.3. Antioxidant Capacity and Total Phenolic Content
2.4. Analysis of Individual Phenolic Compounds by Reverse Phase-High-Performance Liquid Chromatography (RP-HPLC)
2.5. Data Analyses
3. Results
3.1. Antioxidant Capacity and Total Phenolic Content
3.2. Analysis of Individual Phenolic Compounds by Reverse Phase-High-Performance Liquid Chromatography (RP-HPLC)
3.3. Correlations and Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simionca Mărcășan, L.I.; Pop, R.; Somsai, P.A.; Olteanu, I.; Popa, S.; Sestraş, A.F.; Militaru, M.; Mihai, B.; Sestraş, R.E. Comparative Evaluation of Pyrus Species to Identify Possible Resources of Interest in Pear Breeding. Agronomy 2023, 13, 1264. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2016; pp. 573–608. [Google Scholar]
- Cedro, A.; Antkowiak, W. Dendroclimatological analysis of wild pear Pyrus pyraster (L.) Burgsd. from Biedrusko Military area (West Poland)—Preliminary study. Geochronometria 2016, 43, 18–23. [Google Scholar] [CrossRef]
- Özderin, S. Determination of some chemical properties of wild pear (Pyrus spinosa Forsk.). BioResources 2022, 17, 1659. [Google Scholar] [CrossRef]
- Alexandri, S.; Tsaktsira, M.; Hatzilazarou, S.; Kostas, S.; Nianiou-Obeidat, I.; Economou, A.; Scaltsoyiannes, A.; Tsoulpha, P. Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants. Sustainability 2023, 15, 4511. [Google Scholar] [CrossRef]
- Arrigoni, P.V. Flora dell’Isola di Sardegna; Carlo Delfino Editore: Sassari, Italy, 2006; Volume 1, pp. 55–58. [Google Scholar]
- Wolko, Ł.; Bocianowski, J.; Antkowiak, W.; Słomski, R. Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland. Open Life Sci. 2014, 10, 19–29. [Google Scholar] [CrossRef]
- Reim, S.; Lochschmidt, F.; Proft, A.; Wolf, H.; Wolf, H. Species delimitation, genetic diversity and structure of the European indigenous wild pear (Pyrus pyraster) in Saxony, Germany. Genet. Resour. Crop Evol. 2017, 64, 1075–1085. [Google Scholar] [CrossRef]
- Vidaković, A.; Šatović, Z.; Tumpa, K.; Idžojtić, M.; Liber, Z.; Pintar, V.; Radunić, M.; Runjić, T.N.; Runjić, M.; Rošin, J.; et al. Phenotypic variation in European wild pear (Pyrus pyraster (L.) Burgsd.) populations in the North-Western Part of the Balkan Peninsula. Plants 2022, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Vidaković, A.; Poljak, I. Fruit morphological variability and chemical composition in European wild pear (Pyrus pyraster (L.) Burgsd.) natural populations. Genet. Resour. Crop Evol. 2024, 2024, 1–16. [Google Scholar]
- Puddu, G.; Falcucci, A.; Maiorano, L. Forest changes over a century in Sardinia: Implications for conservation in a Mediterranean hotspot. Agrofor. Syst. 2012, 85, 319–330. [Google Scholar] [CrossRef]
- Sau, S.; Pastore, C.; D’hallewin, G.; Dondini, L.; Bacchetta, G. Characterisation of microsatellite loci in Sardinian pears (Pyrus communis L. and P. spinosa Forssk.). Sci. Hortic. 2020, 270, 109443. [Google Scholar] [CrossRef]
- Chessa, I.; Nieddu, G. Analysis of diversity in the fruit tree genetic resources from a Mediterranean island. Genet. Resour. Crop Evol. 2005, 52, 267–276. [Google Scholar] [CrossRef]
- Atzei, A.D. Le Piante nella Tradizione Popolare della Sardegna: Documentazione Sugli Usi Alimentari, Aromatizzanti, Profumieri, Artigianali, Cosmetici, Medicinali, Veterinari, Magici, Ornamentali, Rituali, Religiosi, Tintori, Antiparassitari e Vari, delle Piante; Carlo Delfino Editore: Sassari, Italy, 2003; pp. 386–387. [Google Scholar]
- Versini, G.; Franco, M.A.; Moser, S.; Manca, G. Characterisation of pear distillates from wild and cultivated varieties in Sardinia. Int. J. Food Sci. Technol. 2012, 47, 2519–2531. [Google Scholar] [CrossRef]
- Piluzza, G.; Campesi, G.; D’hallewin, G.; Molinu, M.G.; Re, G.A.; Sanna, F.; Sulas, L. Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules 2023, 28, 3559. [Google Scholar] [CrossRef] [PubMed]
- Sulas, L.; Re, G.A.; D’hallewin, G. Agroforestry & Transumance in Sardinia. In World Agroforestry in Practice Platform; Association Française d‘Agroforesterie: Auch, France, 2019; Available online: https://www.agroforesterie.fr/World-Agroforestry-In-Practice.php (accessed on 1 February 2024).
- Loru, L.; D’hallewin, G.; Satta, A.; Sulas, L.; Molinu, M.G.; Piluzza, G.; Pusceddu, M.; Pantaleoni, R.A. FOR[m]AGE, BEES & FRUITS: Bee-fruit synergies with forage farming systems in rainfed Mediterranean environment. In Proceedings of the Agroforestry for the Transition towards Sustainability and Bioeconomy, P3.3-5_216, 5th European Agroforestry Conference, Nuoro, Italy, 17–19 May 2021. [Google Scholar]
- Bueno, R.S.; Badalamenti, E.; Gristina, L.; Novara, A.; La Mantia, T. The Role of Almond-Leaved Pear Pyrus spinosa Forssk. in Mediterranean Pasturelands Carbon Storage and Woodlands Restoration. Land 2023, 12, 2135. [Google Scholar] [CrossRef]
- Saadatian, M.; Mohammad, R.H.; Jumaah, A.A.; Oagaz, J.A. Evaluation of Nutritional Value, Fatty Acids and Polyphenols Profiles of Pyrus amygdaliformis L. Grown in North-East Kurdistan Regional Government, Iraq. J. Oleo Sci. 2022, 71, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Stoenescu, A.M.; Trandafir, I.; Cosmulescu, S. Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Sulas, L.; Petretto, G.L.; Pintore, G.; Piluzza, G. Bioactive compounds and antioxidants from a Mediterranean garland harvested at two stages of maturity. Nat. Prod. Res. 2017, 31, 2941–2944. [Google Scholar] [CrossRef] [PubMed]
- Re, G.A.; Piluzza, G.; Sulas, L.; Franca, A.; Porqueddu, C.; Sanna, F.; Bullitta, S. Condensed tannin accumulation and nitrogen fixation potential of Onobrychis viciifolia Scop. grown in a Mediterranean environment. J. Sci. Food Agric. 2014, 94, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Piluzza, G.; Sulas, L.; Bullitta, S. Dry matter yield, feeding value, and antioxidant activity in Mediterranean chicory (Cichorium intybus L.) germplasm. Turk. J. Agric. For. 2014, 38, 506–514. [Google Scholar]
- Re, G.A.; Piluzza, G.; Sanna, F.; Molinu, M.G.; Sulas, L. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system. J. Sci. Food Agric. 2019, 99, 191–198. [Google Scholar] [CrossRef]
- StatPoint Technologies Inc. Statgraphics Centurion XVI, User Manual; StatPoint Technologies Inc.: Warrenton, VA, USA, 2009. [Google Scholar]
- Øyvind, H.; Harper, D.A. Past: Paleontological statistics software package for educaton and data anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- The Jamovi Project. Jamovi, Version 2.3. 2022. Computer Software. Available online: https://www.jamovi.org (accessed on 1 February 2024).
- Kundaković, T.; Ciric, A.; Stanojkovic, T.; Sokovic, M.; Kovacevic, N. Cytotoxicity and antimicrobial activity of Pyrus pyraster Burgsd. and Pyrus spinosa Forssk. (Rosaceae). Afr. J. Microbiol. Res. 2014, 8, 511–518. [Google Scholar]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidant 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Montanari, S.; Postman, J.; Bassil, N.V.; Neale, D.B. Reconstruction of the largest pedigree network for pear cultivars and evaluation of the genetic diversity of the USDA-ARS national Pyrus collection. G3 Genes Genomes Genet. 2020, 10, 3285–3297. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, T.; Zhou, B.; Gao, W.; Cao, J.; Huang, L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014, 152, 531–538. [Google Scholar] [CrossRef]
- Tzanakis, E.; Kalogeropoulos, T.; Tzimas, S.; Chatzilazarou, A.; Katsoyannos, E. Phenols and antioxidant activity of apple, quince, pomegranate, bitter orange and almond-leaved pear methanolic extracts. J. Sci. Technol. 2006, 1, 16–28. [Google Scholar]
- Ušjak, L.J.; Milutinović, V.M.; Đorđić Crnogorac, M.J.; Stanojković, T.P.; Niketić, M.S.; Kukić-Marković, J.M.; Petrović, S.D. Barks of Three Wild Pyrus Taxa: Phenolic Constituents, Antioxidant Activity, and in Vitro and in Silico Investigations of α-Amylase and α-Glucosidase Inhibition. Chem. Biodivers. 2021, 18, e2100446. [Google Scholar] [CrossRef]
- Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics 2021, 13, 999. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.E.; Cho, J.Y.; Lee, Y.G.; Jeong, H.Y.; Lee, H.J.; Moon, J.H. Isolation of five proanthocyanidins from pear (Pyrus pyrifolia Nakai) fruit peels. Food Sci. Biotechnol. 2017, 26, 1209–1215. [Google Scholar] [CrossRef]
- He, W.; Laaksonen, O.; Tian, Y.; Haikonen, T.; Yang, B. Chemical composition of juices made from cultivars and breeding selections of European pear (Pyrus communis L.). J. Agric. Food Chem. 2022, 70, 5137–5150. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.; Renard, C.M.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef]
- Brahem, M.; Eder, S.; Renard, C.M.; Loonis, M.; Le Bourvellec, C. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT-Food Sci. Technol. 2017, 85, 380–384. [Google Scholar] [CrossRef]
- Vidaković, A.; Liber, Z.; Šatović, Z.; Idžojtić, M.; Volenec, I.; Zegnal, I.; Pintar, V.; Radunić, M.; Poljak, I. Phenotypic diversity of almond-leaved pear (Pyrus spinosa Forssk.) along Eastern Adriatic Coast. Forests 2021, 12, 1630. [Google Scholar] [CrossRef]
- Mitic, V.; Ilic, M.; Dimitrijevic, M.; Cvetkovic, J.; Ciric, S.; Jovanovic, V.S. Chemometric characterization of peach, nectarine and plum cultivars according to fruit phenolic content and antioxidant activity. Fruits 2016, 71, 57–66. [Google Scholar] [CrossRef]
- Guimarães, A.C.G.; de Souza Gomes, M.; Zacaroni Lima, L.M.; Sales, P.F.; da Cunha, M.C.; Rodrigues, L.J.; de Barros, H.; Pires, C.R.F.; dos Santos, V.F.; Lima, N.; et al. Application of Chemometric Techniques in The Evaluation of Bioactive Compounds and Antioxidant Activity of Fruit From Brazilian Cerrado. J. Food Meas. Charact. 2023, 17, 2095–2106. [Google Scholar] [CrossRef]
- Zarei, A.; Erfani-Moghadam, J.; Jalilian, H. Assessment of variability within and among four Pyrus species using multivariate analysis. Flora 2019, 250, 27–36. [Google Scholar] [CrossRef]
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Flesh | |||||||
P. spinosa | 21.1 ± 1.0 a | 21.4 ± 1.4 a | 88.2 ± 2.0 a | 66.3 ± 1.1 a | 21.9 ± 1.3 a | 20.5 ± 0.7 b | 34.4 ± 0.8 a |
P. pyraster | 22.0 ± 0.6 a | 23.0 ± 0.2 a | 88.7 ± 3.1 a | 67.1 ± 0.9 a | 21.6 ± 3.7 a | 22.5 ± 0.1 a | 28.1 ± 1.5 b |
Peel | |||||||
P. spinosa | 19.6 ± 0.9 a | 24.7 ± 0.7 a | 88.7 ± 2.5 a | 44.9 ± 2.7 a | 43.9 ± 0.2 a | 22.5 ± 3.5 a | 32.9 ± 0.8 a |
P. pyraster | 18.9 ± 0.5 a | 18.9 ± 1.6 b | 81.0 ± 2.8 b | 48.1 ± 0.7 a | 32.9 ± 2.2 b | 17.3 ± 0.2 a | 14.2 ± 0.8 b |
Core | |||||||
P. spinosa | 25.8 ± 1.2 a | 25.3 ± 1.2 a | 107.2 ± 2.3 a | 65.4 ± 1.7 a | 41.8 ± 1.2 b | 25.8 ± 3.4 a | 29.1 ± 1.2 a |
P. pyraster | 15.6 ± 1.1 b | 11.8 ± 0.5 b | 63.7 ± 1.1 b | 14.3 ± 0.9 b | 49.4 ± 0.8 a | 13.5 ± 0.2 b | 21.4 ± 0.4 b |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 2.63 ± 0.01 | 0.85 ± 0.07 | * |
Gallic acid | 6.50 | 280 | 0.01 ± 0.00 | 0.01 ± 0.00 | ns |
Chlorogenic acid | 10.69 | 330 | 1.82 ± 0.08 | 1.94 ± 0.18 | ns |
Catechin | 11.40 | 280 | ≤LOQ | 0.03 ± 0.00 | |
Epicatechin | 13.06 | 280 | 0.07 ± 0.00 | 0.11 ± 0.01 | * |
Quercetin 3-galattoside | 20.90 | 350 | 0.05 ± 0.00 | ND | |
Quercetin 3- glucoside | 21.40 | 350 | 0.04 ± 0.00 | 0.13 ± 0.01 | * |
Di-O-caffeolylquinic acid | 23.50 | 330 | 0.08 ± 0.00 | 0.13 ± 0.01 | * |
Isorhamnetin derivative | 23.97 | 350 | ND | 0.05 ± 0.00 | |
Flavanol | 31.90 | 280 | 17.13 ± 0.67 | 8.90 ± 0.67 | * |
Flavanol | 39.00 | 280 | 0.47 ± 0.01 | ND | |
Sum | 22.30 | 12.15 |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 4.58 ± 0.27 | 2.96 ± 0.10 | * |
Gallic acid | 6.50 | 280 | 0.04 ± 0.00 | 0.03 ± 0.00 | * |
Chlorogenic acid | 10.69 | 330 | 3.53 ± 0.05 | 1.94 ± 0.10 | * |
Catechin | 11.40 | 280 | ND | 0.05 ± 0.00 | |
Epicatechin | 13.06 | 280 | 0.27 ± 0.03 | 0.12 ± 0.00 | * |
Flavonol | 18.60 | 350 | 0.41 ± 0.04 | 0.21 ± 0.01 | * |
Rutin | 20.40 | 350 | 0.19 ± 0.03 | ND | |
Quercetin 3-galattoside | 20.90 | 350 | 1.97 ± 0.07 | ND | |
Quercetin 3 glucoside | 21.40 | 350 | 0.95 ± 0.23 | 1.24 ± 0.14 | ns |
Isorhamnetin 3-rutinoside | 23.09 | 350 | 0.62 ± 0.06 | 0.54 ± 0.02 | ns |
Isorhamnetin derivative | 23.97 | 350 | 0.55 ± 0.04 | 1.08 ± 0.07 | * |
Isorhamnetin derivative | 24.40 | 350 | 0.46 ± 0.06 | 1.15 ± 0.03 | * |
Flavanol | 31.90 | 280 | 14.01 ± 1.40 | 6.10 ± 0.40 | * |
Flavanol | 39.00 | 280 | 0.50 ± 0.01 | ND | |
Sum | 28.08 | 15.42 |
Phenolic Compounds | tR (min) | λmax (nm) | P. spinosa | P. pyraster | |
---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 9.04 ± 0.09 | 2.91 ± 0.11 | * |
Gallic acid | 6.50 | 280 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Chlorogenic acid | 10.69 | 330 | 2.80 ± 0.03 | 2.41 ± 0.04 | * |
Catechin | 11.40 | 280 | 0.08 ± 0.00 | 0.20 ± 0.01 | * |
Epicatechin | 13.06 | 280 | 0.25 ± 0.01 | 0.27 ± 0.01 | * |
Rutin | 20.40 | 350 | ≤LOQ | ND | |
Quercetin 3-galattoside | 20.90 | 350 | 0.03 ± 0.00 | 0.04 ± 0.00 | * |
Quercetin 3-glucoside | 21.40 | 350 | 0.02 ± 0.00 | 0.03 ± 0.00 | * |
Isorhamnetin 3-rutinoside | 23.09 | 350 | 0.12 ± 0.00 | 0.26 ± 0.01 | * |
Di-O-caffeolylquinic acid | 23.50 | 330 | 0.08 ± 0.01 | 0.18 ± 0.01 | * |
Isorhamnetin derivative | 23.97 | 350 | ND | 0.06 ± 0.01 | |
Isorhamnetin derivative | 24.40 | 350 | ND | 0.06 ± 0.01 | |
Flavanol | 31.90 | 280 | 15.59 ± 0.33 | 4.37 ± 0.16 | * |
Flavanol | 39.00 | 280 | 0.33 ± 0.01 | 0.32 ± 0.03 | ns |
Sum | 28.36 | 11.13 |
P. pyraster | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ABTS | — | |||||||||||||||||||
2 | DPPH | 0.961 *** | — | ||||||||||||||||||
3 | TotP | 0.952 *** | 0.977 *** | — | |||||||||||||||||
4 | NTP | 0.964 *** | 0.987 *** | 0.980 *** | — | ||||||||||||||||
5 | TP | −0.942 *** | −0.962 *** | −0.928 *** | −0.983 *** | — | |||||||||||||||
6 | TotF | 0.967 *** | 0.953 *** | 0.936 *** | 0.967 *** | −0.962 *** | — | ||||||||||||||
7 | CT | ns | ns | ns | ns | ns | ns | — | |||||||||||||
8 | Arbutin | −0.810 ** | −0.758 * | −0.709 * | −0.759 * | 0.780 * | −0.896 ** | −0.860 ** | — | ||||||||||||
9 | Gallic acid | ns | ns | ns | ns | ns | ns | −0.906 *** | 0.805 ** | — | |||||||||||
10 | Chlorogenic acid | −0.742 * | −0.819 ** | −0.794 * | −0.860 ** | 0.892 ** | −0.746 * | ns | ns | ns | — | ||||||||||
11 | Catechin | −0.886 ** | −0.944 *** | −0.960 *** | −0.967 *** | 0.940 *** | −0.876 ** | ns | ns | ns | 0.918 *** | — | |||||||||
12 | Epicatechin | −0.869 ** | −0.933 *** | −0.948 *** | −0.952 *** | 0.922 *** | −0.844 ** | ns | ns | ns | 0.926 *** | 0.996 *** | — | ||||||||
13 | Flavonol | ns | ns | ns | ns | ns | ns | −0.869 ** | ns | 0.812 ** | ns | ns | ns | — | |||||||
14 | Quercetin 3-galattoside | −0.853 ** | −0.916 *** | −0.937 *** | −0.933 *** | 0.896 ** | −0.815 ** | ns | ns | ns | 0.910 *** | 0.987 *** | 0.995 *** | ns | — | ||||||
15 | Quercetin 3-glucoside | ns | ns | ns | ns | ns | ns | −0.818 ** | ns | 0.794 * | ns | ns | ns | 0.988 *** | ns | — | |||||
16 | Isorhamnetin 3-rutinoside | ns | ns | ns | ns | ns | ns | −0.991 *** | 0.859 ** | 0.921 *** | ns | ns | ns | 0.881 ** | ns | 0.835 ** | — | ||||
17 | Di-O-caffeolylquinic acid | ns | ns | ns | ns | ns | ns | 0.717 * | ns | −0.669 * | ns | ns | ns | −0.964 *** | 0.699 * | −0.973 *** | −0.732 * | — | |||
18 | Isorhamnetin, derivat_23.97 | ns | ns | ns | ns | ns | ns | −0.873 ** | ns | 0.800 ** | ns | ns | ns | 0.999 *** | ns | 0.980 *** | 0.884 ** | −0.960 *** | — | ||
19 | Isorhamnetin, derivat_24.40 | ns | ns | ns | ns | ns | ns | −0.889 ** | ns | 0.831 ** | ns | ns | ns | 0.999 *** | ns | 0.984 *** | 0.901 *** | −0.952 *** | 0.998 *** | — | |
20 | Flavanol_31.90 | 0.943 *** | 0.935 *** | 0.932 *** | 0.934 *** | −0.904 *** | 0.979 *** | ns | −0.898 ** | ns | ns | −0.837 ** | −0.800 ** | ns | −0.770 * | ns | ns | ns | ns | ns | — |
21 | Flavanol_39.00 | −0.829 ** | −0.907 *** | −0.933 *** | −0.929 *** | 0.892 ** | −0.811 ** | ns | ns | ns | 0.919 *** | 0.992 *** | 0.995 *** | ns | 0.990 *** | ns | ns | 0.696 * | ns | ns | −0.774 * |
P. spinosa | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ABTS | — | ||||||||||||||||||||
2 | DPPH | ns | — | |||||||||||||||||||
3 | TotP | 0.881 ** | ns | — | ||||||||||||||||||
4 | NTP | ns | ns | ns | — | |||||||||||||||||
5 | TP | ns | 0.860 ** | ns | ns | — | ||||||||||||||||
6 | TotF | ns | ns | ns | ns | ns | — | |||||||||||||||
7 | CT | −0.834 ** | −0.694 * | −0.834 ** | ns | ns | −0.722 * | — | ||||||||||||||
8 | Arbutin | 0.821 ** | 0.746 * | 0.947 *** | ns | 0.671 * | 0.673 * | −0.937 *** | — | |||||||||||||
9 | Gallic acid | ns | ns | ns | −0.929 *** | 0.730 * | ns | ns | ns | — | ||||||||||||
10 | Chlorogenic acid | ns | 0.739 * | ns | −0.826 ** | 0.938 *** | ns | ns | ns | 0.905 *** | — | |||||||||||
11 | Catechin | 0.921 *** | ns | 0.978 *** | ns | ns | ns | −0.906 *** | 0.952 *** | ns | ns | — | ||||||||||
12 | Epicatechin | ns | 0.877 ** | ns | ns | 0.987 *** | ns | ns | 0.676 * | 0.693 * | 0.923 *** | ns | — | |||||||||
13 | Flavonol | ns | ns | ns | −0.972 *** | ns | ns | ns | ns | 0.915 *** | 0.811 ** | ns | ns | — | ||||||||
14 | Rutin | ns | ns | ns | −0.955 *** | ns | ns | ns | ns | 0.894 ** | 0.802 ** | ns | ns | 0.996 *** | — | |||||||
15 | Quercetin 3-galattoside | ns | ns | ns | −0.982 *** | ns | ns | ns | ns | 0.923 *** | 0.809 ** | ns | ns | 0.998 *** | 0.992 *** | — | ||||||
16 | Quercetin 3-glucoside | ns | ns | ns | −0.930 *** | ns | ns | ns | ns | 0.865 ** | 0.780 * | ns | ns | 0.988 *** | 0.996 *** | 0.979 *** | — | |||||
17 | Isorhamnetin 3-rutinoside | ns | ns | ns | −0.961 *** | 0.704 * | ns | ns | ns | 0.937 *** | 0.898 ** | ns | 0.709 * | 0.984 *** | 0.983 *** | 0.980 *** | 0.973 *** | — | ||||
18 | Di-O-caffeolylquinic acid | ns | ns | ns | 0.985 *** | ns | ns | ns | ns | −0.939 *** | −0.819 ** | ns | ns | −0.993 *** | −0.984 *** | −0.996 *** | −0.968 *** | −0.977 *** | — | |||
19 | Isorhamnetin, derivat_23.97 | ns | ns | ns | −0.977 *** | ns | ns | ns | ns | 0.919 *** | 0.812 ** | ns | ns | 0.999 *** | 0.995 *** | 0.999 *** | 0.985 *** | 0.983 *** | −0.995 *** | — | ||
20 | Isorhamnetin, derivat_24.40 | ns | ns | ns | −0.966 *** | ns | ns | ns | ns | 0.905 *** | 0.806 ** | ns | ns | 0.998 *** | 0.999 *** | 0.996 *** | 0.992 *** | 0.983 *** | −0.990 *** | 0.998 *** | — | |
21 | Flavanol_31.90 | ns | ns | ns | 0.701 * | −0.764 * | ns | ns | ns | −0.737 * | −0.832 ** | ns | −0.826 ** | −0.783 * | −0.813 ** | −0.760 * | −0.829 ** | −0.853 ** | 0.758 * | −0.777 * | −0.797 * | — |
22 | Flavanol_39.00 | −0.962 *** | ns | −0.960 *** | −0.620 | ns | ns | 0.828 ** | −0.882 ** | ns | ns | −0.974 *** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
Eigenvalue | 11.27 | 5.41 | 3.34 | 1.55 | 1.32 | 0.69 |
Variance (%) | 45.08 | 21.66 | 13.38 | 6.19 | 5.30 | 2.75 |
Cumulative (%) | 45.08 | 66.73 | 80.11 | 86.30 | 91.60 | 94.35 |
Variables | Loadings | |||||
TotP | 0.28 | −0.04 | 0.09 | −0.16 | 0.11 | −0.03 |
NTP | 0.25 | −0.09 | 0.01 | −0.37 | 0.04 | −0.09 |
TP | 0.25 | 0.06 | 0.18 | 0.22 | 0.17 | 0.08 |
ABTS | 0.28 | −0.07 | 0.06 | −0.20 | 0.11 | −0.01 |
DPPH | 0.29 | −0.05 | 0.02 | −0.18 | 0.03 | −0.10 |
TotF | 0.28 | −0.06 | 0.07 | −0.16 | 0.05 | −0.05 |
CT | 0.27 | −0.12 | 0.11 | −0.04 | −0.07 | −0.22 |
Arbutin | 0.24 | −0.04 | 0.09 | −0.06 | −0.07 | 0.23 |
Gallic acid | 0.24 | 0.12 | −0.03 | 0.16 | −0.13 | 0.44 |
Chlorogenic acid | 0.28 | −0.01 | 0.05 | 0.09 | −0.11 | 0.18 |
Catechin | −0.02 | 0.11 | 0.35 | 0.42 | 0.33 | −0.20 |
Epicatechin | 0.09 | 0.25 | 0.36 | 0.20 | 0.11 | 0.04 |
Flavonol | 0.20 | 0.15 | −0.29 | 0.23 | −0.18 | −0.14 |
Rutin | −0.01 | 0.38 | 0.12 | −0.14 | −0.29 | 0.12 |
Quercetin 3-galattoside | 0.16 | 0.20 | −0.09 | 0.22 | −0.49 | −0.25 |
Quercetin 3-glucoside | 0.18 | 0.15 | −0.36 | 0.09 | 0.15 | 0.04 |
Quercetin 3-O-(6″-O-malonyl)-β-glucoside | −0.04 | 0.31 | 0.24 | −0.16 | 0.11 | −0.44 |
Isorhamnetin derivative (tR = 22.87) | −0.05 | 0.35 | 0.25 | −0.21 | 0.00 | −0.06 |
Isorhamnetin derivative (tR = 23.40) | −0.08 | 0.32 | 0.15 | −0.26 | −0.13 | 0.41 |
Isorhamnetin 3-rutinoside | 0.14 | 0.37 | −0.04 | 0.01 | 0.04 | 0.01 |
Di-O-caffeolylquinic acid | 0.10 | −0.24 | 0.28 | 0.12 | 0.22 | 0.31 |
Isorhamnetin derivative (tR = 23.97) | 0.15 | 0.22 | −0.31 | 0.04 | 0.32 | 0.00 |
Isorhamnetin derivative (tR = 24.40) | 0.13 | 0.23 | −0.31 | 0.01 | 0.37 | 0.02 |
Flavanol (tR = 31.90) | 0.26 | −0.11 | 0.04 | −0.16 | −0.15 | −0.17 |
Flavanol (tR = 39.00) | 0.20 | −0.12 | 0.15 | 0.35 | −0.26 | −0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinu, M.G.; Sanna, F.; D’hallewin, G.; Re, G.A.; Sulas, L.; Piluzza, G. Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources 2024, 13, 72. https://doi.org/10.3390/resources13060072
Molinu MG, Sanna F, D’hallewin G, Re GA, Sulas L, Piluzza G. Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources. 2024; 13(6):72. https://doi.org/10.3390/resources13060072
Chicago/Turabian StyleMolinu, Maria Giovanna, Federico Sanna, Guy D’hallewin, Giovanni Antonio Re, Leonardo Sulas, and Giovanna Piluzza. 2024. "Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds" Resources 13, no. 6: 72. https://doi.org/10.3390/resources13060072
APA StyleMolinu, M. G., Sanna, F., D’hallewin, G., Re, G. A., Sulas, L., & Piluzza, G. (2024). Mediterranean Wild Pear Fruits as a Neglected but Valuable Source of Phenolic Compounds. Resources, 13(6), 72. https://doi.org/10.3390/resources13060072