Environmental Evaluation of Chemical Plastic Waste Recycling: A Life Cycle Assessment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of Waste Conversion on a Laboratory Scale
2.2. Life Cycle Assessment
- Atmospheric Effects: Global Warming Potential (GWP); Stratospheric Ozone Depletion (SOD); Ionizing radiation (IR); Ozone Formation, Human Health (OFHH); Fine Particulate Matter Formation (FPMP); Ozone formation, Terrestrial ecosystems (OFTE); Terrestrial acidification Potential (TAP);
- Eutrophication: Freshwater Eutrophication Potential (FEP) and Marine Eutrophication Potential (MEP);
- Toxicity: Terrestrial Ecotoxicity (TEC); Freshwater Ecotoxicity (FEC); Marine Ecotoxicity (MEC); Human Carcinogenic Toxicity (HCT); Human Non-Carcinogenic Toxicity (HNCT);
- Abiotic Resources: Land Use (LU); Mineral Resources Scarcity (MRS); Fossil Resources Scarcity (FRS), Water Consumption (WC).
2.3. Scenario Analysis
3. Results
3.1. Life Cycle Assessment
3.2. Scenario Analysis
4. Conclusions
- The production of 1 L of pyrolysis oil from plastic waste could generate a Global Warming Potential of about 0.032 kg CO2 eq and water consumption of 0.031 m3, with the other impact categories registering values of less than 0.1 kg/L or 0.01 m2a crop eq/L;
- Compared with fossil diesel, pyrolytic oil shows reduced impacts in 17 out of 18 impact categories, demonstrating its potential as a viable alternative to conventional diesel;
- The chemical and physical characteristics of the resulting pyrolysis oil, similar to those of fossil diesel, suggest how it is potentially usable in endothermic engines, although not as a complete replacement for conventional diesel. However, pyrolysis oil could be blended with fossil diesel in different percentages, thus, offering a practical option to reduce pollutant emissions during the life cycle and decrease dependence on fossil resources;
- For the same amount of plastic processed (1000 kg), chemical recycling appears to be a more environmentally favorable solution than incineration and landfilling. This process achieves environmental benefits in all eighteen impact categories considered, reducing global warming by −3849 kg CO2 eq per ton of plastic processed, ionizing radiation by −22.4 kBq Co-60 eq/1000 kg, terrestrial toxicity by −58.9 kg 1.4-DCB/1000 kg, land use by −174 m2a crop eq/1000 kg, and fossil resource consumption by −1807.5 kg oil eq/1000 kg. These results indicate that chemical recycling could not only contribute to the reduction in environmental impacts related to waste disposal but could also provide a substantial offsetting effect by reducing the demand for virgin plastic and promoting the circular economy.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Global Plastics Production: Annual Production of Polymer Resin and Fibers. 2022. Available online: https://ourworldindata.org/plastic-pollution (accessed on 29 April 2024).
- United Nations Environment Programme. From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. Nairobi. 2021. Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 3 November 2024).
- Plastic Soup Foundation. Plastic Facts and Figures. 2023. Available online: https://www.plasticsoupfoundation.org/en/plastic-facts-and-figures/#vervuilers (accessed on 3 November 2024).
- Plasticeurope. Plastics—The Facts. 2022. Available online: https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf (accessed on 3 November 2024).
- Sin, L.T.; Tueen, B.S. Eco-profile of plastics. In Plastics and Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 45–89. [Google Scholar] [CrossRef]
- Speight, J.G. Monomers, Polymers, and Plastics. In Handbook of Industrial Hydrocarbon Processes; Gulf Professional Publishing: Houston, TX, USA, 2011; pp. 499–537. [Google Scholar] [CrossRef]
- Deshmukh, K.; Kovářík, T.; Muzaffar, A.; Ahamed, M.B.; Pasha, S.K.K. Mechanical analysis of polymers. In Polymer Science and Innovative Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–152. [Google Scholar] [CrossRef]
- Moharir, R.V.; Kumar, S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod. 2019, 208, 65–76. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med. J. 2023, 64, 301–308. [Google Scholar] [CrossRef]
- OECD. Climate Change and Plastics Pollution: Synergies Between Two Crucial Environmental Challenges. 2022. Available online: https://www.oecd.org/environment/plastics/Policy-Highlights-Climate-change-and-plastics-pollution-Synergies-between-two-crucial-environmental-challenges.pdf (accessed on 3 November 2024).
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes—The environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- European Commission. Packaging Waste: EU Rules on Packaging and Packaging Waste, Including Design and Waste Management. 2018. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/packaging-waste_en (accessed on 3 November 2024).
- Kaminsky, W. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Commun. 2021, 8, 100023. [Google Scholar] [CrossRef]
- Ndiaye, N.K.; Derkyi, N.S.A.; Amankwah, E. Pyrolysis of plastic waste into diesel engine-grade oil. Sci. Afr. 2023, 21, e01836. [Google Scholar] [CrossRef]
- Sosnina, D.; Altynov, A.; Kirgina, M.; Bogdanov, I. Production of motor fuel components by processing vegetable oils using a CoMo/Al2O3 hydrotreating catalyst and a ZSM-5 zeolite catalyst. Resources 2024, 13, 96. [Google Scholar] [CrossRef]
- Bhaskar, T.; Pandey, A. Advances in Thermochemical Conversion of Biomass—Introduction. In Recent Advances in Thermochemical Conversion of Biomass; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–30. [Google Scholar] [CrossRef]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. Biofuels: Their characteristics and analysis. In Biomass, Biopolymer-Based Materials, and Bioenergy; Woodhead Publishing: Sawston, UK, 2019; pp. 277–325. [Google Scholar] [CrossRef]
- Renzaho, A.M.N.; Kamara, J.K.; Toole, M. Biofuel production and its impact on food security in low- and middle-income countries: Implications for the post-2015 sustainable development goals. Renew. Sustain. Energy Rev. 2017, 78, 503–516. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Shu, C.M.; Sarangi, P.K.; Shadangi, K.P.; Rakshit, S.; Kennedy, J.F.; Gupta, V.K.; Sharma, M. Catalytic hydrodeoxygenation of bio-oil and model compounds—Choice of catalysts, and mechanisms. Renew. Sustain. Energy Rev. 2023, 187, 113700. [Google Scholar] [CrossRef]
- Faisal, F.; Rasul, M.G.; Jahirul, M.I.; Chowdhury, A.A. Waste plastics pyrolytic oil as a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics. Sci. Total Environ. 2023, 886, 163756. [Google Scholar] [CrossRef]
- Seah, C.C.; Tan, C.H.; Arifin, N.A.; Hafriz, R.S.R.M.; Salmiaton, A.; Nomanbhay, S.; Shamsuddin, A.H. Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results Eng. 2023, 17, 100989. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Changing State of the Climate System. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 287–422. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 13 November 2024).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 13 November 2024).
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Straka, P.; Bičáková, O.; Šupová, M. Thermal conversion of polyolefins/polystyrene ternary mixtures: Kinetics and pyrolysis on a laboratory and commercial scales. J. Anal. Appl. Pyrolysis 2017, 128, 196–207. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. From laboratory to industrial scale: A scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 2016, 135, 1085–1097. [Google Scholar] [CrossRef]
- Sánchez-Ávila, N.; Cardarelli, A.; Carmona-Cabello, M.; Dorado, M.P.; Pinzi, S.; Barbanera, M. Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis. Renew. Energy 2024, 230, 120880. [Google Scholar] [CrossRef]
- Ringer, M.; Putsche, V.; Scahill, J. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis; National Renewable Energy Laboratory: Golden, CO, USA, 2006. Available online: http://www.osti.gov/bridge (accessed on 12 November 2024).
- Fivga, A.; Dimitriou, I. Pyrolysis of plastic waste for the production of heavy fuel substitute: A techno-economic assessment. Energy 2018, 149, 865–874. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Rajaeifar, M.A.; Kumar, R.; Behnia, M. A systematic review on life cycle assessment of different waste-to-energy valorization technologies. J. Clean. Prod. 2021, 290, 125747. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Veronese, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Gallego-Schmid, A.; Najdanovic-Visak, V.; Azapagic, A. Life cycle environmental sustainability of valorization routes for spent coffee grounds: From waste to resources. Resour. Conserv. Recycl. 2020, 157, 104751. [Google Scholar] [CrossRef]
- Chhabra, V.; Parashar, A.; Shastri, Y.; Bhattacharya, S. Techno-economic and life cycle assessment of pyrolysis of unsegregated urban municipal solid waste in India. Ind. Eng. Chem. Res. 2021, 60, 1473–1482. [Google Scholar] [CrossRef]
- Ahamed, A.; Veksha, A.; Yin, K.; Weerachanchai, P.; Giannis, A.; Lisak, G. Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. J. Hazard. Mater. 2020, 390, 121449. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, S.; Yang, S.; Zhang, R.; Shi, X.; Song, L. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: Study in large-scale landfills, China. J. Hazard. Mater. 2023, 457, 131676. [Google Scholar] [CrossRef]
- Sharma, B.; Goswami, Y.; Sharma, S.; Shekhar, S. Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium. Renew. Sustain. Energy Rev. 2021, 146, 111070. [Google Scholar] [CrossRef]
- Guo, S.; Li, Y.; Tang, S.; Zhang, T. The nitrogen transformation behavior based on the pyrolysis products of wheat straw. Chin. J. Chem. Eng. 2024, 71, 58–65. [Google Scholar] [CrossRef]
- Saad, J.M.; Williams, P.T.; Zhang, Y.S.; Yao, D.; Yang, H.; Zhou, H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. J. Anal. Appl. Pyrolysis 2021, 156, 105135. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 2011, 3, 281–290. [Google Scholar] [CrossRef]
- Nieuwlaar, E. Life Cycle Assessment and Energy Systems. Ref. Module Earth Syst. Environ. Sci. 2013, 3, 647–654. [Google Scholar] [CrossRef]
- Antelava, A.; Damilos, S.; Hafeez, S.; Manos, G.; Al-Salem, S.M.; Sharma, B.K.; Kohli, K.; Constantinou, A. Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environ. Manag. 2019, 64, 230–244. [Google Scholar] [CrossRef]
- Demirbas, A. Pyrolysis of municipal plastic wastes for recovery of gasoline range hydrocarbons. J. Anal. Appl. Pyrolysis 2004, 72, 97–102. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Rehan, M. The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels. J. Environ. Sci. 2014, 3, 233–240. [Google Scholar]
- Islam, M.R.; Parveen, M.; Haniu, H.; Sarker, M.I. Innovation in pyrolysis technology for management of scrap tire: A solution of Energy and Environment. J. Environ. Dev. 2010, 1, 89. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 2017, 119, 239–252. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Z.; Li, C.; Tang, B.; Peng, C. Catalytic conversion of lignin and its derivatives to alkanes over multifunctional catalysts: A review. Fuel 2024, 361, 130726. [Google Scholar] [CrossRef]
- Kochaphum, C.; Gheewala, S.H.; Vinitnantharat, S. Environmental comparison of straight run diesel and cracked diesel. J. Clean. Prod. 2012, 37, 142–146. [Google Scholar] [CrossRef]
- Bulfin, B.; Buttsworth, L.; Lidor, A.; Steinfeld, A. High-purity nitrogen production from air by pressure swing adsorption combined with SrFeO3 redox chemical looping. Chem. Eng. J. 2021, 421, 127734. [Google Scholar] [CrossRef]
- Karmann, C.; Mágrová, A.; Jeníček, P.; Bartáček, J.; Kouba, V. Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives. Bioresour. Technol. 2024, 391, 129888. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, K. Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energy 2003, 28, 239–248. [Google Scholar] [CrossRef]
- Bukkarapu, K.R.; Krishnasamy, A. A critical review on available models to predict engine fuel properties of biodiesel. Renew. Sustain. Energy Rev. 2022, 155, 111925. [Google Scholar] [CrossRef]
- Tipanluisa, L.; Prati, M.V.; Costagliola, M.A. Impact of diesel/renewable fuels blend on gaseous and particle emissions of a light-duty vehicle under real driving emissions. Renew. Energy 2024, 230, 120819. [Google Scholar] [CrossRef]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 1121–1127. [Google Scholar] [CrossRef]
- Stančin, H.; Strezov, V.; Mikulčić, H. Life cycle assessment of alternative fuel production by co-pyrolysis of waste biomass and plastics. J. Clean. Prod. 2023, 414, 137676. [Google Scholar] [CrossRef]
- Tsangas, M.; Papamichael, I.; Loizia, P.; Voukkali, I.; Salman Raza, N.; Vincenzo, N.; Zorpas, A.A. Life cycle assessment of electricity generation by tire pyrolysis oil. Process Saf. Environ. Prot. 2024, 186, 376–387. [Google Scholar] [CrossRef]
- Azam, M.U.; Vete, A.; Afzal, W. Process Simulation and Life Cycle Assessment of Waste Plastics: A Comparison of Pyrolysis and Hydrocracking. Molecules 2022, 27, 8084. [Google Scholar] [CrossRef]
- Kulas, D.G.; Zolghadr, A.; Chaudhari, U.S.; Shonnard, D.R. Economic and environmental analysis of plastics pyrolysis after secondary sortation of mixed plastic waste. J. Clean. Prod. 2023, 384, 135542. [Google Scholar] [CrossRef]
- Manfredi, S.; Tonini, D.; Christensen, T.H.; Scharff, H. Landfilling of waste: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 8. [Google Scholar] [CrossRef] [PubMed]
- Peña, D.; Dorronsoro, B.; Ruiz, P. Sustainable waste collection optimization using electric vehicles. Sustain. Cities Soc. 2024, 105, 105343. [Google Scholar] [CrossRef]
- Singh, S.; Malyan, S.K.; Maithani, C.; Kashyap, S.; Tyagi, V.K.; Singh, R.; Malhotra, S.; Sharma, M.; Kumar, A.; Panday, B.K.; et al. Microplastics in landfill leachate: Occurrence, health concerns, and removal strategies. J. Environ. Manag. 2023, 342, 118220. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Ali, S.S.; Alsharbaty, M.H.M.; Elsamahy, T.; Abdelkarim, E.; Schagerl, M.; Al-Tohamy, R.; Sun, J. A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. Ecotoxicol. Environ. Saf. 2024, 271, 115942. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Density at 15 °C (kg/m3) | 784.2 |
Kinematic viscosity at 40 °C (mm2/s) | 2.04 |
Low calorific value (MJ/kg) | 46.16 |
Flashpoint (°C) | 15 |
Carbon residue (%) | 0.15 |
Oxidation stability at 110 °C (h) | - |
Cetane number | 60.27 |
Boiling point (°C) | 59.3–377.9 |
(1) GOAL AND SCOPE DEFINITION | |
Compare the environmental performance of chemical recycling of a plastic mix of 50% polyethylene, 25% polypropylene, and 25% polystyrene. | |
Functional unit | The production of 1 L of pyrolysis oil and then the treatment of 1000 kg of plastics |
System boundaries | From cradle to gate |
(2) LIFE CYCLE INVENTORY | |
Type of data | Primary data obtained through site visits and surveys. |
Database | Ecoinvent v3.11 |
(3) LIFE CYCLE IMPACT ASSESSMENT | |
Impact assessmentcalculation methodology | ReCiPe (I) 2016 Midpoint |
Software | Simapro 9.6. |
PRE-TREATMENT | ||
Input | ||
Polyethylene | 0.46 | kg |
Polypropylene | 0.23 | |
Polystyrene | 0.23 | |
Electricity | 0.0146 | kWh |
Output | ||
Plastic waste | 0.92 | kg |
FUEL PRODUCTION | ||
Input | ||
Plastic waste | 0.92 | kg |
Nitrogen | 1.6112 | |
Electricity | 0.3761 | kWh |
Output | ||
Char | 0.0639 | kg |
Pyrolitic gas | 2.4673 | |
POST-TREATMENT | ||
Input | ||
Pyrolitic gas | 2.4673 | kg |
Char | 0.0639 | |
Electricity | 0.4152 | kWh |
Output | ||
Char | 0.0639 | kg |
Condensable gas | 0.8898 | |
Pyrolisis oil | 1 | L |
Non condensable gas | 0.0717 | kg |
Air | 2.6311 | |
Moisture | 2.1253 |
Impact Categories | Unit | Pyrolytic Oil from Plastic Waste |
---|---|---|
Atmospheric effects | ||
GPW | kg CO2 eq | 0.032 |
SOD | kg CFC11 eq | 4.123 × 10−8 |
IR | kBq Co-60 eq | 0.0128 |
OFHH | kg NOx eq | 5.564 × 10−5 |
FPMP | kg PM2.5 eq | 9.148 × 10−6 |
OFTE | kg NOx eq | 5.572 × 10−5 |
TAP | kg SO2 eq | 8.271 × 10−5 |
Eutrophication | ||
FEP | kg P eq | 6.317 × 10−6 |
MEP | kg N eq | 7.189 × 10−7 |
Toxicity | ||
TEC | kg 1,4-DCB | 0.00312 |
FEC | 6.078 × 10−5 | |
MEC | 2.769 × 10−5 | |
HCT | 4.274 × 10−6 | |
HNCT | 0.0003 | |
Abiotic resources | ||
LU | m2a crop eq | 0.0111 |
MRS | kg Cu eq | 0.0001 |
FRS | kg oil eq | 0.0040 |
WC | m3 | 0.0319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinci, G.; Gobbi, L.; Porcaro, D.; Pinzi, S.; Carmona-Cabello, M.; Ruggeri, M. Environmental Evaluation of Chemical Plastic Waste Recycling: A Life Cycle Assessment Approach. Resources 2024, 13, 176. https://doi.org/10.3390/resources13120176
Vinci G, Gobbi L, Porcaro D, Pinzi S, Carmona-Cabello M, Ruggeri M. Environmental Evaluation of Chemical Plastic Waste Recycling: A Life Cycle Assessment Approach. Resources. 2024; 13(12):176. https://doi.org/10.3390/resources13120176
Chicago/Turabian StyleVinci, Giuliana, Laura Gobbi, Daniela Porcaro, Sara Pinzi, Miguel Carmona-Cabello, and Marco Ruggeri. 2024. "Environmental Evaluation of Chemical Plastic Waste Recycling: A Life Cycle Assessment Approach" Resources 13, no. 12: 176. https://doi.org/10.3390/resources13120176
APA StyleVinci, G., Gobbi, L., Porcaro, D., Pinzi, S., Carmona-Cabello, M., & Ruggeri, M. (2024). Environmental Evaluation of Chemical Plastic Waste Recycling: A Life Cycle Assessment Approach. Resources, 13(12), 176. https://doi.org/10.3390/resources13120176