Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model
Abstract
:1. Introduction
2. Method and Theory
2.1. Resource Estimation
2.2. Metal Supply Modelling
2.2.1. Primary Supply
2.2.2. Secondary Supply
2.2.3. Metal Demand
2.2.4. Model Calibration
3. Results and Discussion
3.1. Copper
3.1.1. Copper Supply and Demand
CCu,I,MS,t = 0.239t − 296,866 (R2 = 0.958)
CCu,T,MS,t = 7.686t − 530,326 (R2 = 0.912)
CCu,O,MS,t = 4.926t + 2,851,125 (R2 = 0.948)
3.1.2. Copper Sensitivity Analysis
3.1.3. Sustainable Use of Copper
3.2. Iron
3.2.1. Iron Supply and Demand
CFe,I,MS,t = 0.30t − 3.278 × 107 (R2 = 1.000)
CFe,T,MS,t = 828.08t − 1.182 × 107 (R2 = 0.634)
3.2.2. Iron Sensitivity Analysis
3.2.3. Sustainable Use of Iron
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Vuuren, D.P.; Strengers, B.J.; De Vries, H.J.M. Long term perspectives on world metal use-a-systems-dynamics model. Resour. Pol. 1999, 25, 239–255. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Murakami, S.; Adachi, T.; Ii, R.; Yasuoka, R.; Nishio, M. Long-term demand and supply of non-ferrous mineral resources by a mineral balance model. Miner. Econ. 2017, 30, 109–206. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Meadows, D.; Randers, J.; Meadows, D. A Synopsis: Limits to Growth: The 30-Year Update; Chelsea Green Publishing Company: White River Junction, VT, USA, 2004; Available online: https://donellameadows.org/archives/asynopsis-limits-to-growth-the-30-year-update/ (accessed on 3 March 2021).
- Norgate, T.E.; Rankin, W.J. Life cycle assessment of copper and nickel production. In Proceedings of the Minprex 2000, International Conference on Mineral Processing and Extractive Metallurgy, Melbourne, (Victoria), Australia, 11–13 September 2000; Available online: https://www.ausimm.com/publications/conference-proceedings/minprex-2000/life-cycle-assessment-of-copper-and-nickel-production/ (accessed on 24 May 2021).
- Crowson, P.C.F. Mineral reserves and future mineral availability. Miner. Econ. 2011, 24, 1–6. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper grade decline based on a detailed assessment of copper resources and mining. Resour. Conser. Recyl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Meinert, L.D.; Robinson, G.R.; Nassar, N.T. Mineral Resources: Reserves, Peak Production and the Future. Resources 2016, 5, 14. [Google Scholar] [CrossRef]
- Pagani, M.; Bardi, U. Peak Minerals (2007). In The Oil Drum: Europe; ODAC Newsletter: UK, 2016. [Google Scholar] [CrossRef]
- Henkens, M.L.C.M.; Worrell, E. Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. J. Clean. Prod. 2020, 264, 121460. [Google Scholar] [CrossRef]
- Roper, L.D. World Mineral Reserves, 2009. Website with Hubbert’s Type Variant of Resource Assessment. Available online: http://www.roperld.com/science/minerals/Reserves.htm (accessed on 1 September 2021).
- Adachi, T.; Mogi, G.; Yamatomi, J.; Murakami, S.; Nakayama, T. Modeling global supply-demand structure of mineral resources- long term simulation of copper supply. J. MMIJ 2001, 117, 931–939. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Ayres, R.U.; Ayres, L.W.; Rade, I. The Life Cycle of Copper, Its Coproducts and Byproducts; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Neelis, M.L.; Patel, M.K. Long-Term Production, Energy, Consumption, and CO2 Emission Scenarios for the Worldwide Iron and Steel Industry; Utrecht University: Utrecht, The Netherlands, 2006; Available online: https://dspace.library.uu.nl/handle/1874/21823 (accessed on 20 May 2021).
- Oda, J.; Akimoto, K.; Tomoda, T. Long-term global availability of steel scrap. Resour. Conserv. Recycl. 2013, 81, 81–91. [Google Scholar] [CrossRef]
- Müller, D.B.; Wang, T.; Duval, B. Patterns of iron use in societal evolution. Environ. Sci. Technol. 2011, 45, 182–188. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M.; Bambach, M.D. Mapping the global flow of steel: From steelmaking to end-use goods. Environ. Sci. Technol. 2012, 46, 13048–13055. [Google Scholar] [CrossRef] [PubMed]
- Glöser, S.; Soulier, M.; Espinoza, L.T.; Faulstich, M. Using dynamic stock & flow models for global and regional material and substance flow analysis in the field of industrial ecology: The Example of a Global Copper Flow Model. In Proceedings of the 31st International Conference of the Systems Dynamics Society, Cambridge, MA, USA, 21–25 July 2013. [Google Scholar]
- Glöser, S.; Soulier, M.; Espinoza, L.A.T. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environ. Sci. Technol. 2013, 47, 6564–6572. [Google Scholar] [CrossRef] [PubMed]
- Laherrere, J. Copper Peak. Oil Drum Eur. 2010, 6307, 1–27. Available online: http://europe.theoildrum.com/node/6307 (accessed on 2 August 2021).
- UNEP. Decoupling Natural Resource Use and Environmental Impact from Economic Growth, A Report of the Working Group on Decoupling to the International Resource Panel; Fischer-Kowalski, M., Swilling, M., von Weizsäcker, E.U., Ren, Y., Moriguchi, Y., Crane, W., Krausmann, F., Eisenmenger, N., Giljum, S., Hennicke, P., Eds.; International Resource Panel: Nairobi, Kenya, 2011; Available online: https://www.resourcepanel.org/reports/decoupling-natural-resource-use-and-environmental-impacts-economic-growth (accessed on 30 November 2021).
- UNEP. Recycling Rates of Metals-A status Report, A Report of the Working Group on the Global Material Flows to the International Resource Panel; Graedel, T.E., Allwood, J., Birat, J.-P., Reck, B.K., Sibley, S.F., Sonnemann, G., Buchert, M., Hagelüken, C., Eds.; International Resource Panel: Nairobi, Kenya, 2011; Available online: https://www.resourcepanel.org/reports/recycling-rates-metals (accessed on 30 October 2021).
- UNEP. Global Material Flows and Resource Productivity: An assessment study of the UNEP International Resource Panel; Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N., Geschke, A., Lieber, M., Wieland, H.P., Schaffartzik, A., Eds.; United Nations Environment Programme: Paris, France, 2016. [Google Scholar]
- UNEP. Global Resources Outlook 2019: Natural Resources for the Future We Want; Oberlle, B., Bringezu, S., Hatfeld-Dodds, S., Hellweg, S., Schandl, H., Clement, J., Cabernard, L., Che, N., Chen, D., Droz-Georget, H., et al., Eds.; International Resource Panel United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Teseletso, L.S.; Adachi, T. Future availability of mineral reources: Ultimate Reserves and Total Material Requirement. Miner. Econ. 2021, 1–18. [Google Scholar] [CrossRef]
- Tilton, J.E. Exhaustible resources and sustainable development: Two Different Paradigms. Resour. Pol. 1996, 22, 91–97. [Google Scholar] [CrossRef]
- Humphreys, D. Long-run availability of mineral commodities. Miner. Econ. 2013, 26, 1–11. [Google Scholar] [CrossRef]
- Mudd, G.; Weng, Z.; Jowitt, S. A detailed assessment of global Cu resource trends and endowments. Econ. Geo. 2013, 108, 1163–1183. [Google Scholar] [CrossRef]
- Bringezu, S.; Moriguchi, Y. Material Flow Analysis. In A Handbook of Industrial Ecology; Ayres, R.U., Ayres, L.W., Eds.; Edward Elgar Publishing Limited: Cheltenham, UK, 2002; pp. 79–90. [Google Scholar]
- Spatari, S.; Bertram, M.; Gordon, R.; Henderson, K.; Graedel, T. Twentieth century copper stocks and flows in North America: A Dynamic Analysis. Ecol. Econ. 2005, 37–51. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and indicators of economy-wide material flow accounting—State of the art and reliability across sources. Ind. Econ. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- European Communities. Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide; Office for Official Publications of the European Communities: Luxembourg, 2001. [Google Scholar]
- van der Voet, E.; van Oers, L.; Moll, S.; Schütz, H.; Bringezu, S.; de Bruyn, S.; Sevenster, M.; Warringa, G. Policy Review on Decoupling: Development of Indicators to Assess Decoupling of Economic Development from Environmental Pressure in the EU-25 and AC-3 Countries; Commissioned by European Commission, DG Environment, to support the Thematic Strategy for the Sustainable Use of Natural Resources; European Community: RA Leiden, The Netherlands, 2005. [Google Scholar]
- van der Voet, E.; van Oers, L.; Verboon, M.; Kuipers, K. Environmental Implications of Future demand scenarios of metals: Methodology and applications to the case of seven major metals. J. Ind. Ecol. 2018, 23, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Haraldsson, R.; Sverdrup, H.U. On aspects of system analysis and dynamics work-flow. In Proceedings of the System Dynamics Society, 2005 International Conference on System Dynamics 1–10, Boston, MA, USA, 17–21 July 2005; Available online: https://proceedings.systemdynamics.org/2005/proceed/index.html (accessed on 20 May 2021).
- Sverdrup, H.U.; Oladsdottir, A.H.; Ragnardottir, K.V. On modelling the global copper, zinc and lead supply, using a system dynamics model. Resour. Conserv. Recycl. X 2019, 4, 100007. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Ragnardottir, K.V. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resour. Conserv. Recycl. 2014, 87, 158–174. [Google Scholar] [CrossRef]
- USGS. 1995 National Assessment of United States Oil and Gas Resources; US Geological Survey Circular; US Geological Survey; The INGAA Foundation: Fairfax, VA, USA, 1995.
- Tilton, J.E.; Lagos, G. Assessing the long-run availability of copper. Resour. Pol. 2007, 32, 19–23. [Google Scholar] [CrossRef]
- USGS. Mineral Commodities Summaries 2020 Iron, 88–89, January 2020; US Geological Survey: Reston, VA, USA, 2020. Available online: https://pubs.usgs.gov/fs/fs024-98/ (accessed on 20 May 2020).
- AusIMM. Cost Estimation Handbook, 2nd ed.; Monograph 27; The Australian Institute of Mining of Mining and Metallurgy: Carlton, Australia, 2012. [Google Scholar]
- Höök, M.; Junchen, L.; Oba, N.; Snowden, S. Descriptive and predictive growth curves in energy system analysis. Nat. Resour. Res. 2012, 20, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Oguchi, M.; Tasaki, T.; Daigo, I.; Hashimoto, S. Lifespan of commodities, Part, I. J. Ind. Ecol. 2010, 14, 598–612. [Google Scholar] [CrossRef]
- Ciacci, L.; Reck, B.K.; Nassar, N.T.; Graedel, T.E. Lost by design. Environ. Sci. Technol. 2015, 49, 9443–9451. [Google Scholar] [CrossRef] [PubMed]
- Elshaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Resource demand scenarios for major metals. Environ. Sci. Technol. 2018, 52, 2491–2497. [Google Scholar] [CrossRef]
- Graedel, T.E.; van Beers, D.; Bertram, M.; Fuse, K.; Gordon, R.B.; Gritsinin, A.; Kapur, A.; Klee, R.J.; Lifset, R.J.; Memon, L.; et al. Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 2004, 38, 1242–1252. [Google Scholar] [CrossRef]
- Wang, T.; Müller, D.B.; Graedel, T.E. Forging the anthropogenic iron cycle. Environ. Sci. Technol. 2007, 41, 5120–5129. [Google Scholar] [CrossRef]
- World Bank. The Road to 2050: Sustainable Development for the 21st Century; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- PWC. World in 2050—The BRICs and beyond: Prospects, Challenges and Opportunities, Pricewaterhouse Coopers, United Kingdom. 2013. Available online: https://www.pwc.com/jp/ja/japan-news/assets/pdf/world-in-2050-en.pdf (accessed on 3 March 2021).
- Halada, K.; Shimada, M.; Ijima, K. Forecasting of the consumption of metals up to 2050. Mater. Trans. 2008, 49, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Ait-Amir, B.; Pougnet, P.; Hami, A.E. Meta-model development. Embed. Mechatron. Syst. 2015, 2, 151–179. [Google Scholar] [CrossRef]
- Soulier, M.; Glöser-Chahoud, S.; Goldman, D.; Espinoza, L.A.T. Dynamic analysis of European copper flows. Resour. Conserv. Recycl. 2018, 129, 143–152. [Google Scholar] [CrossRef]
- World Steel Association. Steel Statistical Yearbook 2020 extended version: A Cross Section of Steel Industry Statistics 2010–2019. 2020. Available online: https://www.worldsteel.org/media-centre/press-releases/2020/2020-Steel-Statistical-Yearbook-published.html (accessed on 20 May 2021).
- Pauliuk, S.; Milford, R.L.; Müller, D.B.; Allwood, J.M. The steel scrap age. Environ. Sci. Technol. 2013, 47, 3448–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauliuk, S.; Wang, T.; Müller, D.B. Steel all over the world: Estimating in Use-Stocks of Iron for 200 Centuries. Resour. Conserv. Recycl. 2013, 71, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Morfeldt, J.; Nijs, W.; Silveira, S. The impact of climate targets on future steel production—An analysis based on a global energy system model. J. Clean. Prod. 2015, 103, 469–482. [Google Scholar] [CrossRef]
- Steel Recycling Institute. The Inherent Recycled Content of Today’s Steel, Pittsburgh, PA. 2008. Available online: www.nerdsofsteel.com/wp-content/uploads/scrap-use-calcs.pdf (accessed on 5 June 2021).
Weibull Distribution Parameters | ||||
---|---|---|---|---|
Market Share (%) 1 | Maximum Lifetime (Years) | λ | β | |
Copper | ||||
Electrical | 26 | 8 | 1 | 1.598 |
Industry | 19 | 35 | 1 | 1.619 |
Transport | 13 | 17 | 1 | 2.559 |
Other | 42 | 5 | 1 | 1.629 |
Iron | ||||
Infrastructure | 52 | 50 | 1 | 2.031 |
Industry | 34 | 35 | 1 | 2.031 |
Transport | 14 | 8 | 1 | 2.019 |
Stock | Metal | RMSE |
---|---|---|
World Primary Production | Cu | 4.287 |
Fe | 1.03 | |
World Secondary Production | Cu | 2.404 |
Fe | 1.2 | |
World Consumption | Cu | 2.937 |
Fe | 0.357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teseletso, L.S.; Adachi, T. Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model. Resources 2022, 11, 37. https://doi.org/10.3390/resources11040037
Teseletso LS, Adachi T. Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model. Resources. 2022; 11(4):37. https://doi.org/10.3390/resources11040037
Chicago/Turabian StyleTeseletso, Larona S., and Tsuyoshi Adachi. 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model" Resources 11, no. 4: 37. https://doi.org/10.3390/resources11040037
APA StyleTeseletso, L. S., & Adachi, T. (2022). Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model. Resources, 11(4), 37. https://doi.org/10.3390/resources11040037