Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Strategy
2.2. Sediment Analysis
2.3. Ecological Risk Assessment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Granulometric Composition of Bottom Sediments
3.2. Sediment Contamination Level and Ecological Risk
3.3. Organic Matter and Humic Substances Distribution
3.4. Effect of Organic Matter on the Accumulation of Heavy Metals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, S.; Glińska-Lewczuk, K.; Cymes, I. Metal contamination in the surface layer of bottom sediments in a flow-through lake: A case study of Lake Symsar in Northern Poland. Water 2016, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Szydłowski, K.; Podlasińska, J. Concentrations of selected heavy metals in the bottom sediments of a watercourse. Infrastruktura i Ekologia Terenów Wiejskich 2016, I, 59–71. (In Polish) [Google Scholar]
- Mielczarek, M.; Szydłowski, K. The role, division and quality classification of bottom sediments of water reservoirs. Inżynieria Ekologiczna 2017, 18, 194–201. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, X.; Ji, M.; Wang, G.; Han, R.; Ma, J.; Yan, X.; Liu, J. Estimating sedimentary organic matter sources by multi-combined proxies for spatial heterogeneity in a large and shallow eutrophic lake. J. Environ. Manag. 2018, 224, 147–155. [Google Scholar] [CrossRef]
- Wang, W.W.; Jiang, X.; Zheng, B.H.; Chen, J.Y.; Zhao, L.; Zhang, B.; Wang, S.H. Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke Lake, a Tibetan Plateau freshwater lake in China. R. Soc. Open Sci. 2018, 5, 180612. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, L.; Tomaszek, J.A.; Lechowicz, J.B. Differentiation of selected components in bottom sediments of Poland’s Solina-Myczkowce complex of dam reservoirs. In Progress in Environmental Engineering; Tomaszek, J.A., Koszelnik, P., Eds.; Taylor & Francis Group: London, UK, 2015; pp. 11–22. [Google Scholar]
- Bartoszek, L. Degradation of Small Retention Reservoirs—Conditions, Intensification, The Possibility of Chemical Reclamation; Oficyna Wydawnicza PRz: Rzeszów, Poland, 2019; pp. 1–212. (In Polish) [Google Scholar]
- Cieśla, M.; Bartoszek, L.; Gruca-Rokosz, R. Characteristics and origin of suspended matter in a small reservoir in Poland. Ecohydrol. Hydrobiol. 2020, 20, 73–82. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- Pękala, A. Thorium and uranium in the rock raw materials used for the production of building materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022033. [Google Scholar] [CrossRef]
- Wu, Q.; Qi, J.; Xia, X. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change. Sci. Total Environ. 2017, 609, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Ziemińska-Stolarska, A.; Imbierowicz, E.; Jaskulski, M.; Szmidt, A. Assessment of the chemical state of bottom sediments in the eutrophied dam reservoir in Poland. Int. J. Environ. Res. Public Health 2020, 17, 3424. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sztuczyńska, A.; Grabiec-Raczak, E. Lake sediment monitoring studies in Poland: Polycyclic aromatic hydrocarbons. Biuletyn Państwowego Instytutu Geologicznego 2012, 450, 17–26. (In Polish) [Google Scholar]
- Dmitruk, U.; Jancewicz, A.; Tomczuk, U. Occurrence of hazardous organic compounds and trace elements in bottom sediments of dam reservoirs. Ochrona Środowiska 2013, 35, 63–68. (In Polish) [Google Scholar]
- Ukalska-Jaruga, A.; Smreczak, B.; Klimkowicz-Pawlas, A.; Maliszewska-Kordybach, B. The role of organic matter in the accumulation of persistent organic pollutants (POPs) in soils. Pol. J. Agron. 2015, 20, 15–23. (In Polish) [Google Scholar]
- Wojtkowska, M.; Karwowska, E.; Chmielewska, I.; Wawer, K. Heavy metals assessment in water reservoirs reinforced by Służewiecki stream. Int. J. Eng. Res. Appl. 2016, 6, 12–15. [Google Scholar]
- Kulbat, E.; Sokołowska, A. Methods of assessment of metal contamination in bottom sediments (Case study: Straszyn Lake, Poland). Arch. Environ. Contam. Toxicol. 2019, 77, 605–618. [Google Scholar] [CrossRef]
- Martínez-Santos, M.; Probst, A.; García-García, J.; Ruiz-Romera, E. Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment. Sci. Total Environ. 2015, 514, 10–25. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Smorong, D.E.; Sinclair, J.A.; Lindskoog, R.; Wang, N.; Severn, C.; Gouguet, R.; Meyer, J.; Field, J. Baseline ecological risk assessment of the Calcasieu Estuary, Louisiana: Part 2. An evaluation of the predictive ability of effects-based sediment-quality guidelines. Arch. Environ. Contam. Toxicol. 2011, 61, 14–28. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef]
- VanLoon, G.W.; Duffy, S.J. Environmental Chemistry; PWN: Warszawa, Poland, 2007; pp. 308–321. [Google Scholar]
- Hou, D.; He, J.; Lü, C.; Wang, W.; Zhang, F. Spatial distributions of humic substances and evaluation of Sediment Organic Index on Lake Dalinouer, China. J. Geochem. 2014, 2014, 502597. [Google Scholar] [CrossRef] [Green Version]
- Puczko, K.; Zieliński, P.; Jekatierynczuk-Rudczyk, E. Dissolved organic matter in freshwater. Kosmos 2017, 66, 457–464. (In Polish) [Google Scholar]
- Lipczyńska-Kochany, E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 2018, 202, 420–437. [Google Scholar] [CrossRef]
- Arifur Rahman, M.; Abu Hasan, M.; Rahim, A.; Shafi qul Alam, A.M. Characterization of humic acid from the river bottom sediments of Burigonga: Complexation studies of metals with humic acid. Pak. J. Anal. Environ. Chem. 2010, 11, 42–52. [Google Scholar]
- Aeschbacher, M.; Brunner, S.H.; Schwarzenbach, R.P.; Sander, M. Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments. Environ. Sci. Technol. 2012, 46, 3882–3890. [Google Scholar] [CrossRef]
- Werner, D.; Garratt, J.A.; Pigott, G. Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter and minerals. J. Soils Sediments 2013, 13, 129–139. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Santos, M.; Araújo, M.F. Metal binding by humic acids in recent sediments from the SW Iberian coastal area. Estuar. Coast. Shelf Sci. 2011, 93, 478–485. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Baran, S.; Wójcikowska-Kapusta, A. Quantity and quality of organic carbon in bottom sediments of two upland dam reservoirs in Poland. Environ. Prot. Eng. 2015, 41, 95–110. [Google Scholar] [CrossRef]
- Sangjin, H.; Sukjae, K.; Hacgyu, L.; Wonyong, C.; Hyunwoong, P.; Jeyong, Y.; Taeghwan, H. New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous Mesoporous Mater. 2003, 58, 131–135. [Google Scholar]
- Mielnik, L. The application of photoinduced luminescence in research on humic substances of various origins. Oceanol. Hydrobiol. Stud. 2009, XXXVIII, 61–67. [Google Scholar] [CrossRef]
- Roden, E.E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H.F. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geoci. 2010, 3, 417–421. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 2020, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Myślińska, E. Laboratory Studies Grounds and Soils; Wydawnictwa Uniwersytetu Warszawskiego: Warszawa, Poland, 2016; pp. 1–280. (In Polish) [Google Scholar]
- Griffith, S.M.; Schnitzer, M. Analytical characteristic of humic and fulvic acids extracted from tropical volcanic soils. Proc. Soil Sci. Soc. Am. 1975, 39, 861. [Google Scholar] [CrossRef]
- Silva, J.R.; Silva, D.J.; Gava, C.A.T.; Oliveira, T.C.; Freitas, M.S.C. Carbon in humic fractions of organic matter in soil treated with organic composts under mango cultivation. Sociedade Brasileira Ciência Solo 2016, 40, e0150095. [Google Scholar] [CrossRef] [Green Version]
- Khairy, M.A.; Kolb, M.; Mostafa, A.R.; El-Fiky, A.; Bahadir, M. Risk assessment of polycyclic aromatic hydrocarbons in Mediterranean semi-enclosed basin affected by human activities. J. Hazard. Mater. 2009, 170, 389–397. [Google Scholar] [CrossRef]
- Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. Arch. Environ. Contam. Toxicol. 2001, 41, 8–21. [Google Scholar]
- Perrodin, Y.; Babut, M.; Bedell, J.P.; Bray, M.; Clement, B.; Delolme, C.; Devaux, A.; Durrieu, C.; Garric, J.; Montuelle, B. Assessment of ecotoxicological risks related to depositing dredged materials from canals in northern France on soil. Environ. Int. 2006, 32, 804–814. [Google Scholar] [CrossRef]
- Bartoszek, L.; Koszelnik, P.; Gruca-Rokosz, R.; Kida, M. Assessment of agricultural use of the bottom sediments from eutrophic Rzeszów reservoir. Annu. Set Environ. Prot. 2015, 17, 396–409. [Google Scholar]
- Czeczot, H.; Majewska, M. Cadmium—Health risks and effects. Farm. Pol. 2010, 66, 243–250. (In Polish) [Google Scholar]
- Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003, 192, 95–117. [Google Scholar] [CrossRef]
- Bojakowska, I. Criteria for assessing pollution of water sediments. Przegląd Geologiczny 2001, 49, 213–218. (In Polish) [Google Scholar]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Xie, X.; Lui, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef]
- Pękala, A. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance. IOP Conf. Ser. Mater. Sci. Eng. 2017, 45, 022035. [Google Scholar] [CrossRef]
- Tarnawski, M.; Baran, A. Use of chemical indicators and bioassays in bottom sediment ecological risk assessment. Arch. Environ. Contam. Toxicol. 2018, 74, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Sapek, A. Dissolved organic carbon in water from peat soils in the Ławki swamp. Roczniki Gleboznawcze 2009, 60, 89–101. (In Polish) [Google Scholar]
- El-Radaideh, N.; Al-Taani, A.A.; Al Khateeb, W.M. Characteristics and Quality of Reservoir Sediments, Mujib Dam, Central Jordan, as a Case Study. Environ. Monit. Assess. 2017, 189, 143. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Wang, C. Longitudinal Distribution of Heavy Metals in Sediments of a Canyon Reservoir in Southwest China Due to Dam Construction. Environ. Monit. Assess. 2013, 185, 6101–6110. [Google Scholar] [CrossRef]
- Adiyiah, J.; Acheampong, M.A.; Ansa, E.D.O.; Kelderman, P. Grainsize analysis and metals distribution in sediment fractions of Lake Markermeer in the Netherlands. Int. J. Environ. Sci. Toxicol. Res. 2014, 2, 160–167. [Google Scholar]
- Hu, X.F.; Du, Y.; Feng, J.W.; Fang, S.Q.; Gao, X.J.; Xu, S.Y. Spatial and seasonal variations of metals in wetland soils of the tidal flats in the Yangtze Estuary, China: Environmental implications. Pedosphere 2013, 23, 511–522. [Google Scholar] [CrossRef]
- Gierszewski, P. The concentration of heavy metals in the sediments of the Włocławek reservoir as an indicator of the hydrodynamic conditions of deposition. Landf. Anal. 2008, 9, 79–82. (In Polish) [Google Scholar]
- Rafałowska, M.; Sobczyńska-Wójcik, K. Accumulation of matter in bottom sediments of Pilwa Bay (Dobskie Lake) under the influence of intensive agricultural production. Proc. ECOpole 2014, 8, 261–266. [Google Scholar]
- Cymes, I.; Glińska-Lewczuk, K.; Szymczyk, S.; Sidoruk, M.; Potasznik, A. Distribution and potential risk assessment of heavy metals and arsenic in sediments of a dam reservoir: A case study of the Łoje Retention Reservoir, NE Poland. J. Elem. 2017, 22, 843–856. [Google Scholar] [CrossRef]
Parameters | Cierpisz | Brzóza Królewska | Nowa Wieś | Kamionka | Blizne |
---|---|---|---|---|---|
Year of construction | 1953 | 1978 | 1977 | 1957 | 2002 |
Year of reclamation (desludging) | 1990–1991 | 1996 | - | 2007 | - |
Coordinate | 50°09′ N 21°43′ E | 50°14′ N 22°19′ E | 50°06′ N 22°03′ E | 50°08′ N 21°40′ E | 49°44′ N 22°00′ E |
Volume (103 m3) | 22 | 50 | 75 | 105 | 137 |
Mean depth (max.) (m) | 0.9 (1.5) | 0.7 (1.5) | 1.0 (3.0) | 1.5 (3.0) | 1.6 (3.9) |
Area (ha) | 2.3 | 7.05 | 3.0 | 7.0 | 8.66 |
Hydraulic retention time (days) | 1.2 | 2.5 | 1.3 | 4.8 | 18.0 |
Catchment area (km2) | 54.5 | 30.4 | 208.1 | 90 | 12.0 |
Catchment type | Agricultural—forest | forest—agricultural with buildings | pasture—agricultural with buildings | pasture—agricultural—forest with buildings | pasture—forest—agricultural |
Catchment shape | lowland | upland | upland | lowland | mountainous |
Site | Granulometric Fractions [%] | ||
---|---|---|---|
Clay < 0.002 mm | Silt 0.002–0.063 mm | Sand 0.063–2.0 mm | |
CI1 | 0.01 | 10.9 | 89.1 |
CI2 | 0.01 | 9.79 | 90.2 |
BK1 | 2.46 | 19.8 | 77.8 |
BK2 | 0.01 | 7.06 | 92.9 |
NW1 | 9.26 | 49.9 | 40.8 |
NW2 | 11.0 | 50.2 | 38.8 |
KA1 | 0.01 | 9.20 | 90.8 |
KA2 | 0.01 | 6.26 | 93.7 |
KA3 | 0.01 | 8.15 | 91.8 |
BL1 | 22.1 | 63.1 | 12.7 |
BL2 | 15.9 | 70.5 | 13.5 |
Site n = 9 | Cd | Pb | Cr | Cu | Ni | Zn | OM | Corg. | pHKCl |
---|---|---|---|---|---|---|---|---|---|
[mg∙kg−1 dw] | [%] | [mg∙g−1 dw] | [–] | ||||||
CI1 | 1.50 ± 0.27 | 9.44 ± 4.60 | 4.93 ± 1.84 | 2.77 ± 0.92 | 2.62 ± 0.76 | 27.2 ± 6.1 | 1.78 ± 1.04 | 6.31 ± 4.28 | 3.84–5.29 |
CI2 | 0.88 ± 0.45 | 6.02 ± 2.31 | 2.75 ± 1.07 | 1.82 ± 1.58 | 2.03 ± 0.92 | 17.6 ± 6.9 | 1.38 ± 0.47 | 5.18 ± 2.69 | 4.23–5.55 |
BK1 | 2.70 ± 0.70 | 35.1 ± 15.6 | 12.6 ± 6.8 | 14.4 ± 5.5 | 7.75 ± 4.24 | 42.1 ± 20.9 | 6.48 ± 3.73 | 33.5 ± 19.9 | 4.72–5.38 |
BK2 | 1.16 ± 0.15 | 5.80 ± 3.51 | 3.50 ± 1.28 | 0.836 ± 0.523 | 1.35 ± 0.53 | 9.91 ± 4.32 | 1.00 ± 0.51 | 2.96 ± 1.84 | 4.32–6.41 |
NW1 | 3.18 ± 0.96 | 56.3 ± 16.3 | 47.1 ± 14.9 | 47.5 ± 16.6 | 34.8 ± 11.0 | 227 ± 95 | 12.4 ± 4.2 | 43.5 ± 15.7 | 5.30–7.34 |
NW2 | 3.49 ± 0.70 | 69.7 ± 9.3 | 59.8 ± 7.5 | 43.6 ± 5.1 | 45.4 ± 5.5 | 237 ± 54 | 14.0 ± 2.7 | 42.1 ± 9.1 | 5.86–7.58 |
KA1 | 1.85 ± 0.78 | 16.4 ± 10.3 | 13.1 ± 7.6 | 3.58 ± 2.01 | 4.40 ± 2.37 | 31.5 ± 15.1 | 2.75 ± 2.47 | 14.1 ± 12.9 | 4.24–5.44 |
KA2 | 1.15 ± 0.45 | 5.01 ± 2.67 | 4.86 ± 3.36 | 3.47 ± 3.22 | 2.24 ± 1.35 | 17.5 ± 7.6 | 2.19 ± 2.02 | 10.6 ± 10.8 | 4.78–5.43 |
KA3 | 1.59 ± 0.30 | 10.1 ± 5.0 | 17.7 ± 9.5 | 1.53 ± 0.46 | 3.21 ± 1.15 | 29.3 ± 11.6 | 2.47 ± 1.02 | 10.6 ± 7.4 | 4.45–5.99 |
BL1 | 1.64 ± 0.60 | 34.8 ± 7.4 | 40.6 ± 2.8 | 18.5 ± 4.2 | 22.4 ± 2.7 | 50.1 ± 4.0 | 7.16 ± 1.39 | 30.6 ± 9.7 | 7.78–8.19 |
BL2 | 2.55 ± 0.54 | 49.1 ± 9.3 | 48.4 ± 4.2 | 28.0 ± 5.9 | 31.5 ± 3.0 | 53.2 ± 5.7 | 5.83 ± 2.34 | 20.9 ± 18.6 | 6.54–8.14 |
TEC | 0.99 | 35.8 | 43.4 | 31.6 | 22.7 | 121 | |||
PEC | 4.98 | 128 | 111 | 149 | 48.6 | 459 |
Site | Cd | Pb | Cr | Cu | Ni | Zn | PECq |
---|---|---|---|---|---|---|---|
CI1 | 0.30 | 0.07 | 0.04 | 0.02 | 0.05 | 0.06 | 0.09 |
CI2 | 0.18 | 0.05 | 0.02 | 0.01 | 0.04 | 0.04 | 0.06 |
BK1 | 0.54 | 0.27 | 0.11 | 0.10 | 0.16 | 0.09 | 0.21 |
BK2 | 0.23 | 0.05 | 0.03 | 0.01 | 0.03 | 0.02 | 0.06 |
NW1 | 0.64 | 0.44 | 0.42 | 0.32 | 0.72 | 0.49 | 0.51 |
NW2 | 0.70 | 0.54 | 0.54 | 0.29 | 0.93 | 0.52 | 0.59 |
KA1 | 0.37 | 0.13 | 0.12 | 0.02 | 0.09 | 0.07 | 0.13 |
KA2 | 0.23 | 0.04 | 0.04 | 0.02 | 0.05 | 0.04 | 0.07 |
KA3 | 0.32 | 0.08 | 0.16 | 0.01 | 0.07 | 0.06 | 0.12 |
BL1 | 0.33 | 0.27 | 0.37 | 0.12 | 0.46 | 0.11 | 0.28 |
BL2 | 0.51 | 0.38 | 0.44 | 0.19 | 0.65 | 0.12 | 0.38 |
r | Cierpisz (n = 18) | Brzóza Królewska (n = 18) | Kamionka (n = 27) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | HS | FA | HA | HU | OM | HS | FA | HA | HU | OM | HS | FA | HA | HU | |
Cd | - | - | - | - | - | 0.75 | 0.74 | 0.78 | 0.73 | 0.70 | 0.41 | 0.48 | 0.55 | 0.45 | 0.45 |
Pb | - | - | - | - | - | 0.90 | 0.93 | 0.90 | 0.93 | 0.89 | - | - | - | - | - |
Cr | 0.71 | 0.76 | 0.53 | 0.80 | 0.67 | 0.96 | 0.96 | 0.95 | 0.95 | 0.93 | 0.47 | - | - | - | - |
Cu | - | - | - | - | - | 0.78 | 0.79 | 0.82 | 0.70 | 0.84 | - | - | - | - | - |
Ni | 0.58 | 0.59 | - | 0.55 | 0.60 | 0.90 | 0.91 | 0.89 | 0.91 | 0.87 | 0.63 | 0.54 | 0.50 | 0.54 | 0.54 |
Zn | 0.58 | 0.60 | 0.52 | 0.61 | 0.51 | 0.97 | 0.97 | 0.95 | 0.97 | 0.94 | 0.73 | 0.70 | 0.69 | 0.71 | 0.66 |
r | Nowa Wieś (n = 18) | Blizne (n = 18) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OM | HS | FA | HA | HU | OM | HS | FA | HA | HU | |
Cd | 0.62 | - | 0.58 | 0.64 | - | - | - | - | - | - |
Pb | 0.81 | 0.60 | 0.65 | 0.64 | - | - | - | - | - | - |
Cr | 0.78 | 0.56 | 0.70 | 0.47 | - | - | - | - | - | - |
Cu | 0.71 | 0.77 | 0.85 | 0.66 | 0.55 | - | - | - | - | - |
Ni | 0.80 | 0.54 | 0.62 | 0.50 | - | - | - | - | - | - |
Zn | 0.86 | 0.85 | 0.84 | 0.84 | 0.57 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoszek, L.; Gruca-Rokosz, R.; Pękala, A.; Czarnota, J. Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution. Resources 2022, 11, 113. https://doi.org/10.3390/resources11120113
Bartoszek L, Gruca-Rokosz R, Pękala A, Czarnota J. Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution. Resources. 2022; 11(12):113. https://doi.org/10.3390/resources11120113
Chicago/Turabian StyleBartoszek, Lilianna, Renata Gruca-Rokosz, Agnieszka Pękala, and Joanna Czarnota. 2022. "Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution" Resources 11, no. 12: 113. https://doi.org/10.3390/resources11120113
APA StyleBartoszek, L., Gruca-Rokosz, R., Pękala, A., & Czarnota, J. (2022). Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution. Resources, 11(12), 113. https://doi.org/10.3390/resources11120113