Predicting Rock Bursts in Rock Mass Blocks Using Acoustic Emission
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- -
- For the rock mass block at the time of the explosion:
- -
- In equilibrium:
- -
- At the initial moment of the decline in activity = 62 min–1, = 4.1.
- -
- At the final moment of the decline in activity = (16) = 2 min−1, = 0.69.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, J.; Zhang, W.; Ma, J. Experimental study on butterfly shape of failure zone and fractal characteristics of rock burst. Eng. Fail. Anal. 2022, 140, 106636. [Google Scholar] [CrossRef]
- Khayrutdinov, A.M.; Kongar-Syuryun, C.B.; Kowalik, T.; Tyulyaeva, Y.S. Stress-strain behavior control in rock mass using different-stregth backfill. Mining Inf. Anal. Bull. 2020, 10, 42–55. [Google Scholar] [CrossRef]
- Sidorov, D.V. Methodology of reducing rock bump hazard during room and rillar mining of north ural deep bauxite deposits. J. Min. Inst. 2017, 223, 58–69. [Google Scholar] [CrossRef]
- Ivanov, S.L.; Fadeev, D.V.; Kudryavtseva, R.-E.A. Peat mining, a look through the centuries. Quest Hist. 2022, 7, 45–63. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, J.; Pan, Y.; Yu, H. Experimental study on intensity and energy evolution of deep coal and gas outburst. Fuel 2022, 324, 124484. [Google Scholar] [CrossRef]
- Gendler, S.G.; Gabov, V.V.; Babyr, N.V.; Prokhorova, E.A. Justification of engineering solutions on reduction of occupational traumatism in coal longwalls. Mining Inf. Anal. Bull. 2022, 1, 5–19. [Google Scholar] [CrossRef]
- Song, D.; He, X.; Qiu, L.; Zhao, Y.; Cheng, X.; Wang, A. Study on real time dynamic monitoring and early warning technology of regional and local outburst danger. Meitan Kexue Jishu 2021, 49, 110–119. [Google Scholar] [CrossRef]
- Gendler, S.G.; Fazylov, I.R. Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines. Mining Inf. Anal. Bull. 2021, 9, 65–78. [Google Scholar] [CrossRef]
- Protosenya, A.G.; Stavrogin, A.N. Mechanics of Deformation and Destruction of Rocks; Nedra: Moscow, Russia, 1992; p. 224. [Google Scholar]
- Rybak, J.; Khayrutdinov, M.M.; Kuziev, D.A.; Kongar-Syuryun, C.B.; Babyr, N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. J. Min. Inst. 2022, 253, 61–70. [Google Scholar] [CrossRef]
- Mengel, D.A. The results of rock burst prediction on the sokolovskaya underground mining by the acoustic emission method. Mining Inf. Anal. Bull. 2020, 3–1, 149–160. [Google Scholar] [CrossRef]
- Shkuratnik, V.L.; Nikolenko, P.V. Using acoustic emission memory of composites in critical stress control in rock masses. J. Min. Sci. 2013, 49, 544–549. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Yu, M.; Li, X.; Hu, J.; Yang, H. Acoustic emission monitoring technology for coal and gas outburst. Energy Sci. Eng. 2019, 7, 443–456. [Google Scholar] [CrossRef]
- Li, M.; Su, C.; Li, G. Prediction of the stability of the loaded rock based on the acoustic emission characteristics of the loaded rock based on data mining. Shock. Vib. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Du, S.; Feng, G.; Li, Z.; Sarkodie-Gyan, T.; Wang, J.; Ma, Z.; Li, W. Measurement and prediction of granite damage evolution in deep mine seams using acoustic emission. Meas. Sci. Technol. 2019, 30, 114002. [Google Scholar] [CrossRef]
- Clavijo, J.; Wang, H.; Sánchez, S. Observation of significant differences between electromagnetic and acoustic emissions during fracture processes: A study on rocks under compression loading. J. Phys. Conf. Ser. 2019, 1386, 012107. [Google Scholar] [CrossRef]
- Efimov, V.P. Effect of loading rate on fracture toughness within the kinetic concept of thermal fluctuation mechanism of rock failure. J. Min. Sci. 2016, 52, 274–278. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Ren, X.; Yang, A.; Niu, Y. Mechanism of rock deformation memory effect in low stress region and its memory fading. Rock Soil Mech. 2014, 35, 1007–1014. [Google Scholar]
- Nosov, V.V. Control of inhomogeneous materials strength by method of acoustic emission. J. Min. Inst. 2017, 226, 469–479. [Google Scholar] [CrossRef]
- FNiP, No. 505. Federal Norms and Regulations in the Field of Industrial Safety « Safety Rules for Mining Operations and Processing of Solid Minerals»; Federal Service for Environmental, Technological and Nuclear Supervision (Rostekhnadzor): Moscow, Russia, 2020. (In Russian)
- Kuksenko, V.S.; Makhmudov, K.F.; Mansurov, V.A.; Sultonov, U.; Rustamova, M.Z. Changes in structure of natural heterogenous materials under deformation. J. Min. Sci. 2009, 45, 355–358. [Google Scholar] [CrossRef]
- Shcherbakov, I.P.; Kuksenko, V.S.; Chmel’, A.E. Temperature dependence of microdamage accumulation in granite under impact fracture. J. Min. Sci. 2013, 49, 919–925. [Google Scholar] [CrossRef]
- Kocharyan, G.G.; Ostapchuk, A.A. Acoustic emission during different-type inter-block movements. J. Min. Sci. 2015, 51, 1–9. [Google Scholar] [CrossRef]
- Krivosheev, I.A.; Ivanov, G.A. Statistical method for processing acoustic emission signals in a rock massif. Defektoskopiya 2002, 2, 62–65. [Google Scholar]
- Nagovitsyn, Y.N.; Kakoshina, L.V. Regional rockburst hazard forecast at the mines of the Polar Division of PJSC MMC Norilsk Nickel. Development prospects. In Proceedings of the International Scientific and Practical Conference Dedicated to the 110th Anniversary of the Mining Faculty, Mining in the 21st Century: Technology, Science, Education, Saint Petersburg Mining University, Saint Petersburg, Russia, 28–29 October 2015. [Google Scholar]
- Gilyarov, V.L.; Damaskinskaya, E.E.; Kadomtsev, A.G.; Rasskazov, I.Y. Analysis of statistic parameters of geoacoustic monitoring data for the antey uranium deposit. J. Min. Sci. 2014, 50, 443–447. [Google Scholar] [CrossRef]
- Oparin, V.N.; Yemanov, A.F.; Vostrikov, V.I.; Tsibizov, L.V. Kinetics of seismic emission in coal mines in kuzbass. J. Min. Sci. 2013, 4, 40–45. [Google Scholar] [CrossRef]
- Rasskazov, I.Y.; Kursakin, G.A. Features of seismoacoustic control of the geomechanical state of a rock mass in geodynamically active areas. News High Inst. Min. Mag. 2006, 6, 22–28. [Google Scholar]
- Meng, Q.; Zhang, M.; Han, L.; Pu, H.; Chen, Y. Acoustic emission characteristics of red sandstone specimens under uniaxial cyclic loading and unloading compression. Rock Mech. Rock Eng. 2018, 51, 969–988. [Google Scholar] [CrossRef]
- Archer, J.W.; Dobbs, M.R.; Aydin, A.; Reeves, H.J.; Prance, R.J. Measurement and correlation of acoustic emissions and pressure stimulated voltages in rock using an electric potential sensor. Int. J. Rock Mech. Min. Sci. 2016, 89, 26–33. [Google Scholar] [CrossRef]
- Nosov, V.V. Bump hazard evaluation of a rock mass area as a result of its seismic acoustic activity registration. J. Min. Inst. 2015, 216, 62–75. (In Russian) [Google Scholar]
- Nosov, V.V.; Chaplin, I.E.; Gilyazetdinov, E.R.; Grigoriev, E.V.; Pavlenko, I.A. Micromechanics, nanophysics and non-destructive testing of the strength of structural materials. Mater. Phys. Mech. 2019, 42, 808–824. [Google Scholar] [CrossRef]
- Regel’, V.R.; Slutsker, A.I.; Tomashevskii, E.E. The kinetic nature of the strength of solids. Sov. Phys. Uspekhi 1972, 15, 45–65. [Google Scholar] [CrossRef]
- Grigorev, E.; Nosov, V. Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow. Appl. Sci. 2022, 12, 4549. [Google Scholar] [CrossRef]
- Trapeznikov, Y.A.; Manzhikov, B.T.; Bogomolov, L.M. Amplitude spectra of acoustic emission under stepwise loading of rocks. Volc. Seism. 2000, 2, 75–78. [Google Scholar]
AE Indicator | Micromodel | Nanomodel | Property |
---|---|---|---|
FAE | lnξ1/lnξ2 | σ1/σ2 | Relative stress |
XAE (s−1) | dlnξ/dt | γ/KT | Structure and decline in activity |
WAE | dlnξ/dKs * | ω=γσ/KT | Durability |
Explosion Number | N∑(τp)1 | N’0Σ1, min−1 | WpAE1 | W0AE1 | WavgAE1 | WavgAE | FAE1 | XAE1, min−1 | Rock Pressure, σ/[σ]avg |
---|---|---|---|---|---|---|---|---|---|
114 | 3193 | 142 | 2.08 | 5.56 | 3.82 | 3.55 | 0.37 | 0.02 | Increased rock pressure, 1.325 |
115 | 2175 | 173 | 3.24 | 5.76 | 4.5 | 4.42 | 0.56 | 0.04 | |
116 | 2415 | 198 | 3.33 | 5.91 | 4.62 | 4.71 | 0.56 | 0.02 | |
208 | 1046 | 182 | 1.24 | 5.35 | 3.29 | 3.03 | 0.23 | 0.12 | |
212 | 1031 | 195 | 4.04 | 6.18 | 5.11 | 4.35 | 0.65 | 0.12 | |
214 | 1607 | 256 | 3.09 | 6.07 | 4.58 | 3.69 | 0.51 | 0.07 | |
215 | 2092 | 241 | 1.58 | 5.68 | 3.63 | 3.27 | 0.28 | 0.08 | |
217 | 1413 | 204 | 3.42 | 5.97 | 4.7 | 3.94 | 0.57 | 0.1 | |
200 | 1519 | 186 | 1.39 | 5.23 | 3.31 | 3.06 | 0.27 | 0.12 | Partly safe, 1 |
205 | 672 | 135 | 1.1 | 4.91 | 3 | 2.91 | 0.22 | 0.06 | |
131 | 580 | 134 | 1.1 | 4.9 | 3 | 2.2 | 0.22 | 0.04 | Safe, 0.7 |
138 | 332 | 122 | 1.79 | 4.8 | 3.3 | 2.41 | 0.37 | 0.19 | |
184 | 117 | 51 | 1.1 | 3.93 | 2.52 | 2.69 | 0.28 | 0.19 | |
186 | 97 | 46 | 0.69 | 3.83 | 2.26 | 2.47 | 0.18 | 0.29 | |
188 | 193 | 83 | 1.1 | 4.42 | 2.76 | 2.76 | 0.25 | 0.32 | |
194 | 64 | 35 | 1.1 | 3.56 | 2.33 | 2.35 | 0.31 | 0.29 | |
197 | 198 | 62 | 0.69 | 4.13 | 2.41 | 2 | 0.17 | 0.14 | |
Correlation coefficient for ρ and σ/[σ]avg | 0.83 | 0.85 | 0.75 | 0.9 | 0.85 | 0.86 | 0.66 | −0.69 |
Test Parameter | N∑(τp)1 | N’0Σ1 | XAE | FAE | WpAE | W0AE | WavgAE |
---|---|---|---|---|---|---|---|
Coefficient of variation V | 0.062 ÷ 0.68 | 0.04 ÷ 0.74 | 0.02 ÷ 0.26 | 0.07 ÷ 0.43 | 0.07 ÷ 0.51 | 0.01 ÷ 0.28 | 0.04 ÷ 0.67 |
Average values Vavg | 0.32 | 0.3 | 0.1 | 0.24 | 0.27 | 0.08 | 0.19 |
Representativity ratio |ρ|/Vavg | 2.59 | 2.83 | 6.9 | 2.75 | 2.78 | 11.25 | 4.53 |
Rock Burst Risk Category | Rock Burst Risk Indicator | Rock Mass Description in Terms of Rock Burst Risks |
---|---|---|
I | W0AE > 7 | Increased rock burst risks. Mine workings must be immediately stress-relieved; additional precautionary measures are required to ensure safety in the workplace; mining operations are carried out using special methods. |
II | 5 < W0AE ≤ 7 | Rock burst risks. Mine workings must be stress-relieved; mining operations are carried out using standard methods. |
III | W0AE ≤ 5 | No immediate danger of rock bursts. No special measures are needed; ongoing rock burst assessment is carried out. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosov, V.V.; Borovkov, A.I.; Artyushchenko, A.P. Predicting Rock Bursts in Rock Mass Blocks Using Acoustic Emission. Resources 2022, 11, 87. https://doi.org/10.3390/resources11100087
Nosov VV, Borovkov AI, Artyushchenko AP. Predicting Rock Bursts in Rock Mass Blocks Using Acoustic Emission. Resources. 2022; 11(10):87. https://doi.org/10.3390/resources11100087
Chicago/Turabian StyleNosov, Viktor V., Alexey I. Borovkov, and Artem P. Artyushchenko. 2022. "Predicting Rock Bursts in Rock Mass Blocks Using Acoustic Emission" Resources 11, no. 10: 87. https://doi.org/10.3390/resources11100087
APA StyleNosov, V. V., Borovkov, A. I., & Artyushchenko, A. P. (2022). Predicting Rock Bursts in Rock Mass Blocks Using Acoustic Emission. Resources, 11(10), 87. https://doi.org/10.3390/resources11100087