Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield
Abstract
:1. Introduction
2. Methodology
2.1. Site
2.2. Experimental Design
2.3. Soil and Compost Characterization
2.4. Data Collection, Calculations, and Analysis
3. Results
3.1. Linking P Availability and Maize Yield
3.2. Available P in the Soil
3.3. PUE
4. Discussion
4.1. Effects of Available P on Maize Yield
4.2. Effects of P Sources on Soil Available P
4.3. Effects of P Sources on PUE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horrocks, A.; Curtin, D.; Tregurtha, C.; Meenken, E. Municipal Compost as a Nutrient Source for Organic Crop Production in New Zealand. Agronomy 2016, 6, 35. [Google Scholar] [CrossRef]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil Phosphorus Availability With Alkaline/Calcareous Soil. In Western Nutrient Management Conference; University of Idaho: Idaho Falls, ID, USA, 2005; pp. 88–93. [Google Scholar]
- Mullins, G. Phosphorus, Agriculture & The Environment; Virginia Cooperative Extension; Virginia State University: Petersburg, VA, USA, 2009. [Google Scholar]
- Rosemarin, A.; Ekane, N. The governance gap surrounding phosphorus. Nutr. Cycl. Agroecosyst. 2016, 104, 265–279. [Google Scholar] [CrossRef]
- Schröder, L.; Cordell, D.; Smit, A.L.; Rosemarin, A. Sustainable Use of Phosphorus; Plant Research International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Walan, P. Modeling of Peak Phosphorus: A Study of Bottlenecks and Implications. UPTEC 2013, 13, 178–187. [Google Scholar]
- Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate rock production and depletion: Regional disaggregated modelling and global implications. Resour. Conserv. Recycl. 2014, 93, 178–187. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2020; USGS: Reston, VA, USA, 2020. [Google Scholar]
- USGS. Mineral Commodity Summaries 2010; USGS: Reston, VA, USA, 2010. [Google Scholar]
- Haneklaus, N.H. Unconventional Uranium Resources From Phosphates. Encycl. Nucl. Energy 2021, 4, 1–7. [Google Scholar]
- Bationo, A.; Kumar, K.A. Phosphorus use efficiency as related to sources of P fertilizers, rainfall, soil, crop management, and genotypes in the West African semi-arid tropics. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities, 1st ed.; Adu-Gyamfi, J., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2002; pp. 145–154. [Google Scholar]
- Rollett, A.; Sylvester-Bradley, R.; Bhogal, A.; Ginsburg, D.; Griffin, S.; Withers, P. Cost-Effective Phosphorus Management on UK Arable Farms Apparent Soil Phosphate Requirements; Agriculture and Horticulture Development Board (AHDB): London, UK, 2017. [Google Scholar]
- Coutinho, J.; Arrobas, M.; Rodrigues, O. Effect of composted sewage sludge amendment on soil nitrogen and phosphorus availability. Commun. Soil Sci. Plant Anal. 1997, 28, 1845–1857. [Google Scholar] [CrossRef]
- Begum, A. Evaluation of Municipal sewage sludge vermicompost on two Cultivars of Tomato (Lycopersicon esculentum) plants. Int. J. ChemTech Res. 2011, 3, 1184–1188. [Google Scholar]
- Giannakis, G.V.; Kourgialas, N.N.; Paranychianakis, N.V.; Nikolaidis, N.P.; Kalogerakis, N. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Sci. Util. 2014, 22, 116–131. [Google Scholar] [CrossRef]
- Adamtey, N.; Cofie, O.; Ofosu-budu, K.G.; Ofosu-anim, J.; Laryea, K.B.; Forster, D. Effect of N-enriched co-compost on transpiration efficiency and water-use efficiency of maize (Zea mays L.) under controlled irrigation. Agric. Water Manag. 2010, 97, 995–1005. [Google Scholar] [CrossRef]
- Amoah, P.; Adamtey, N.; Cofie, O. Effect of Urine, Poultry Manure, and Dewatered Cabbage in Accra, Ghana. Resour. Artic. 2017, 6, 19. [Google Scholar] [CrossRef]
- Komiyama, T.; Ito, T.; Saigusa, M. Effects of phosphorus-based application of animal manure compost on the yield of silage corn and on soil phosphorus accumulation in an upland Andosol in Japan. Soil Sci. Plant Nutr. 2014, 60, 863–873. [Google Scholar] [CrossRef]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long- term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Horta, C.; Roboredo, M.; Carneiro, J.P.; Duarte, A.C.; Torrent, J.; Sharpley, A. Organic amendments as a source of phosphorus: Agronomic and environmental impact of different animal manures applied to an acid soil. Arch. Agron. Soil Sci. 2018, 64, 257–271. [Google Scholar] [CrossRef]
- Case, S.D.C.; Jensen, L.S. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy. Environ. Technol. 2019, 40, 701–715. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Mishra, R.P.; Shukla, A.K. Yields, Soil Health and Farm Profits under a Rice-Wheat System: Long-Term Effect of Fertilizers and Organic Manures Applied Alone and in Combination. Agron. Artic. 2019, 9, 1. [Google Scholar] [CrossRef]
- Houben, D.; Michel, E.; Nobile, C.; Lambers, H.; Kandeler, E.; Faucon, M.P. Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Appl. Soil Ecol. 2019, 137, 178–186. [Google Scholar] [CrossRef]
- Jamil, M.; Qasim, M.; Umar, M. Utilization of sewage sludge as organic fertiliser in sustainable agriculture. J. Appl. Sci. 2006, 6, 531–535. [Google Scholar] [CrossRef]
- Römer, W.; Schilling, G. Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 1986, 91, 221–229. [Google Scholar] [CrossRef]
- Dijkshoorn, J.A.; Huting, J.; Kempen, B. Soil and Terrain Database of the Republic of Malawi; ISRIC-World Soil Information: Wageningen, The Netherlands, 2016. [Google Scholar]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Method for chemical analysis of soils. N. Zeal. Soil Bur. Sci. Rep. 1987, 80, 1–10. [Google Scholar]
- Ashworth, J.; Keyes, D.; Kirk, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis hydrometer method for particle size analysis. Commun. Soil Sci. Plant Anal. ISSN 2007, 32, 633–642. [Google Scholar] [CrossRef]
- GLOSOLAN. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method; GLOSOLAN: Rome, Italy, 2019. [Google Scholar]
- Murphy, J.; Riley, J. Determination single solution method for the in natural. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; SACRED Africa: Nairobi, Kenya, 2002. [Google Scholar]
- Jones, C.; Olson-rutz, K.; Dinkins, C.P. Nutrient Uptake Timing by Crops; Montana State University: Bozeman, MT, USA, 2015. [Google Scholar]
- Kahiluoto, H.; Kuisma, M.; Ketoja, E.; Salo, T.; Heikkinen, J. Phosphorus in Manure and Sewage Sludge More Recyclable than in Soluble Inorganic Fertilizer. Environ. Sci. Technol. 2015, 49, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, B.; Demers, I.; Ziadi, N.; Chantigny, M.H.; Parent, L.E.; Forge, T.A.; Larney, F.J.; Buckley, K.E. Forms of phosphorus in composts and in compost amended soils following incubation. Can. J. Soil Sci. 2012, 92, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M. A Literature Review on the Availability of Phosphorus from Compost in Relation to the Nitrate Regulations SI 378 of 2006; Environmental Protection Agency: Wexford, Ireland, 2013.
- Zhang, W.; Li, H.; Zhang, J.; Shen, J.; Brown, H.; Wang, E. Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar. Crop J. 2021, 10, 254–261. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. Macronutrient Management Effects on Nutrient Accumulation, Partitioning, Remobilization, and Yield of Hybrid Maize Cultivars. Plant Sci. 2020, 11, 01307. [Google Scholar] [CrossRef]
Parameter | Makoka | Bvumbwe |
---|---|---|
Available P (mg/kg) | 23.86 ± 4.20 | 15.92 ± 3.35 |
pH(water) | 4.97 ± 0.12 | 4.73 ± 0.35 |
Al (g/kg) | 43.66 ± 4.48 | 68.45 ± 5.44 |
Fe (g/kg) | 43.5 ± 10.80 | 81.81 ± 4.72 |
Organic matter (%) | 0.92 ± 0.11 | 1.17 ± 0.06 |
Ca (mg/kg) | 597.97 ± 112.0 | 545.45 ± 81.23 |
K (mg/kg) | 692.94 ± 155.5 | 659.18 ± 65.67 |
Mg (mg/kg) | 930.52 ± 88.64 | 1002.49 ± 111.3 |
Silt (%) | 7.33 ± 1.03 | 10.00 ± 1.27 |
Clay (%) | 21.33 ± 3.72 | 42.00 ± 2.83 |
Sand (%) | 71.30 ± 3.27 | 48.00 ± 3.35 |
Parameter | Market Waste-Faecal Sludge Compost | Market Waste Compost |
---|---|---|
pH(water) | 7.20 ± 0.07 | 8.82 ± 0.09 |
Organic matter (%) | 14.86 ± 0.87 | 13.17 ± 1.23 |
Total P (mg/kg) | 4906.76 ± 384.80 | 3522.22 ± 430.10 |
Available P (mg/kg) | 132.69 ± 9.85 | 113.68 ± 7.62 |
Ca (g/kg) | 11.60 ± 0.46 | 15.20 ± 2.49 |
K (g/kg) | 4.64 ± 0.62 | 5.24 ± 0.61 |
Mg (g/kg) | 4.21 ± 0.52 | 3.80 ± 0.18 |
Zn (mg/kg) | 447.61 ± 35.7 | 335.72 ± 59.48 |
Cd (mg/kg) | 0.31 ± 0.03 | 0.23 ± 0.07 |
Parameters | Column 1 | Column 2 | Column 3 |
---|---|---|---|
Constant | 3945 *** (227) | 3331 *** (204) | 3361 *** (221) |
Site (Makoka) | −2099 *** (188) | −2275 *** (205) | −2339 *** (225) |
Season (1) | 481 ** (182) | 231 (195) | 357 (196) |
Available P at week 3 (mg/kg) | 31 *** (5) | ||
Available P at week 6 (mg/kg) | 37 *** (7) | ||
Available P at week 9 (mg/kg) | 38 *** (8) | ||
R2 | 0.50 | 0.49 | 0.46 |
N | 144 | 144 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnthambala, F.; Tilley, E.; Tyrrel, S.; Sakrabani, R. Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources 2022, 11, 86. https://doi.org/10.3390/resources11100086
Mnthambala F, Tilley E, Tyrrel S, Sakrabani R. Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources. 2022; 11(10):86. https://doi.org/10.3390/resources11100086
Chicago/Turabian StyleMnthambala, Frank, Elizabeth Tilley, Sean Tyrrel, and Ruben Sakrabani. 2022. "Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield" Resources 11, no. 10: 86. https://doi.org/10.3390/resources11100086
APA StyleMnthambala, F., Tilley, E., Tyrrel, S., & Sakrabani, R. (2022). Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources, 11(10), 86. https://doi.org/10.3390/resources11100086