Design and Analysis of SEU Hardened Latch for Low Power and High Speed Applications
Abstract
:1. Introduction
2. Earlier Works
3. Proposed LPHS hardened Latch
- TF on node d1 (or d1b): if the transient fault occurs at d1 (or d1b), d1 flips its state from 1 to 0, similarly, d1b from 0 to 1. Consequently, part-1 latches the erroneous value, due to the positive feedback structure. Yet, the upset value cannot propagate to the C-element, since part-2 of the latch holds the correct value and leaves the output Q in a high impedance state. Hence, the output is preserved.
- TF on node d2 (or d2b): d2 flips from 1 to 0 and d2b from 0 to 1. Consequently, part-2 latches erroneous value due to the positive feedback loop. Even though, Q will not be impacted, because of the correct values produced by part-1. For data input D = 0, the same operation continues.
3.1. SEU Resilience Verification
3.2. Latch Assessment and Comparison
4. Supply Voltage, Temperature and Process Variation Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dodd, P.E.; Massengill, L.W. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 2003, 50, 583–602. [Google Scholar] [CrossRef]
- Ferlet-Cavrois, V.; Massengill, L.W.; Gouker, P. Single event transients in digital CMOS—A review. IEEE Trans. Nucl. Sci. 2013, 3, 1767–1790. [Google Scholar] [CrossRef]
- Markovic, D.; Wang, C.C.; Alarcon, L.P.; Liu, T.T.; Rabaey, J.M. Ultralow-power design in near-threshold region. Proc. IEEE 2010, 2, 237–252. [Google Scholar] [CrossRef]
- Nicolaidis, M. Design for soft error mitigation. IEEE Trans. Device Mater. Reliab. 2005, 3, 405–418. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, T.; Liang, F.; Zhao, J.; Jiang, P. A power-delay-product efficient and SEU-tolerant latch design. IEICE Electron. Express 2017, 23, 20170972. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Lu, X.; Li, J. An advanced SEU tolerant latch based on error detection. J. Semicond. 2018, 5, 055003. [Google Scholar] [CrossRef]
- Toro, D.G.; Arzel, M.; Seguin, F.; Jézéquel, M. Soft error detection and correction technique for radiation hardening based on C-element and BICS. IEEE Trans. Circuits Syst. II: Express Briefs 2014, 12, 952–956. [Google Scholar] [CrossRef]
- Shirinzadeh, S.; Rahebeh, N.A. A novel soft error hardened latch design in 90nm CMOS. In Proceedings of the 16th CSI International Symposium on Computer Architecture and Digital Systems (CADS 2012), Shiraz, Iran, 2–3 May 2012; pp. 60–63. [Google Scholar]
- Nan, H.; Ken, C. Low cost and highly reliable hardened latch design for nanoscale CMOS technology. Microelectron. Reliab. 2012, 6, 1209–1214. [Google Scholar] [CrossRef]
- Fazeli, M.; Miremadi, S.G.; Ejlali, A.; Patooghy, A. Low energy single event upset/single event transient-tolerant latch for deep subMicron technologies. IET Comput. Digit. Tech. 2009, 3, 289–303. [Google Scholar] [CrossRef]
- Nan, H.; Ken, C. High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 7, 1445–1457. [Google Scholar] [CrossRef]
- Rajaei, R.; Mahmoud, T.; Mahdi, F. Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation. Microelectron. Reliab. 2013, 6, 912–924. [Google Scholar] [CrossRef]
- Yan, A.; Liang, H.; Huang, Z.; Jiang, C.; Ouyang, Y.; Li, X. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations. Microelectron. Reliab. 2016, 63, 239–250. [Google Scholar] [CrossRef]
- Kumar, C.I.; Anand, B. High performance energy efficient radiation hardened latch for low voltage applications. Integration 2019, 66, 119–127. [Google Scholar] [CrossRef]
- Nan, H.; Ken, C. Novel radiation hardened latch design considering process, voltage and temperature variations for nanoscale CMOS technology. Microelectron. Reliab. 2011, 12, 2086–2092. [Google Scholar] [CrossRef]
- Yan, A.; Liang, H.; Huang, Z.; Jiang, C.; Yi, M. A self-recoverable, frequency-aware and cost-effective robust latch design for nanoscale CMOS technology. IEICE Trans. Electron. 2015, 12, 1171–1178. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; Huang, Z.; Yan, A. Design of a radiation hardened latch for low-power circuits. In Proceedings of the 2014 IEEE 23rd Asian Test Symposium, Hangzhou, China, 16–19 November 2014; pp. 19–24. [Google Scholar]
- Wang, H.; Dai, X.; Wang, Y.; Nofal, I.; Cai, L.; Shen, Z.; Sun, W.; Bi, J.; Li, B.; Guo, G.; et al. A single event upset tolerant latch design. Microelectron. Reliab. 2018, 88, 909–913. [Google Scholar] [CrossRef]
- She, X.; Li, N.; Tong, J. SEU tolerant latch based on error detection. IEEE Trans. Nucl. Sci. 2012, 1, 211–214. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, C. New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans. Electron. Devices 2006, 53, 2816–2823. [Google Scholar] [CrossRef]
- Munteanu, D.; Autran, J.L. Modeling and simulation of single-event effects in digital devices and ICs. IEEE Trans. Nucl. Sci. 2008, 4, 1854–1878. [Google Scholar] [CrossRef]
- Messenger, G.C. Collection of charge on junction nodes from ion tracks. IEEE Trans. Nucl. Sci. 1982, 6, 2024–2031. [Google Scholar] [CrossRef]
- Xuan, S.X.; Li, N.; Erstad, D.O. SET tolerant dynamic logic. IEEE Trans. Nucl. Sci. 2012, 59, 434–438. [Google Scholar]
- Lu, Y.; Lombardi, F.; Pontarelli, S.; Ottavi, M. Design and analysis of single-event tolerant slave latches for enhanced scan delay testing. IEEE Trans. Device Mater. Reliab. 2014, 141, 333–343. [Google Scholar]
- Weste, N.H.; Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective; Pearson Education India: Noida, India, 2015. [Google Scholar]
- Wakerly, J.F. Digital Design: Principles and Practices; Pearson Education Australia: Melbourne, Australia, 2001. [Google Scholar]
Transistors | W/L (µm/µm) | Finger Width (µm) | No. of Fingers |
---|---|---|---|
MP1-MP3 | 0.15/0.045 | 0.15 | 1 |
MN1-MN3 | 0.12/0.045 | 0.12 | 1 |
MP4, MP5, MP6, MP7 | 0.30/0.045 | 0.15 | 2 |
MN4, MN5, MN6, MN7 | 0.24/0.045 | 0.12 | 2 |
MP8-MP10 | 0.45/0.045 | 0.15 | 3 |
MN8-MN10 | 0.36/0.045 | 0.12 | 3 |
Latch | Power (nW) | Delay (ps) | PDP (fJ) | Area | Completely Immune to SEU? |
---|---|---|---|---|---|
LSEH-1 [12] | 2830 | 87.1 | 0.247 | 26 | YES |
LSEH-2 [12] | 3100 | 294.6 | 0.913 | 22 | YES |
NAN2 [9] | 2840 | 5 | 0.014 | 28 | YES |
EVFERST [10] | 1200 | 212.5 | 0.255 | 22 | YES |
RFEL [13] | 490 | 67 | 0.033 | 26 | YES |
EEST [14] | 315.25 | 3.8 | 0.001 | 16 | NO |
LPHS latch | 450 | 3.5 | 0.002 | 24 | YES |
Supply Variation | Process Variation | Temperature Variation | |||||||
---|---|---|---|---|---|---|---|---|---|
0.9 V | 1 V | 1.1 V | ss | tt | ff | 100º | 27º | 0º | |
Power (nW) | 377.9 | 454.5 | 551.2 | 430 | 447.8 | 474.5 | 456.7 | 454.5 | 467.9 |
Delay (ps) | 5.12 | 3.51 | 2.85 | 5.02 | 3.5 | 2.63 | 6.5 | 3.5 | 2.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S, S.K.; S, K. Design and Analysis of SEU Hardened Latch for Low Power and High Speed Applications. J. Low Power Electron. Appl. 2019, 9, 21. https://doi.org/10.3390/jlpea9030021
S SK, S K. Design and Analysis of SEU Hardened Latch for Low Power and High Speed Applications. Journal of Low Power Electronics and Applications. 2019; 9(3):21. https://doi.org/10.3390/jlpea9030021
Chicago/Turabian StyleS, Satheesh Kumar, and Kumaravel S. 2019. "Design and Analysis of SEU Hardened Latch for Low Power and High Speed Applications" Journal of Low Power Electronics and Applications 9, no. 3: 21. https://doi.org/10.3390/jlpea9030021
APA StyleS, S. K., & S, K. (2019). Design and Analysis of SEU Hardened Latch for Low Power and High Speed Applications. Journal of Low Power Electronics and Applications, 9(3), 21. https://doi.org/10.3390/jlpea9030021