Clock Topologies for Molecular Quantum-Dot Cellular Automata
Abstract
:1. Introduction
1.1. Overview of QCA
1.2. Clocked Molecular QCA
2. Model
3. Results
3.1. The Straight Track
3.2. The Wire Crossing
3.3. The Data Loop
3.4. The Molecular Cellular Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMOS | complementary metal-oxide semiconductor |
QCA | quantum-dot cellular automata |
References
- Frank, D. Power-constrained CMOS scaling limits. IBM J. Res. Dev. 2002, 46, 235–244. [Google Scholar] [CrossRef]
- Andrae, A.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Lent, C.; Tougaw, P. A Device Architecture for Computing with Quantum Dots. Proc. IEEE 1997, 85, 541–557. [Google Scholar] [CrossRef]
- Lent, C.; Tougaw, P.; Porod, W.; Bernstein, G. Quantum cellular automata. Nanotechnology 1993, 4, 49. [Google Scholar] [CrossRef]
- Lent, C.S. Molecular electronics—Bypassing the transistor paradigm. Science 2000, 288, 1597–1599. [Google Scholar] [CrossRef]
- Blair, E.; Corcelli, S.; Lent, C. Electric-field-driven electron-transfer in mixed-valence molecules. J. Chem. Phys. 2016, 145, 014307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, K.; Lent, C.S. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 2001, 19, 1752–1755. [Google Scholar] [CrossRef]
- Blair, E.; Lent, C. An architecture for molecular computing using quantum-dot cellular automata. In Proceedings of the 2003 Third IEEE Conference on Nanotechnology, San Francisco, CA, USA, 12–14 August 2003; pp. 402–405. [Google Scholar]
- Toth, G.; Lent, C. Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 1999, 85, 2977–2984. [Google Scholar] [CrossRef] [Green Version]
- Orlov, A.; Amlani, I.; Kummamuru, R.; Rajagopal, R.; Toth, G.; Timler, J.; Lent, C.; Bernstein, G.; Snider, G. Power gain in a quantum-dot cellular automata latch. Appl. Phys. Lett. 2002, 81, 1332–1334. [Google Scholar]
- Blair, E.P.; Liu, M.; Lent, C.S. Signal Energy in Quantum-Dot Cellular Automata Bit Packets. J. Comput. Theor. Nanosci. 2011, 8, 972–982. [Google Scholar] [CrossRef]
- Tougaw, P.; Lent, C. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 1994, 75, 1818–1825. [Google Scholar] [CrossRef]
- Niemier, M.; Kontz, M.; Kogge, P. A design of and design tools for a novel quantum dot based microprocessor. In Proceedings of the 37th Design Automation Conference, Los Angeles, CA, USA, 5–9 June 2000; pp. 227–232. [Google Scholar]
- Orlov, A.O.; Amlani, I.; Bernstein, G.H.; Lent, C.S.; Snider, G.L. Realization of a functional cell for quantum-dot cellular automata. Science 1997, 277, 928–930. [Google Scholar] [CrossRef]
- Amlani, I.; Orlov, A.; Snider, G.; Lent, C. Demonstration of a six-dot quantum cellular automata system. Appl. Phys. Lett. 1998, 72, 2179–2181. [Google Scholar] [CrossRef]
- Smith, C.; Gardelis, S.; Rushforth, A.; Crook, R.; Cooper, J.; Ritchie, D.; Linfield, E.; Jin, Y.; Pepper, M. Realization of quantum-dot cellular automata using semiconductor quantum dots. In Proceedings of the 6th International Conference on New Phenomena in Mesoscopic Structures/4th International Conference on Surfaces and Interfaces of Mesoscopic Devices, Maui, HI, USA, 1–5 December 2003. [Google Scholar] [CrossRef]
- Gardelis, S.; Smith, C.; Cooper, J.; Ritchie, D.; Linfield, E.; Jin, Y. Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 2003, 67. [Google Scholar] [CrossRef]
- Haider, M.B.; Pitters, J.L.; DiLabio, G.A.; Livadaru, L.; Mutus, J.Y.; Wolkow, R.A. Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature. Phys. Rev. Lett. 2009, 102, 046805. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, M.; Chellamma, S.; Varughese, B.; Wang, Y.; Lent, C.; Bernstein, G.; Snider, G.; Peiris, F. Quantum-dot cellular automata at a molecular scale. Ann. N. Y. Acad. Sci. 2002, 960, 225–239. [Google Scholar] [CrossRef]
- Lent, C.; Isaksen, B.; Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003, 125, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Timler, J.; Lent, C.S. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 2002, 91, 823–831. [Google Scholar] [CrossRef]
- Orlov, A.; Kummamuru, R.; Ramasubramaniam, R.; Lent, C.; Bernstein, G.; Snider, G. Clocked quantum-dot cellular automata shift register. Surf. Sci. 2003, 532, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Bennet, C.; Landauer, R. Logical Reversibility of Computation. IBM J. Res. Dev. 1973, 17, 525–532. [Google Scholar] [CrossRef]
- Bennett, C. The Thermodynamics of Computation—A Review. Int. J. Theor. Phys. 1982, 21, 905. [Google Scholar] [CrossRef]
- Bennett, C.; Landauer, R. The Fundamental Physical Limits of Computation. Sci. Am. 1985, 253, 48–56. [Google Scholar] [CrossRef]
- Lent, C.S.; Liu, M.; Lu, Y.H. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 2006, 17, 4240–4251. [Google Scholar] [CrossRef] [PubMed]
- Snider, G.; Blair, E.; Thorpe, C.; Appleton, B.; Boechler, G.; Orlov, A.; Lent, C. There is no Landauer Limit: Experimental tests of the Landauer principle. In Proceedings of the 12th IEEE Conference on Nanotechnology (IEEE Nano 2012), Birmingham, UK, 20–23 August 2012. [Google Scholar]
- Arima, V.; Iurlo, M.; Zoli, L.; Kumar, S.; Piacenza, M.; Sala, F.D.; Matino, F.; Maruccio, G.; Rinaldi, R.; Paolucci, F.; et al. Toward quantum-dot cellular automata units: thiolated-carbazole linked bisferrocenes. Nanoscale 2012, 4, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.; Forrest, R.; Corcelli, S.; Wasio, N.; Quardokus, R.; Brown, R.; Kandel, S.; Lu, Y.; Lent, C.; Henderson, K. Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem. 2015, 127, 15668–15671. [Google Scholar] [CrossRef]
- Blair, E.; Yost, E.; Lent, C. Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 2010, 9, 49–55. [Google Scholar] [CrossRef]
- Lent, C.; Tougaw, P. Lines of interacting quantum-dot cells: A binary wire. J. Appl. Phys. 1993, 74, 6227–6233. [Google Scholar] [CrossRef]
- LaRue, M.; Tougaw, D.; Will, J. Stray Charge in Quantum-dot Cellular Automata: A Validation of the Intercellular Hartree Approximation. IEEE Trans. Nanotechnol. 2013, 12, 225–233. [Google Scholar] [CrossRef]
- Bhanja, S.; Ottavi, M.; Lombardi, F.; Pontarell, S. QCA Circuits for Robust Coplanar Crossing. J. Electron. Test. 2007, 23, 193–210. [Google Scholar] [CrossRef]
- Roohi, A.; Thapliyal, H.; DeMara, R. Wire crossing constrained QCA circuit design using bilayer logic decomposition. Electron. Lett. 2015, 51, 1677–1679. [Google Scholar] [CrossRef]
- Lent, C.; Henderson, K.; Kandel, S.; Corcelli, S.; Snider, G.; Orlov, A.; Kogge, P.; Niemier, M.; Brown, R.; Christie, J.; et al. Molecular cellular networks: A non von Neumann architecture for molecular electronics. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–7. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blair, E.; Lent, C. Clock Topologies for Molecular Quantum-Dot Cellular Automata. J. Low Power Electron. Appl. 2018, 8, 31. https://doi.org/10.3390/jlpea8030031
Blair E, Lent C. Clock Topologies for Molecular Quantum-Dot Cellular Automata. Journal of Low Power Electronics and Applications. 2018; 8(3):31. https://doi.org/10.3390/jlpea8030031
Chicago/Turabian StyleBlair, Enrique, and Craig Lent. 2018. "Clock Topologies for Molecular Quantum-Dot Cellular Automata" Journal of Low Power Electronics and Applications 8, no. 3: 31. https://doi.org/10.3390/jlpea8030031
APA StyleBlair, E., & Lent, C. (2018). Clock Topologies for Molecular Quantum-Dot Cellular Automata. Journal of Low Power Electronics and Applications, 8(3), 31. https://doi.org/10.3390/jlpea8030031