Applications of Sustainable Hybrid Energy Harvesting: A Review
Abstract
:1. Introduction
2. Hybrid Energy Harvesting
2.1. Piezoelectric–Electromagnetic Hybrid Energy Harvesters
2.2. Piezoelectric–Triboelectric Hybrid Energy Harvesters
2.3. Electromagnetic–Triboelectric Hybrid Energy Harvesters
2.4. Piezoelectric–Electromagnetic–Triboelectric Hybrid Energy Harvesters
2.5. Various Hybrid Energy-Harvesting Systems
3. Applications of Sustainable Hybrid Energy Harvesting
3.1. Smart Transportation
3.2. Infrastructure Health Monitoring
3.3. Marine Monitoring and Development
3.4. Human Healthcare Monitoring
3.5. Aerospace Engineering
3.6. Industry Condition Monitoring
3.7. Water Purification
4. Challenges of Hybrid Energy Harvesters
5. Future Perspective and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Wireless Sensor | WSN |
Hybrid Energy Harvester | HEHs |
Piezoelectric–Electromagnetic | PE-EM |
Triboelectric Nanogenerator | TENG |
Piezoelectric–Triboelectric | PE-TE |
Barium Titanate | BTO |
Polydimethylsiloxane | PDMS |
Polyvinylidene Fluoride | PVDF |
Electromagnetic Energy Harvester | EMEHs |
Polytetrafluoroethylene | PTFE |
Piezoelectric–Electromagnetic–Triboelectric | PE-EM-TE |
Piezoelectric Energy Harvester | PEH |
Electromagnetic Generators | EMGs |
Water-Wave Energy Harvester | WWEH |
Ship-Shaped Hybridized Nanogenerator | SHNG |
Hybrid Nanogenerator | HBNGs |
Piezoelectric Generators | PEG |
Lead Zirconate Titanate | PZT |
Point-Of-Use | POU |
Infrared | IR |
Ultraviolet | UV |
Power Management Integrated Circuits | PMICs |
References
- Khan, A.A.; Mahmud, A.; Ban, D. Evolution from single to hybrid nanogenerator: A contemporary review on multimode energy harvesting for self-powered electronics. IEEE Trans. Nanotechnol. 2019, 18, 21–36. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Hybrid, multi-source, and integrated energy harvesters. Front. Mater. 2018, 5, 65. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- Nematollahi, O.; Hoghooghi, H.; Rasti, M.; Sedaghat, A. Energy demands and renewable energy resources in the Middle East. Renew. Sustain. Energy Rev. 2016, 54, 1172–1181. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Suryadevara, N.K. Internet of things: Challenges and opportunities. In Smart Sensors, Measurement and Instrumentation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9, pp. 1–17. [Google Scholar] [CrossRef]
- Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and Challenges for Realising the Internet of Things the Meaning of Things Lies Not in the Things Themselves, but in Our Attitude towards Them. Antoine de Saint-Exupéry. 2010. Available online: http://europa.eu/information_society (accessed on 25 February 2023).
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Chun, J.; Ye, B.U.; Lee, J.W.; Choi, D.; Kang, C.-Y.; Kim, S.-W.; Wang, Z.L.; Baik, J.M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; Hinchet, R.; Ryu, H.; Kim, S.-W. Research Update: Nanogenerators for self-powered autonomous wireless sensors. APL Mater. 2017, 5, 073803. [Google Scholar] [CrossRef]
- Selvan, K.V.; Ali, M.S.M. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 2016, 54, 1035–1047. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.; Kim, T.Y.; Al Hossain, S.; Kim, S.-W.; Kim, J.H. All-in-one energy harvesting and storage devices. J. Mater. Chem. A 2016, 4, 7983–7999. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Hinchet, R.; Ghaffarinejad, A.; Lu, Y.; Hasani, J.Y.; Kim, S.-W.; Basset, P. Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy 2018, 47, 401–409. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Jin, L.; Tao, J.; Bao, R.; Sun, L.; Pan, C. Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Sci. Rep. 2017, 7, 10521. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Yoon, H.; Jiang, T.; Wen, X.; Seung, W.; Kim, S.; Wang, Z.L. Fully Packaged Self-Powered Triboelectric Pressure Sensor Using Hemispheres-Array. Adv. Energy Mater. 2016, 6, 1502566. [Google Scholar] [CrossRef]
- Khan, U.; Kim, T.-H.; Lee, K.H.; Lee, J.-H.; Yoon, H.-J.; Bhatia, R.; Sameera, I.; Seung, W.; Ryu, H.; Falconi, C.; et al. Self-powered transparent flexible graphene microheaters. Nano Energy 2015, 17, 356–365. [Google Scholar] [CrossRef]
- Khan, U.; Kim, T.; Ryu, H.; Seung, W.; Kim, S. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv. Mater. 2017, 29, 1603544. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhang, Z.; Zhao, L.; Lee, C.; Luo, G.; Mao, Q.; Yang, P.; Lin, Q.; Li, X.; et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and peg vibration mechanism. Nano Energy 2021, 80, 105555. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.; Kim, S. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 31, e1802898. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.-H.; Lee, J.; Yamauchi, Y.; Choi, C.H.; Kim, J.H. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Mater. 2017, 5, 073804. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Energy Harvesting Research: The Road from Single Source to Multisource. Adv. Mater. 2018, 30, e1707271. [Google Scholar] [CrossRef]
- Deng, Q.; Kammoun, M.; Erturk, A.; Sharma, P. Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 2014, 51, 3218–3225. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, Y.; Yang, L.; Li, Q.; Zhang, Y.; Zhu, L.; Hickner, M.A.; Zhang, Q.M.; Wang, Q. Flexible Ionic Diodes for Low-Frequency Mechanical Energy Harvesting. Adv. Energy Mater. 2017, 7, 1601983. [Google Scholar] [CrossRef]
- Li, W.; Torres, D.; Díaz, R.; Wang, Z.; Wu, C.; Wang, C.; Wang, Z.L.; Sepúlveda, N. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat. Commun. 2017, 8, 15310. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, Q.; Chen, B.; Ma, Z.; Gong, S. A new class of flexible nanogenerators consisting of porous aerogel films driven by mechanoradicals. Nano Energy 2017, 38, 401–411. [Google Scholar] [CrossRef]
- Shaukat, H.; Ali, A.; Bibi, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. A Review of the Recent Advances in Piezoelectric Materials, Energy Harvester Structures, and Their Applications in Analytical Chemistry. Appl. Sci. 2023, 13, 1300. [Google Scholar] [CrossRef]
- Chae, I.; Jeong, C.K.; Ounaies, Z.; Kim, S.H. Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 2018, 1, 936–953. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhang, Y.; Dang, D.K.; Kim, E.J.; Misra, R.; Deng, L.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Z.; Luo, H.; Wang, R.; Han, Y.; Xiong, Y. Frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling. IET Nanodielectrics 2023, 6, 46–56. [Google Scholar] [CrossRef]
- Van Nguyen, C.; Van Quyen, T.; Le, A.M.; Truong, L.H.; Nguyen, M.T. Advanced Hybrid Energy Harvesting Systems for unmanned Ariel Vehicles (uavs). Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 34–39. [Google Scholar] [CrossRef]
- Liu, C.; Qu, G.; Shan, B.; Aranda, R.; Chen, N.; Li, H.; Zhou, Z.; Yu, T.; Wang, C.; Mi, J.; et al. Underwater Hybrid Energy harvesting based on Teng-MTEG for self-powered Marine Mammal Condition Monitoring System. Mater. Today Sustain. 2023, 21, 100301. [Google Scholar] [CrossRef]
- Wang, C.; Lai, S.-K.; Wang, J.-M.; Feng, J.-J.; Ni, Y.-Q. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Appl. Energy 2021, 291, 116825. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Hong, J.; Pak, S.; Hou, B.; Lee, Y.-W.; Jang, J.E.; Im, H.; Sohn, J.I.; Cha, S.; et al. Sustainable Hybrid Energy Harvester based on air stable quantum dot solar cells and triboelectric nanogenerator. J. Mater. Chem. A 2018, 6, 12440–12446. [Google Scholar] [CrossRef]
- Huo, Z.; Kim, Y.J.; Chen, Y.; Song, T.; Yang, Y.; Yuan, Q.; Kim, S.W. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy. Front. Environ. Sci. Eng. 2023, 17, 118. [Google Scholar] [CrossRef]
- Oh, Y.; Kwon, D.-S.; Eun, Y.; Kim, W.; Kim, M.-O.; Ko, H.-J.; Kang, S.G.; Kim, J. Flexible energy harvester with piezoelectric and thermoelectric hybrid mechanisms for sustainable harvesting. Int. J. Precis. Eng. Manuf. Technol. 2019, 6, 691–698. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, P.E.; Cheok, Q.; Iqbal, A.; Aissa, B. Vibration-based piezoelectric, electromagnetic, and Hybrid Energy Harvesters for microsystems applications: A contributed review. Int. J. Energy Res. 2020, 45, 65–102. [Google Scholar] [CrossRef]
- Akan, O.B.; Cetinkaya, O.; Koca, C.; Ozger, M. Internet of hybrid energy harvesting things. IEEE Internet Things J. 2018, 5, 736–746. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.H.; Yang, X.; Zhou, T.; Han, C.B.; Wang, Z.L. Tribotronic Phototransistor for Enhanced Photodetection and Hybrid Energy Harvesting. Adv. Funct. Mater. 2016, 26, 2554–2560. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Miyatake, M.; Al-Othman, A. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Convers. Manag. 2008, 49, 2711–2719. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, Z.-H.; Cheng, G.; Wu, W.; Wen, X.; Lee, S.; Wang, Z.L. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 2014, 9, 291–300. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, G.; Chen, J.; Lin, L.; Wang, J.; Liu, Y.; Li, H.; Wang, Z.L. A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock. Adv. Energy Mater. 2015, 5, 1501152. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, Z.L.; Yang, Y. Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS Nano 2016, 10, 5696–5700. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, Z.L. Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy. Adv. Mater. 2011, 23, 873–877. [Google Scholar] [CrossRef]
- Pu, X.; Song, W.; Liu, M.; Sun, C.; Du, C.; Jiang, C.; Huang, X.; Zou, D.; Hu, W.; Wang, Z.L. Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells. Adv. Energy Mater. 2016, 6, 1601048. [Google Scholar] [CrossRef]
- Schwodiauer, R.; Neugschwandtner, G.; Schrattbauer, K.; Lindner, M.; Vieytes, M.; Bauer-Gogonea, S.; Bauer, S. Preparation and characterization of novel piezoelectric and pyroelectric polymer electrets. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 578–586. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.L.; Yang, Y. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects. Adv. Mater. 2016, 28, 2881–2887. [Google Scholar] [CrossRef]
- Ko, Y.J.; Kim, D.Y.; Won, S.S.; Ahn, C.W.; Kim, W., III; Kingon, A.I.; Kim, S.-H.; Ko, J.-H.; Jung, J.H. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments. ACS Appl. Mater. Interfaces 2016, 8, 6504–6511. [Google Scholar] [CrossRef]
- Chen, X.; Shao, J.; Li, X.; Tian, H. A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array. IEEE Trans. Nanotechnol. 2016, 15, 295–302. [Google Scholar] [CrossRef]
- Lee, S.; Bae, S.-H.; Lin, L.; Ahn, S.; Park, C.; Kim, S.-W.; Cha, S.N.; Park, Y.J.; Wang, Z.L. Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy 2013, 2, 817–825. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Lin, Z.-H.; Liu, Y.; Chen, J.; Lin, Z.; Zhou, Y.S.; Wong, C.P.; Wang, Z.L. A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 2013, 6, 2429–2434. [Google Scholar] [CrossRef]
- Peng, W.; Wang, X.; Yu, R.; Dai, Y.; Zou, H.; Wang, A.C.; He, Y.; Wang, Z.L. Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects. Adv. Mater. 2017, 29, 1606698. [Google Scholar] [CrossRef]
- van Sark, W. Feasibility of photovoltaic—Thermoelectric hybrid modules. Appl. Energy 2011, 88, 2785–2790. [Google Scholar] [CrossRef]
- Quan, T.; Wu, Y.; Yang, Y. Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280. [Google Scholar] [CrossRef]
- Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Yao, G.; Huang, Z.; Xie, Y.; Su, Y.; Yang, W.; Zheng, C.; Lin, Y. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. ACS Appl. Mater. Interfaces 2015, 7, 28142–28147. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Xie, Y.; Yan, Z.; Yuan, Y.; Huang, L.; Cui, X.; Gao, M.; Su, Y.; Yang, W.; et al. Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy 2017, 33, 418–426. [Google Scholar] [CrossRef]
- Jin, L.; Chen, J.; Zhang, B.; Deng, W.; Zhang, L.; Zhang, H.; Huang, X.; Zhu, M.; Yang, W.; Wang, Z.L. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano 2016, 10, 7874–7881. [Google Scholar] [CrossRef]
- Chen, X.; Han, M.; Chen, H.; Cheng, X.; Song, Y.; Su, Z.; Jiang, Y.; Zhang, H. A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers. Nanoscale 2017, 9, 1263–1270. [Google Scholar] [CrossRef]
- Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P.; Yi, F.; Wang, Z.L. Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing. Adv. Mater. 2015, 27, 2340–2347. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Fan, H.; Wang, C.; Ma, J.; Lei, S.; Zhao, Y.; Li, H.; Zhao, N. Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 2017, 35, 233–241. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Z.; Li, X.; Xu, W.; Xu, S.; Zhang, S.; Xu, Z.; Chen, H.; Lin, S. Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon 2016, 105, 199–204. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Liu, J.; Zhu, Y.; Yang, C.; He, Q. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 2016, 6, 36409. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Su, Z.; Chen, H.; Cheng, X.; Zhang, J.; Han, M.; Zhang, H. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 2017, 38, 43–50. [Google Scholar] [CrossRef]
- Cao, R.; Zhou, T.; Wang, B.; Yin, Y.; Yuan, Z.; Li, C.; Wang, Z.L. Rotating-Sleeve Triboelectric–Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. ACS Nano 2017, 11, 8370–8378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, X.; Yang, Y.; Wang, Z.L. Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable Electronics. ACS Nano 2015, 9, 3521–3529. [Google Scholar] [CrossRef]
- Xia, H.; Chen, R.; Ren, L. Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: Modeling and experiment. Sens. Actuators A Phys. 2017, 257, 73–83. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, N. Information fusion for intuitionistic fuzzy decision making: An overview. Inf. Fusion 2016, 28, 10–23. [Google Scholar] [CrossRef]
- Umaz, R.; Sahin, Y. An architecture for two ambient energy sources. In Proceedings of the 2019 4th International Conference on Power Electronics and their Applications (ICPEA), Elazig, Turkey, 25–27 September 2019. [Google Scholar]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.; Liu, W.; Sun, X.; Peng, X.; Zhang, H. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci. China Technol. Sci. 2013, 56, 1835–1841. [Google Scholar] [CrossRef]
- Chen, T.; Xia, Y.; Liu, W.; Liu, H.; Sun, L.; Lee, C. A Hybrid Flapping-Blade Wind Energy Harvester Based on Vortex Shedding Effect. J. Microelectromechanical Syst. 2016, 25, 845–847. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 2017, 32, 36–41. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.; Guo, H.; Wu, C.; He, X.; Lin, L.; Cao, X.; Wang, Z.L. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. ACS Nano 2016, 10, 11369–11376. [Google Scholar] [CrossRef]
- Maharjan, P.; Toyabur, R.; Park, J. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy 2018, 46, 383–395. [Google Scholar] [CrossRef]
- Maharjan, P.; Cho, H.; Rasel, M.S.; Salauddin; Park, J.Y. A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy. Nano Energy 2018, 53, 213–224. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Jie, Y.; Cao, X.; Wang, N.; Wang, Z.L. Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy Environ. Sci. 2019, 12, 2678–2684. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Jin, L.; Deng, W.; Zhang, L.; Zhang, H.; Zhu, M.; Yang, W.; Wang, Z.L. Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS Nano 2016, 10, 6241–6247. [Google Scholar] [CrossRef]
- He, J.; Wen, T.; Qian, S.; Zhang, Z.; Tian, Z.; Zhu, J.; Mu, J.; Hou, X.; Geng, W.; Cho, J.; et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339. [Google Scholar] [CrossRef]
- Koh, K.H.; Shi, Q.; Cao, S.; Ma, D.; Tan, H.Y.; Guo, Z.; Lee, C. A self-powered 3D activity inertial sensor using hybrid sensing mechanisms. Nano Energy 2019, 56, 651–661. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Trans. Ind. Electron. 2011, 58, 4424–4435. [Google Scholar] [CrossRef]
- Yusop, A.M.; Mohamed, R.; Mohamed, A. Inverse dynamic analysis type of MPPT control strategy in a thermoelectric-solar hybrid energy harvesting system. Renew. Energy 2016, 86, 682–692. [Google Scholar] [CrossRef]
- Yang, D.; Yin, H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans. Energy Convers. 2011, 26, 662–670. [Google Scholar] [CrossRef]
- Gambier, P.; Anton, S.R.; Kong, N.; Erturk, A.; Inman, D.J. Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries. Meas. Sci. Technol. 2011, 23, 015101. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z.L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. [Google Scholar] [CrossRef]
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Khan, F.U.; Izhar, I. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion. Rev. Sci. Instrum. 2016, 87, 025003. [Google Scholar] [CrossRef]
- Dias, J.A.C.; De Marqui, C.; Erturk, A. Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling. Appl. Phys. Lett. 2013, 102, 044101. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Yang, Z.; Naguib, H.E. Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications. Appl. Energy 2019, 255, 113805. [Google Scholar] [CrossRef]
- Hamid, R.; Yuce, M.R. A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sens. Actuators A Phys. 2017, 257, 198–207. [Google Scholar] [CrossRef]
- Yang, B.; Lee, C.; Kee, W.L.; Lim, S.P. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J. Micro/Nanolithography MEMS MOEMS 2010, 9, 023002. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, F.U. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers. Manag. 2018, 172, 611–618. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Q. Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. Int. J. Mech. Sci. 2019, 156, 123–136. [Google Scholar] [CrossRef]
- Fan, K.; Liu, S.; Liu, H.; Zhu, Y.; Wang, W.; Zhang, D. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Appl. Energy 2018, 216, 8–20. [Google Scholar] [CrossRef]
- Toyabur, R.; Salauddin, M.; Cho, H.; Park, J.Y. A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Convers. Manag. 2018, 168, 454–466. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Kacem, N.; Bouhaddi, N. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater. Struct. 2014, 23, 075024. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Fisher, F.T. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 2009, 18, 095029. [Google Scholar] [CrossRef]
- Li, Z.; Saadatnia, Z.; Yang, Z.; Naguib, H. A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manag. 2018, 174, 188–197. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.-S.; Wang, Y.; Gong, W.; Zhang, Q.; Wang, H.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160. [Google Scholar] [CrossRef]
- Qian, Y.; Kang, D.J. Poly(dimethylsiloxane)/ZnO Nanoflakes/Three-Dimensional Graphene Heterostructures for High-Performance Flexible Energy Harvesters with Simultaneous Piezoelectric and Triboelectric Generation. ACS Appl. Mater. Interfaces 2018, 10, 32281–32288. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, B.; Liu, J.; Wang, X.; Chen, X.; Yang, C. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J. Microelectromechanical Syst. 2015, 24, 513–515. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Liu, J.; Yang, C. A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. J. Mater. Chem. A 2017, 5, 1176–1183. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Zhang, W.; Du, X.; Zhang, Y.; Gong, S.; Ren, K.; Sun, Q.; Wang, Z.L. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy 2019, 57, 440–449. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Abdullah, A.M.; Hussain, I.; Lopez, J.; Cantu, D.; Gupta, S.K.; Mao, Y.; Danti, S.; Uddin, M.J. Lithium doped zinc oxide based flexible piezoelectric-triboelectric hybrid nanogenerator. Nano Energy 2019, 61, 327–336. [Google Scholar] [CrossRef]
- Karumuthil, S.C.; Rajeev, S.P.; Varghese, S. Piezo-tribo nanoenergy harvester using hybrid polydimethyl siloxane based nanocomposite. Nano Energy 2017, 40, 487–494. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.-S.; Meng, B.; Liu, W.; Tang, W.; Sun, X.; Wang, W.; Zhang, H. R-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 2013, 7, 8554–8560. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Wang, X. A Hybrid Piezoelectric and Triboelectric Nanogenerator with PVDF Nanoparticles and Leaf-Shaped Microstructure PTFE Film for Scavenging Mechanical Energy. Adv. Mater. Interfaces 2018, 5, 1700750. [Google Scholar] [CrossRef]
- Jung, W.-S.; Kang, M.-G.; Moon, H.G.; Baek, S.-H.; Yoon, S.-J.; Wang, Z.-L.; Kim, S.-W.; Kang, C.-Y. High Output Piezo/Triboelectric Hybrid Generator. Sci. Rep. 2015, 5, 9309. [Google Scholar] [CrossRef]
- Hao, C.; He, J.; Zhai, C.; Jia, W.; Song, L.; Cho, J.; Chou, X.; Xue, C. Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 2019, 58, 147–157. [Google Scholar] [CrossRef]
- Salauddin, M.; Rasel, M.; Kim, J.; Park, J.Y. Design and experiment of hybridized electromagnetic-triboelectric energy harvester using Halbach magnet array from handshaking vibration. Energy Convers. Manag. 2017, 153, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Xia, Y.; Chen, T.; Yang, Z.; Liu, W.; Wang, P.; Sun, L. Study of a hybrid generator based on triboelectric and electromagnetic mechanisms. IEEE Sens. J. 2017, 17, 3853–3860. [Google Scholar] [CrossRef]
- Qian, J.; Jing, X. Wind-driven hybridized triboelectric-electromagnetic nanogenerator and solar cell as a sustainable power unit for self-powered natural disaster monitoring sensor networks. Nano Energy 2018, 52, 78–87. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.; Ding, Z.; Li, Z.; Zheng, H.; Fu, J.; Diao, C.; Zhang, X.; Tian, J.; Zi, Y. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2018, 57, 616–624. [Google Scholar] [CrossRef]
- Chen, X.; Guo, H.; Wu, H.; Chen, H.; Song, Y.; Su, Z.; Zhang, H. Hybrid generator based on freestanding magnet as all-direction in-plane energy harvester and vibration sensor. Nano Energy 2018, 49, 51–58. [Google Scholar] [CrossRef]
- Gupta, R.K.; Shi, Q.; Dhakar, L.; Wang, T.; Heng, C.H.; Lee, C. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism OPEN. Sci. Rep. 2017, 7, 41396. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Salauddin; Maharjan, P.; Rasel, M.; Cho, H.; Park, J.Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy 2019, 57, 256–268. [Google Scholar] [CrossRef]
- Naqvi, A.; Ali, A.; Altabey, W.A.; Kouritem, S.A. Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review. Energies 2022, 15, 7424. [Google Scholar] [CrossRef]
- He, X.; Wen, Q.; Sun, Y.; Wen, Z. A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy 2017, 40, 300–307. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, C.; Han, Q.; Chu, F. Hybrid energy harvesting from mechanical vibrations and magnetic field. Appl. Phys. Lett. 2018, 113, 013901. [Google Scholar] [CrossRef]
- Kang, M.; Yeatman, E.M. Coupling of piezo- and pyro-electric effects in miniature thermal energy harvesters. Appl. Energy 2020, 262, 114496. [Google Scholar] [CrossRef]
- Bito, J.; Bahr, R.; Hester, J.G.; Nauroze, S.A.; Georgiadis, A.; Tentzeris, M.M. A Novel Solar and Electromagnetic Energy Harvesting System with a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors. IEEE Trans. Microw. Theory Tech. 2017, 65, 1831–1842. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, K.Y.; Gupta, M.K.; Kim, T.Y.; Lee, D.-Y.; Oh, J.; Ryu, C.; Yoo, W.J.; Kang, C.-Y.; Yoon, S.-J.; et al. Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Adv. Mater. 2014, 26, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Du, L.; Chen, W.; Li, J.; Wang, Y.; Wang, D. Hybrid energy harvesting for condition monitoring sensors in power grids. Energy 2017, 118, 435–445. [Google Scholar] [CrossRef]
- Fu, H.; Song, W.; Qin, Y.; Yeatman, E.M. Broadband Vibration Energy Harvesting from Underground Trains for Self-Powered Condition Monitoring. In Proceedings of the 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Krakow, Poland, 2–6 December 2019; pp. 1–5. [Google Scholar]
- Morbiato, T.; Borri, C.; Vitaliani, R. Wind energy harvesting from transport systems: A resource estimation assessment. Appl. Energy 2014, 133, 152–168. [Google Scholar] [CrossRef]
- Xu, W.; Feng, X.; Wang, J.; Luo, C.; Li, J.; Ming, Z. Energy Harvesting-Based Smart Transportation Mode Detection System via Attention-Based LSTM. IEEE Access 2019, 7, 66423–66434. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration energy harvesting in automotive suspension system: A detailed review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Shi, Q.; He, T.; Chen, T.; Sun, L.; Dziuban, J.; Lee, C. Development of a Thermoelectric and Electromagnetic Hybrid Energy Harvester from Water Flow in an Irrigation System. Micromachines 2018, 9, 395. [Google Scholar] [CrossRef]
- Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Liu, L.; Shi, Q.; Ho, J.S.; Lee, C. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 2019, 66, 104167. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, H.; Wu, H.; Lee, C. Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 2017, 40, 203–213. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, H.; Ding, W.; Wang, Y.-C.; Zhang, L.; Wang, Z.L. A Hybridized Triboelectric–Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere. ACS Nano 2019, 13, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, L.; Chen, J.; Lu, S.; Zhou, H.; Wang, T.; Wang, A.; Zhang, Z.; Guo, S.; Mu, X.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Chong, Y.-W.; Ismail, W.; Ko, K.; Lee, C.-Y. Energy Harvesting for Wearable Devices: A Review. IEEE Sens. J. 2019, 19, 9047–9062. [Google Scholar] [CrossRef]
- He, T.; Wang, H.; Wang, J.; Tian, X.; Wen, F.; Shi, Q.; Ho, J.S.; Lee, C. Self-Sustainable Wearable Textile Nano-Energy Nano-System (NENS) for Next-Generation Healthcare Applications. Adv. Sci. 2019, 6, 1901437. [Google Scholar] [CrossRef]
- He, T.; Shi, Q.; Wang, H.; Wen, F.; Chen, T.; Ouyang, J.; Lee, C. Beyond energy harvesting—Multi-functional triboelectric nanosensors on a textile. Nano Energy 2019, 57, 338–352. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lee, C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 2019, 65, 104039. [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef]
- Fu, H.; Cao, K.; Xu, R.; Bhouri, M.A.; Martinez-Botas, R.; Kim, S.-G.; Yeatman, E.M. Footstep energy harvesting using heel strike-induced airflow for human activity sensing. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 124–129. [Google Scholar]
- Xie, L.; Cai, M. Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism. Appl. Phys. Lett. 2014, 105, 143901. [Google Scholar] [CrossRef]
- He, C.; Zhu, W.; Chen, B.; Xu, L.; Jiang, T.; Han, C.B.; Gu, G.Q.; Li, D.; Wang, Z.L. Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26126–26133. [Google Scholar] [CrossRef] [PubMed]
- Nozariasbmarz, A.; Suarez, F.; Dycus, J.H.; Cabral, M.J.; LeBeau, J.M.; Öztürk, M.C.; Vashaee, D. Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy 2020, 67, 104265. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Rabari, R.; Mahmud, S.; Van Heyst, B. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy 2016, 115, 1081–1091. [Google Scholar] [CrossRef]
- Shawon, S.M.A.Z.; Sun, A.X.; Vega, V.S.; Chowdhury, B.D.; Tran, P.; Carballo, Z.D.; Tolentino, J.A.; Li, J.; Rafaqut, M.S.; Danti, S.; et al. Piezo-tribo dual effect hybrid nanogenerators for health monitoring. Nano Energy 2021, 82, 105691. [Google Scholar] [CrossRef]
- Mohsen, S.; Zekry, A.; Youssef, K.; Abouelatta, M. A self-powered wearable wireless sensor system powered by a hybrid energy harvester for healthcare applications. Wirel. Pers. Commun. 2020, 116, 3143–3164. [Google Scholar] [CrossRef]
- Fu, H.; Khodaei, Z.S.; Aliabadi, M.H.F. An Event-Triggered Energy-Efficient Wireless Structural Health Monitoring System for Impact Detection in Composite Airframes. IEEE Internet Things J. 2019, 6, 1183–1192. [Google Scholar] [CrossRef]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef]
- Le, M.Q.; Capsal, J.-F.; Lallart, M.; Hebrard, Y.; Van Der Ham, A.; Reffe, N.; Geynet, L.; Cottinet, P.-J. Review on energy harvesting for structural health monitoring in aeronautical applications. Prog. Aerosp. Sci. 2015, 79, 147–157. [Google Scholar] [CrossRef]
- Kiziroglou, M.E.; Wright, S.W.; Toh, T.T.; Mitcheson, P.D.; Becker, T.; Yeatman, E.M. Design and fabrication of heat storage thermoelectric harvesting devices. IEEE Trans. Ind. Electron. 2014, 61, 302–309. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Li, P.; Cao, D.; Huang, W.; Inman, D.J. Energy harvesting for jet engine monitoring. Nano Energy 2020, 75, 104853. [Google Scholar] [CrossRef]
- Duan, J.; Duan, Y.; Zhao, Y.; Wang, Y.; Tang, Q.; He, B. Bifunctional polyaniline electrode tailored hybridized solar cells for energy harvesting from sun and rain. J. Energy Chem. 2018, 27, 742–747. [Google Scholar] [CrossRef]
- Vivar, M.; Skryabin, I.; Everett, V.; Blakers, A. A concept for a hybrid solar water purification and photovoltaic system. Sol. Energy Mater. Sol. Cells 2010, 94, 1772–1782. [Google Scholar] [CrossRef]
- Sheeraz, M.; Butt, Z.; Khan, A.M.; Mehmood, S.; Ali, A.; Azeem, M.; Nasir, A.; Imtiaz, T. Design and Optimization of Piezoelectric Transducer (PZT-5H Stack). J. Electron. Mater. 2019, 48, 6487–6502. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies 2018, 11, 1850. [Google Scholar] [CrossRef]
- Amin, A.R.; Ali, A.; Ali, H.M. Application of Nanofluids for Machining Processes: A Comprehensive Review. Nanomaterials 2022, 12, 4214. [Google Scholar] [CrossRef] [PubMed]
- Elahi, H.; Eugeni, M.; Gaudenzi, P.; Qayyum, F.; Swati, R.F.; Khan, H.M. Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications. Microsyst. Technol. 2018. [Google Scholar] [CrossRef]
- Xu, Q.; Fang, Y.; Jing, Q.; Hu, N.; Lin, K.; Pan, Y.; Xu, L.; Gao, H.; Yuan, M.; Chu, L.; et al. A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron. 2021, 187, 113329. [Google Scholar] [CrossRef]
- Ali, A.; Shaukat, H.; Bibi, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Recent progress in Energy Harvesting Systems for wearable technology. Energy Strategy Rev. 2023, 49, 101124. [Google Scholar] [CrossRef]
- Islam, E.; Abdullah, A.M.; Chowdhury, A.R.; Tasnim, F.; Martinez, M.; Olivares, C.; Lozano, K.; Uddin, M.J. Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting. Nano Energy 2020, 77, 105250. [Google Scholar] [CrossRef]
- Ali, A.; Pasha, R.A.; Elahi, H.; Sheeraz, M.A.; Bibi, S.; Hassan, Z.U.; Eugeni, M.; Gaudenzi, P. Investigation of deformation in Bimorph piezoelectric actuator: Analytical, numerical, and experimental approach. Integr. Ferroelectr. 2019, 201, 94–109. [Google Scholar] [CrossRef]
- Shaukat, H.; Ali, A.; Bibi, S.; Mehmood, S.; Altabey, W.; Noori, M.; Kouritem, S. Piezoelectric Materials: Advanced Applications in Electro-Chemical Processes. Energy Rep. 2023, 9, 4306–4324. [Google Scholar] [CrossRef]
- Nguyen, X.V.L.; Gerges, T.; Bevilacqua, P.; Duchamp, J.-M.; Benech, P.; Verdier, J.; Lombard, P.; Linge, P.U.; Mieyeville, F.; Cabrera, M.; et al. Radio-frequency energy harvesting using Rapid 3D plastronics protoyping approach: A case study. J. Low Power Electron. Appl. 2023, 13, 19. [Google Scholar] [CrossRef]
- Ali, A.; Ashfaq, M.; Qureshi, A.; Muzammil, U.; Shaukat, H.; Ali, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Smart detecting and versatile wearable electrical sensing mediums for healthcare. Sensors 2023, 23, 6586. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Pasha, A.; Sheeraz, M.; Butt, Z.; Elahi, H.; Ahmed Khan, A. Investigation of electrical properties for cantilever-based Piezoelectric Energy Harvester. Adv. Sci. Technol. Res. J. 2019, 13, 76–85. [Google Scholar] [CrossRef]
- Uluşan, H.; Chamanian, S.; Pathirana, W.P.M.R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H. A triple hybrid micropower generator with simultaneous multi-mode Energy Harvesting. Smart Mater. Struct. 2017, 27, 014002. [Google Scholar] [CrossRef]
- Elahi, H.; Rizwan Mughal, M.; Eugeni, M.; Qayyum, F.; Israr, A.; Ali, A.; Munir, K.; Praks, J.; Gaudenzi, P. Characterization and implementation of a piezoelectric energy harvester configuration: Analytical, Numerical, and experimental approach. Integr. Ferroelectr. 2020, 212, 39–60. [Google Scholar] [CrossRef]
- Lhermet, H.; Condemine, C.; Plissonnier, M.; Salot, R.; Audebert, P.; Rosset, M. Efficient power management circuit: Thermal energy harvesting to above-IC microbattery energy storage. In Proceedings of the 2007 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2007. [Google Scholar]
- Delgado-Alvarado, E.; Elvira-Hernández, E.A.; Hernández-Hernández, J.; Huerta-Chua, J.; Vázquez-Leal, H.; Martínez-Castillo, J.; García-Ramírez, P.J.; Herrera-May, A.L. nt progress of nanogenerators for green energy harvesting: Performance, applications, and challenges. Nanomaterials 2022, 12, 2549. [Google Scholar] [CrossRef] [PubMed]
Hybrid Energy-Harvesting System | Configuration | Energy Source/Device Size | Output Performance | References |
---|---|---|---|---|
Piezoelectric–Electromagnetic Energy Harvesters | ||||
PE-EM; PZT disc, coil/magnet in approaching separation mode | Helmholtz resonator | 20 × 24 mm | PEH: 49 µW EMEH: 3.2 µW | Khan et al. [90] |
PE-EM; PZT bimorph, coil/magnet in horizontal sliding mode | Airfoil and cantilever Flow induced vibration | - | No prototype developed | Dias et al. [91] |
PE-EM; Fixed PZT beam, coil/magnet in horizontal sliding mode | Oscillating magnet Force amplification | 70 × 45 × 20 mm | 0.33 W peak power | Li et al. [92] |
PE-EM; PZT disc, coil/magnet in approaching separation mode | Free sliding magnet | 68 × 39 × 37 mm | 50–130 µW | Hamid et al. [93] |
PE-EM; Bimorph PZT, coil/magnet in approaching separation mode | Multi-modal oscillations | 50 × 20 × 80 mm | 1.4 mW at 22.6 Hz | Xu et al. [71] |
PE-EM; PZT-coated d31, coil/magnet in forthcoming horizontal sliding and separation mode | Cantilever resonance | 22 × 10 × 10 mm | PEH: 176 µW EMEH: 0.19 µW | Yang et al. [94] |
PE-EM; PZT patch, coil/magnet in approaching separation mode | Airfoil and cantilever Dual beam structure | 85 × 80 × 40 mm | PEH: 156 µW EMEH: 1.57 mW | Iqbal et al. [95] |
PE-EM; PZT stack, coil/magnet in approaching separation mode | Oscillating magnet Tri-stable | - | No prototype developed | Yang et al. [96] |
PE-EM; PZT cantilever, coil/magnet in approaching separation mode, non-linear levitation | Free sliding Multi-directional Dual-stable | 14 × 55 mm | EMEH: 1.23 mW PEH: 0.18 mW | Fan et al. [97] |
PE-EM; PZT coating applied to Al, coil/magnet in approaching separation mode | Multi-mode vibration | 93 × 30 × 15 mm | PEH: 250 µW EMEH: 244 µW | Toyabur et al. [98] |
PE-EM; PZT bimorph, coil/magnet in approaching separation mode | Fixed-fixed beam Mono-stable | 50 × 10 × 15 mm | No result provided | Mahmoudi et al. [99] |
PE-EM; PZT-coated d33 cantilever, coil/magnet in approaching separation mode | Cantilever resonance | 44 × 24 × 30 mm | 332 µW at 21.6 Hz | Challa et al. [100] |
Piezoelectric–Triboelectric Energy Harvesters | ||||
PE-TE; Al/PVDF/Al, Al/PDMS/Al | Flapping blade | Wind flow | PEH: 112 µW TENG: 76 µW | Chen et al. [75] |
PE-TE; Ag/PZT-5J/Ag, Al/PTFE/Nylon/Al | Truss stopper | Vibration | PEH: 14 mW TENG: 5.7 mW | Li et al. [101] |
PE-TE; Conductive fabrics, fibroin/PVDF nanofiber | Laminate | Pressing force | 0.31 mW/cm2 | Guo et al. [102] |
PE-TE; Au/ZnO NFs + PDMS/Ni + 3D Gr | Laminate | Pressing force | 6.22 mW/cm2 | Qian et al. [103] |
PE-TE; PET/ITO/BTO + PDMS/Cu | Laminate | Pressing force | No result provided | Suo et al. [73] |
PE-TE; Al/PVDF/Al, Al/PDMS/MWCNT-PDMS/Au | Parallel plate | Pressing force | PEH: 2.27 × 10−3 mW/cm2 TENG: 2.04 × 10−3 mW/cm2 | Zhu et al. [104] |
PE-TE; AZO/P(VDF-TrFE)/AZO, AZO/PDMS/Skin | Laminate | Pressing force | 0.075 mW/cm2 | Wang et al. [105] |
PE-TE; Au/P(VDF-TrFE)/Au/P(VDF-TrFE)/Au, Al/PTFE/Au | Rotational blade | Rotation | 10.88 mW | Zhao et al. [106] |
PE-TE; Al/PVDF/Al, Al/PDMS/ITO | Cantilever stopper | Vibration | No result provided | Han et al. [74] |
PE-TE; Al/PTFE + PVDF + PDMS/Li-ZnO + MWCNT/Ag | Laminate | Pressing force | No result provided | Chowdhury et al. [107] |
PE-TE; Cu/ZnO + MWCNT + EGO + PDMS/Cu | Laminate | Pressing force | No result provided | Karumuthil et al. [108] |
PE-TE; Al/PVDF/Al, Al/PDMS/ITO | r-shape | Pressing force | PEH: 10.95 mW/cm3 TENG: 2.04 mW/cm3 | Han et al. [109] |
PE-TE; Cu/PTFE/PVDF/Cu, Cu/PTFE/Cu | Parallel plate | Pressing force | PEH: 0.15 mW/cm2 TENG: 2.75 mW/cm2 | Zhu et al. [110] |
PE-TE; Au/PVDF/Au, Au/PTFE/Al | Arc shape | Pressing force | 4.44 mW/cm2 | Jung et al. [111] |
Electromagnetic–Triboelectric Energy Harvesters | ||||
EM-TE; Coil/magnet in horizontal sliding mode, Cu/FEP in lateral sliding mode | Rotating sleeve | Rotation, wind flow | 13.8 μW/cm3 | Cao et al. [68] |
EM-TE; Coil/magnet in horizontal sliding mode, Au/PTFE in freestanding triboelectric layer mode | Rotating disk | Rotation | EMEH: 176.9 μW/cm3 TENG: 111.6 μW/cm3 | Chen et al. [80] |
EM-TE; Coil/magnet in horizontal sliding mode, Cu/Silicone in freestanding triboelectric layer | Magnetic roller laterally | Water wave | EMEH: 39.4 μW/cm3 TENG: 0.21 μW/cm3 | Hao et al. [112] |
EM-TE; Coil/magnet in horizontal sliding mode, Cu/PTFE in freestanding triboelectric layer | Magnetic slider laterally | Water wave | EMEH: 1.32 μW/cm3 TENG: 1.05 μW/cm3 | Wang et al. [77] |
EM-TE; Coil/magnet in approaching separation mode, Al/PDMS in lateral sliding mode | Magnetic slider laterally | Vibration, human motion | 381 μW/cm3 | Salauddin et al. [113] |
EM-TE; Coil/magnet in approaching separation mode, Al/FEP in contact separation mode | Spring-mass vertically | Vibration | EMEH: 9.7 μW/cm3 TENG: 37.6 μW/cm3 | Liu et al. [114] |
EM-TE; Coil/magnet in horizontal sliding mode, Cu/PTFE in freestanding triboelectric layer | Rotating sleeve | Rotation, wind flow | EMEH: 0.34 mW TENG: 2.13 mW | Qian et al. [115] |
EM-TE; Coil/magnet in approaching separation mode, Cu/FEP in contact separation mode | Vibration film vertically | Wind flow | EMEH: 58.3 μW/cm3 TENG: 39.6 μW/cm3 | Wang et al. [76] |
EM-TE; Coil/magnet in horizontal sliding mode, Cu/Silicone in freestanding triboelectric layer | Magnetic roller laterally | Water wave | EMEH: 9 mW EMEH: 0.8 mW | Wang et al. [116] |
EM-TE; Coil/magnet in approaching separation mode, Al/PTFE in freestanding triboelectric layer | Magnetic ball laterally | Human motion | EMEH: 5.14 mW/cm3 TENG: 0.22 μW/cm3 | Maharjan et al. [78] |
EM-TE; Coil/magnet in lateral sliding mode, Cu/Kapton in contact separation mode | Spring-mass laterally | Vibration, human motion | EMEH: 29.9 μW/cm3 TENG: 0.78 μW/cm3 | Chen et al. [117] |
EM-TE; Coil/magnet in approaching separation mode, ITO/PTFE in contact separation mode | Spring-mass vertically | Vibration | 1.3 μW/cm3 | Gupta et al. [118] |
Piezoelectric–Electromagnetic–Triboelectric Energy Harvesters | ||||
PE-EM-TE; PVDF in bending, coil/magnet in horizontal sliding mode, Al/PTFE in lateral sliding and contact separation mode | Rotating sleeve and disk | Wind flow | PEH: 1.38 mW EMEH: 268.6 mW TENG: 1.67 mW | Toyabur Rahman et al. [119] |
PE-EM-TE; Compressed state PZT sheet, coil/magnet in approaching separation mode, Ni/silicone in single electrode mode | Magnetic mass stopper | Vibration | PEH: 122 mW, EMEH: 38.4 mW TENG: 78.4 μW | He et al. [82] |
PE-EM-TE; Compressed PVDF Sheet, coil/magnet in approaching separation mode, Al/PTFE in freestanding triboelectric layer mode | Magnetic rolling ball | Human motion | PEH: 0.19 μW, EMEH: 22.4 nW TENG: 0.72 μW | Koh et al. [120] |
PE-EM-TE; Bending state PVDF sheet, coil/magnet in approaching separation mode, Cu/PVDF in contact separation mode | Spring mass stopper | Vibration | PEH: 41 μW EMEH: 66.5 μW TENG: 4.6 μW | He et al. [121] |
Various Other Hybrid Energy Harvesters | ||||
Piezoelectric with magnet | - | Vibration and magnetic; 150 × 30 × 1 mm | 50 μW | Xu et al. [122] |
Piezoelectric and pyroelectric | - | Thermal and vibration; 70 × 10 × 0.7 mm | 0.4 μW | Kang et al. [123] |
Photovoltaic (PV) and radio-frequency (RF) | - | Solar and electromagnetic (EM); EM: 47 × 47 × 20 mm PV: 114 × 24 mm | PV: 93 mW RF: 28 μW | Bito et al. [124] |
Piezoelectric (PE), photovoltaic and thermoelectric generation (TEG) | - | Vibration, light and thermal; 93 × 25 × 1.5 mm | TEG: 6.6 mW PV: 12.5 mW PE: 0.49 mW | Gambier et al. [87] |
Piezoelectric and pyroelectric | - | Thermal and vibration; layer thickness 0.7 μm | 400 mV | Lee et al. [125] |
Electromagnetic (EM), thermoelectric generation (TEG) and piezoelectric (PE) | - | Electromagnetic, thermal and Vibration; EM: 140 × 20 × 50 mm TEG: 500 × 82 × 10 cm PE: 90 × 17 × 0.8 mm | EM: 0.7–366 mW TEG: 12.9 mW to 1.98 W PE: 0.63 mW | Yang et al. [126] |
Triboelectric and photovoltaic | - | Solar and mechanical; 50 × 40 × 0.32 mm | 0.5 mW | Chen et al. [88] |
Photovoltaic and thermoelectric generation | - | Light and thermal; PV: 55 × 30 × 1 mm TEG: 20 × 20 × 20 mm | 621 μW | Tan et al. [84] |
Hybrid Energy-Harvesting System | Configuration | Output Performance | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Infrastructure Health Monitoring | |||||
Triboelectric–electromagnetic and solar cell | Integrated with WSN technology | Capable of lighting 100 of LEDs | Utilizes both mechanical and solar energy | Scalability is restricted due to reliance on WSN technology | [115] |
Thermoelectric–electromagnetic generator | The turbine fan with magnets attached to the blades and is placed within the pipe | Thermoelectric power output 0.435 mW electromagnetic power output 0.584 mW | Dual thermoelectric and electromagnetic power generating | Very little power output | [132] |
Marine Monitoring and Development | |||||
Hybridized triboelectric–electromagnetic water wave energy harvester (WWEH) | Contain freely rotating magnetic sphere that detects the water’s motion | Supercapacitor is charged by it to 1.84 V in 162 s | Makes use of a magnetic sphere that is free to rotate to detect water movements | Complex implementation and design | [137] |
Triboelectric–electromagnetic hybridized nanogenerator | Chaotic pendulum | The maximum output power of triboelectric can reach 15.21 μW and the electromagnetic can reach 1.23 mW | High electromagnetic and triboelectric output power | A small scalability | [138] |
Ship-shaped hybridized triboelectric–electromagnetic nanogenerator | Ship shaped have rolling magnetic cylinder in it | Peak power of 800 µW with an operating frequency of 2 Hz | A novel ship-shaped design with useable applications | Power output restrictions for some applications | [139] |
Human Healthcare Monitoring | |||||
Hybrid piezoelectric–triboelectric self-functional socks | Self-functional socks of poly(3,4-ethylenedioxythiophene) polystyrenesulfonate | With a frequency of 2 Hz and a load resistance of 59.7 MΩ, an output power of 1.71 mW is obtained | Self-contained socks that continuously harvest energy by utilizing human motion | A low power output for medical equipment that is required | [144] |
Photovoltaic–thermoelectric hybrid energy harvester | Consists of sensors for pulse oximetry, temperature, and acceleration, a microcontroller unit, and a Bluetooth low-energy module | In active sleep mode, the sensor system consumes an average power of 2.13 mW over 1 h, while it can operate without the energy harvester for up to 46 h | Extended battery life, sustainability through energy harvesting, and reliable long-term health parameter monitoring | Proper placement of photovoltaic panel, limitation in low light or low-temperature environment | [151] |
Industry Condition Monitoring | |||||
A hybridized piezoelectric–electromagnetic–triboelectric energy harvester | A single device with a magnetic levitation structure at its core and three harvest modes is incorporated | Under the frequency of 20 Hz, the output peak powers produce are TENG: 78.4 μW, EMG1: 36 mW, EMG2: 38.4 mW, PEG1: 122 mW, and PEG2: 105 mW. | Incorporates a variety of energy-harvesting techniques | Integrated and controlled complex device systems | [82] |
Magnetic, thermoelectric, and vibration energy-harvesting system | - | Power produced by magnetic is 366 mW, thermoelectric is 1.98 W, and vibration is 0.63 mW | Uses a variety of energy sources to increase efficiency | Requires exact component alignment and location | [126] |
Water Purification | |||||
Photo-induced piezoelectric | ZnO nanowire | 92%, 10 min | Photo-induced piezoelectric water treatment that uses less energy | Specific uses for water treatment | [47] |
TENG-assisted photocatalytic | Rotational TENG and visible light | 510 V 26 W/m | Combines photocatalysis and rotational TENG for energy harvesting | Only applicable to some photocatalytic applications | [47] |
Thermal-induced piezoelectric | NaNbO3 nanofibers | 86.5%, 80 min | Uses the thermally generated piezoelectric action to produce energy | A small scalability | [47] |
Thermal-induced photocatalytic | UV: photocatalytic, far-IR: water, visible, and near-IR: solar cell | 300 W/m | Combines many energy sources to effectively purify water | Specific to uses for water treatment | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaukat, H.; Ali, A.; Ali, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Applications of Sustainable Hybrid Energy Harvesting: A Review. J. Low Power Electron. Appl. 2023, 13, 62. https://doi.org/10.3390/jlpea13040062
Shaukat H, Ali A, Ali S, Altabey WA, Noori M, Kouritem SA. Applications of Sustainable Hybrid Energy Harvesting: A Review. Journal of Low Power Electronics and Applications. 2023; 13(4):62. https://doi.org/10.3390/jlpea13040062
Chicago/Turabian StyleShaukat, Hamna, Ahsan Ali, Shaukat Ali, Wael A. Altabey, Mohammad Noori, and Sallam A. Kouritem. 2023. "Applications of Sustainable Hybrid Energy Harvesting: A Review" Journal of Low Power Electronics and Applications 13, no. 4: 62. https://doi.org/10.3390/jlpea13040062
APA StyleShaukat, H., Ali, A., Ali, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). Applications of Sustainable Hybrid Energy Harvesting: A Review. Journal of Low Power Electronics and Applications, 13(4), 62. https://doi.org/10.3390/jlpea13040062