First Review of Conductive Electrets for Low-Power Electronics
Abstract
:1. Low-Power Electronics
2. Electret
3. Scientific Origin
4. Electret Power Source Behavior
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Yang, W.; Wang, K.L.; Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283. [Google Scholar] [CrossRef]
- Heo, J.; Byun, K.-E.; Lee, J.; Chung, H.-J.; Jeon, S.; Park, S.; Hwang, S. Graphene and Thin-Film Semiconductor Heterojunction Transistors Integrated on Wafer Scale for Low-Power Electronics. Nano Lett. 2013, 13, 5967–5971. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Cao, G.; Wang, J.; Man, M.; Zhao, J.; Zhou, Z.; Wang, H.; Pei, Y.; Wang, K.; Gao, C.; et al. Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020, 8, 4926–4933. [Google Scholar] [CrossRef]
- Winfield, J.; Chambers, L.D.; Stinchcombe, A.; Rossiter, J.; Ieropoulos, I. The power of glove: Soft microbial fuel cell for low-power electronics. J. Power Sources 2014, 249, 327–332. [Google Scholar] [CrossRef]
- Fanciulli, C.; Abedi, H.; Merotto, L.; Dondè, R.; De Iuliis, S.; Passaretti, F. Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment. Appl. Energy 2018, 215, 300–308. [Google Scholar] [CrossRef]
- Yeh, N.; Chiu, P.; Chyi, J.; Ren, F.; Pearton, S.J. Sb-based semiconductors for low power electronics. J. Mater. Chem. C Mater. Opt. Electron. Devices 2013, 1, 4616–4627. [Google Scholar] [CrossRef]
- Das, S.; Prakash, A.; Salazar, R.; Appenzeller, J. Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1681–1689. [Google Scholar] [CrossRef]
- Lee, M.H.; Wei, Y.-T.; Chu, K.-Y.; Huang, J.-J.; Chen, C.-W.; Cheng, C.-C.; Chen, M.-J.; Lee, H.-Y.; Chen, Y.-S.; Lee, L.-H.; et al. Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics. IEEE Electron Device Lett. 2015, 36, 294–296. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.; Mistewicz, K.; Kim, H. Piezoelectric Nanogenerator Based on Lead-Free Flexible PVDF-Barium Titanate Composite Films for Driving Low Power Electronics. Crystals 2021, 11, 85. [Google Scholar] [CrossRef]
- He, N.; Zhang, Q.; Tao, L.; Chen, X.; Qin, Q.; Liu, X.; Lian, X.; Wan, X.; Hu, E.; Xu, J.; et al. V2C-Based Memristor for Applications of Low Power Electronic Synapse. IEEE Electron Device Lett. 2021, 42, 319–322. [Google Scholar] [CrossRef]
- Torricelli, F.; Ghittorelli, M.; Smits, E.C.P.; Roelofs, C.W.S.; Janssen, R.A.J.; Gelinck, G.H.; Kovács-Vajna, Z.M.; Cantatore, E. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics. Adv. Mater. 2015, 28, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, X.-X.; Zhang, J.-X.; Cheng, X.-L.; Zhang, H.-X. Freestanding Micro-Supercapacitor with Interdigital Electrodes for Low-Power Electronic Systems. J. Microelectromech. Syst. 2017, 26, 1055–1062. [Google Scholar] [CrossRef]
- Yang, Y.; Du, H.; Xue, Q.; Wei, X.; Yang, Z.; Xu, C.; Lin, D.; Jie, W.; Hao, J. Three-terminal memtransistors based on two-dimensional layered gallium selenide nanosheets for potential low-power electronics applications. Nano Energy 2018, 57, 566–573. [Google Scholar] [CrossRef]
- Bergeron, H.; Sangwan, V.K.; McMorrow, J.J.; Campbell, G.P.; Balla, I.; Liu, X.; Bedzyk, M.J.; Marks, T.J.; Hersam, M.C. Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Appl. Phys. Lett. 2017, 110, 053101. [Google Scholar] [CrossRef] [Green Version]
- Rahi, S.B.; Tayal, S.; Upadhyay, A.K. A review on emerging negative capacitance field effect transistor for low power electronics. Microelectron. J. 2021, 116, 105242. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, N.; Tandon, A.; Sharma, Y. Fabrication of Binder-Free TiO2 Nanofiber Electrodes via Electrophoretic Deposition for Low-Power Electronic Applications. IEEE Trans. Electron Devices 2020, 68, 251–256. [Google Scholar] [CrossRef]
- Moon, H.; Seong, H.; Shin, W.C.; Park, W.-T.; Kim, M.; Lee, S.; Bong, J.H.; Noh, Y.-Y.; Cho, B.J.; Yoo, S.; et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635. [Google Scholar] [CrossRef]
- Kim, K.; Jung, M.; Kim, B.; Kim, J.; Shin, K.; Kwon, O.-S.; Jeon, S. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy 2017, 41, 301–307. [Google Scholar] [CrossRef]
- Sullivan, P.; Schumann, S.; Da Campo, R.; Howells, T.; Duraud, A.; Shipman, M.; Hatton, R.A.; Jones, T.S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Adv. Energy Mater. 2013, 3, 239–244. [Google Scholar] [CrossRef]
- Mohanta, M.K.; Fathima, I.S.; De Sarkar, A. Exceptional mechano-electronic properties in the HfN2 monolayer: A promising candidate in low-power flexible electronics, memory devices and photocatalysis. Phys. Chem. Chem. Phys. 2020, 22, 21275–21287. [Google Scholar] [CrossRef]
- Khushboo; Azad, P. A triboelectric energy harvester using human biomechanical motion for low power electronics. Bull. Mater. Sci. 2019, 42, 121. [Google Scholar] [CrossRef] [Green Version]
- Uzun, Y. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices. J. Electron. Mater. 2016, 45, 3842–3847. [Google Scholar] [CrossRef]
- Cunha, I.; Ferreira, S.H.; Martins, J.; Fortunato, E.; Gaspar, D.; Martins, R.; Pereira, L. Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronics. Adv. Sustain. Syst. 2022, 6, 2200177. [Google Scholar] [CrossRef]
- Park, S.Y.; Heo, J.; Yoon, Y.J.; Kim, J.W.; Jang, H.; Walker, B.; Kim, J.Y. Synergistic combination of amorphous indium oxide with tantalum pentoxide for efficient electron transport in low-power electronics. J. Mater. Chem. C 2019, 7, 4559–4566. [Google Scholar] [CrossRef]
- Heo, J.; Park, S.Y.; Kim, J.W.; Song, S.; Yoon, Y.J.; Jeong, J.; Jang, H.; Lee, K.T.; Seo, J.H.; Walker, B.; et al. Implementation of Low-Power Electronic Devices Using Solution-Processed Tantalum Pentoxide Dielectric. Adv. Funct. Mater. 2018, 28, 1704215. [Google Scholar] [CrossRef]
- Erhard, D.P.; Lovera, D.; von Salis-Soglio, C.; Giesa, R.; Altstädt, V.; Schmidt, H.-W. Recent Advances in the Improvement of Polymer Electret Films. Adv. Polym. Sci. 2010, 228, 155–207. [Google Scholar] [CrossRef]
- Pillai, P.K.C. Polymeric electrets. Plast. Eng. 1995, 28, 1–61. [Google Scholar]
- Sessler, G.M. Electrets: Recent developments. J. Electrost. 2001, 51–52, 137–145. [Google Scholar] [CrossRef]
- Kressmann, R.; Sessler, G.M.; Guenther, P. Space-charge electrets. IEEE Trans Dielectr. Electr. Insul. 1996, 3, 607–623. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Aoyagi, Y.; Chung, D.D.L. Development of epoxy-based electrets. J. Mater. Sci. 2008, 43, 1650–1663. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chung, D. Controlling and increasing the inherent voltage in cement paste. Adv. Cem. Res. 2009, 21, 31–37. [Google Scholar] [CrossRef]
- Lindner, M.; Hoislbauer, H.; Schwodiauer, R.; Bauer-Gogonea, S.; Bauer, S. Charged cellular polymers with “ferroelectretic” behavior. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 255–263. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wang, Y.; Michinobu, T.; Chang, S.-W.; Chiu, Y.-C.; Ke, C.-Y.; Liou, G.-S. Donor–Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Appl. Mater. Interfaces 2020, 12, 6144–6150. [Google Scholar] [CrossRef]
- Sano, C.; Ataka, M.; Hashiguchi, G.; Toshiyoshi, H. An Electret-Augmented Low-Voltage MEMS Electrostatic Out-of-Plane Actuator for Acoustic Transducer Applications. Micromachines 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, C.; Menon, V.; Honma, H.; Hashiguchi, G.; Toshiyoshi, H. Low-voltage-driven electrostatic microspeakers with potassium-ion-electrets. J. Physics Conf. Series 2019, 1407, 012129. [Google Scholar] [CrossRef]
- Li, Z.B.; Li, H.Y.; Fan, Y.J.; Liu, L.; Chen, Y.H.; Zhang, C.; Zhu, G. Small-sized, lightweight, and flexible triboelectric nano-generator enhanced by PTFE/PDMS nanocomposite electret. ACS Applied Mater. Interfaces 2019, 11, 20370–20377. [Google Scholar]
- Shih, C.-C.; Chiang, Y.-C.; Hsieh, H.-C.; Lin, Y.-C.; Chen, W.-C. Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Appl. Mater. Interfaces 2019, 11, 42429–42437. [Google Scholar] [CrossRef]
- Cheng, S.-W.; Han, T.; Huang, T.-Y.; Chien, Y.-H.C.; Liu, C.-L.; Tang, B.Z.; Liou, G.-S. Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer. ACS Appl. Mater. Interfaces 2018, 10, 18281–18288. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, L.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z.L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451. [Google Scholar] [CrossRef]
- Tung, W.-Y.; Li, M.-H.; Wu, H.-C.; Liu, H.-Y.; Hsieh, Y.-T.; Chen, W.-C. High Performance Nonvolatile Transistor Memories Utilizing Functional Polyimide-Based Supramolecular Electrets. Chem. Asian J. 2016, 11, 1631–1640. [Google Scholar] [CrossRef]
- Shibata, Y.; Sugiyama, T.; Mimura, H.; Hashiguchi, G. In Situ Measurement of Charging Process in Electret-Based Comb-Drive Actuator and High-Voltage Charging. J. Microelectromech. Syst. 2014, 24, 1052–1060. [Google Scholar] [CrossRef]
- Lu, G.; Koch, N.; Neher, D. In-situ tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret. Appl. Phys. Lett. 2015, 107, 063301. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.-C.; Chiu, Y.-C.; Lee, W.-Y.; Chen, J.-Y.; Chen, W.-C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25, 1511–1519. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Zhong, X.; Yi, F.; Yu, R.; Zhang, Y.; Wang, Z.L. Electret Film-Enhanced Triboelectric Nanogenerator Matrix for Self-Powered Instantaneous Tactile Imaging. ACS Appl. Mater. Interfaces 2014, 6, 3680–3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, R.; Das, D.; Das, A. Study of charge decay in corona-charged fibrous electrets. Fibers Polym. 2014, 15, 1436–1443. [Google Scholar] [CrossRef]
- Feng, Y.; Hagiwara, K.; Iguchi, Y.; Suzuki, Y. Trench-filled cellular parylene electret for piezoelectric transducer. Appl. Phys. Lett. 2012, 100, 262901. [Google Scholar] [CrossRef]
- Paajanen, M.; Lekkala, J.; Kirjavainen, K. ElectroMechanical Film (EMFi)—A new multipurpose electret material. Sens. Actuators A Phys. 2000, 84, 95–102. [Google Scholar] [CrossRef]
- Rychkov, A.; Kuznetsov, A.; Gulyakova, A.; Rychkov, D. Surface Potential Decay of Corona Charged Polyethylene Films: Influence of Deep Surface Traps. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1933–1937. [Google Scholar] [CrossRef]
- Wang, J.; Rychkov, D.; Nguyen, Q.D.; Gerhard, R. Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films. J. Appl. Phys. 2020, 128, 134103. [Google Scholar] [CrossRef]
- Lan, C.; Zou, H.; Wang, L.; Zhang, M.; Pan, S.; Ma, Y.; Qiu, Y.; Wang, Z.L.; Lin, Z. Revealing electrical-poling-induced po-larization potential in hybrid perovskite photodetectors. Adv. Mater. 2020, 32, 2005481. [Google Scholar] [CrossRef] [PubMed]
- Guliakova, A.A.; Galikhanov, M.F.; Galeeva, L.R.; Gilfanova, S.V.; Fang, P. Investigation of electret and filtering properties of polypropylene-based nonwoven fabrics and its composites with 2 vol% of silicon dioxide inclusions. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1656–1661. [Google Scholar] [CrossRef]
- Komeijani, A.; Bagheri, H.; Shekarchi, B. Surface potential uniformity and sensitivity of large-area PTFE electret discs of different thicknesses produced by a modified corona poling rotating system for dosimetry applications. J. Adv. Dielectr. 2019, 9, 1950050. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, M.; Komijani, A. Modified single point-to-plane corona poling rotating system for production of electret dosimeters. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 448–456. [Google Scholar] [CrossRef]
- Horiuchi, N.; Madokoro, K.; Nozaki, K.; Nakamura, M.; Katayama, K.; Nagai, A.; Yamashita, K. Electrical conductivity of polycrystalline hydroxyapatite and its application to electret formation. Solid State Ion. 2018, 315, 19–25. [Google Scholar] [CrossRef]
- Zhang, J.W.; Gao, F.K.; Sun, H.C.; Putson, C.; Liu, R.T. Electrostrictive energy conversion property of cellular electrets after corona discharge. Int. J. Mod. Phys. B 2018, 32, 1850069. [Google Scholar] [CrossRef]
- Ko, Y.S.; Nüesch, F.A.; Opris, D.M. Charge generation by ultra-stretchable elastomeric electrets. J. Mater. Chem. C 2017, 5, 1826–1835. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D. Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering. Carbon 2019, 150, 531–548. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D.D.L. Dielectric behavior of graphite, with assimilation of the AC permittivity, DC polarization and DC electret. Carbon 2021, 181, 246–259. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D. Electret behavior of unpoled carbon fiber with and without nickel coating. Carbon 2019, 159, 122–132. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D. Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering. Carbon 2020, 160, 361–389. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D.D.L. Electret, piezoelectret and piezoresistivity discovered in steels, with application to structural self-sensing and structural self-powering. Smart Mater. Struct. 2019, 28, 075028. [Google Scholar] [CrossRef]
- Yang, W.; Chung, D.D.L. Electret behavior discovered in solder, specifically tin–silver. J. Mater. Sci. Mater. Electron. 2021, 32, 19145–19156. [Google Scholar] [CrossRef]
- David, I.G.; Popa, D.-E.; Buleandra, M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. J. Anal. Methods Chem. 2017, 2017, 1905968. [Google Scholar] [CrossRef] [Green Version]
- Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A.R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097. [Google Scholar] [CrossRef]
- Bhauriyal, P.; Mahata, A.; Pathak, B. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminiumion battery. Phys. Chem. Chem. Phys. 2017, 19, 7980–7989. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Liu, Q.; Chen, S.; Lin, K.; Xu, Z.; Lu, B. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode. Small 2017, 13, 1701011. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Qi, L.; Wang, H. Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate. Solid State Ion. 2017, 300, 169–174. [Google Scholar] [CrossRef]
- Cai, W.; Yan, C.; Yao, Y.; Xu, L.; Chen, X.; Huang, J.; Zhang, Q. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 13007–13012. [Google Scholar] [CrossRef] [PubMed]
- Finegan, D.P.; Quinn, A.; Wragg, D.S.; Colclasure, A.M.; Lu, X.; Tan, C.; Heenan, T.M.M.; Jervis, R.; Brett, D.J.L.; Das, S.; et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes. Energy Environ. Sci. 2020, 13, 2570–2584. [Google Scholar] [CrossRef]
- Patil, M.M.; Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Chakklabbi, T.R. Electroanalysis of paracetamol at nanoclay modified graphite electrode. Mater. Today Proc. 2019, 18, 986–993. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, L.; Huang, Y.; Li, J.; Fan, H.; Wang, H. Ethylmethyl carbonate’s role in hexafluor-ophosphate storage in graphite electrodes. ACS Appl. Energy Mater. 2019, 2, 8031–8038. [Google Scholar] [CrossRef]
- Goktas, M.; Bolli, C.; Buchheim, J.; Berg, E.J.; Novák, P.; Bonilla, F.; Rojo, T.; Komaba, S.; Kubota, K.; Adelhelm, P. Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. ACS Appl. Mater. Interfaces 2019, 11, 32844–32855. [Google Scholar] [CrossRef] [PubMed]
- Hogrefe, C.; Hein, S.; Waldmann, T.; Danner, T.; Richter, K.; Latz, A.; Wohlfahrt-Mehrens, M. Mechanistic Details of the Spontaneous Intercalation of Li Metal into Graphite Electrodes. J. Electrochem. Soc. 2020, 167, 140546. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Huang, Y.; Zhu, D.; Wang, H. Synergetic Effect of ethyl methyl carbonate and trime-thyl phosphate on BF4- intercalation into a graphite electrode. Langmuir 2019, 35, 3972–3979. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, R.; Raja, A.N. Review-pencil graphite electrode: An emerging sensing material. J. Electrochem. Soc. 2020, 167, 037501. [Google Scholar]
- Huang, Y.; Fan, H.; Kamezaki, H.; Kang, B.; Yoshio, M.; Wang, H. Facilitating Tetrafluoroborate Intercalation into Graphite Electrodes from Ethylmethyl Carbonate-Based Solutions. Chemelectrochem 2019, 6, 2931–2936. [Google Scholar] [CrossRef]
- Morasch, R.; Landesfeind, J.; Suthar, B.; Gasteiger, H. Detection of Binder Gradients Using Impedance Spectroscopy and Their Influence on the Tortuosity of Li-Ion Battery Graphite Electrodes. J. Electrochem. Soc. 2018, 165, A3459–A3467. [Google Scholar] [CrossRef]
- Amin, R.; Delattre, B.; Tomsia, A.P.; Chiang, Y.-M. Electrochemical Characterization of High Energy Density Graphite Electrodes Made by Freeze-Casting. ACS Appl. Energy Mater. 2018, 1, 4976–4981. [Google Scholar] [CrossRef]
- Liu, L.; Solin, N.; Inganäs, O. Scalable lignin/graphite electrodes formed by mechanochemistry. RSC Adv. 2019, 9, 39758–39767. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.; Xi, X. A review of the colossal permittivity of electronic conductors, specifically metals and carbons. Mater. Res. Bull. 2021, 148, 111654. [Google Scholar] [CrossRef]
- Chung, D.; Xi, X. Factors that govern the electric permittivity of carbon materials in the graphite allotrope family. Carbon 2021, 184, 245–252. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999, 32, R57–R70. [Google Scholar] [CrossRef]
- Chung, D.; Xi, X. Electric poling of carbon fiber with and without nickel coating. Carbon 2020, 162, 25–35. [Google Scholar] [CrossRef]
- Chung, D.D.L.; Xi, X. New concept of electret-based capacitance, as shown for solder and other conductors. J. Mater. Sci. Mater. Electron. 2022, 33, 27022–27039. [Google Scholar] [CrossRef]
- Chung, D.D.L.; Xi, X. Introducing solder-based electronics, with solder functioning as resistor, capacitor, and power source. J. Mater. Sci. Mater. Electron. 2023, 34, 131. [Google Scholar] [CrossRef]
- Chung, D.D.L. A review of exfoliated graphite. J. Mater. Sci. 2015, 51, 554–568. [Google Scholar] [CrossRef]
- Xin, G.; Wang, Y.; Liu, X.; Zhang, J.; Wang, Y.; Huang, J.; Zang, J. Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochim. Acta 2015, 167, 254–261. [Google Scholar] [CrossRef]
- Sykam, N.; Rao, G.M. Lightweight flexible graphite sheet for high-performance electromagnetic interference shielding. Mater. Lett. 2018, 233, 59–62. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, J.; Han, D.; Wu, K.; Yu, B.; Chai, S.; Chen, F.; Fu, Q. Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 2018, 133, 435–445. [Google Scholar] [CrossRef]
- Muniraj VK, A.; Dwivedi, P.K.; Tamhane, P.S.; Szunerits, S.; Boukherroub, R.; Shelke, M.V. High-energy flexible supercapacitor-synergistic effects of polyhydroquinone and RuO2·×H2O with microsized, few-layered, self-supportive exfoliated-graphite sheets. ACS Appl. Mater. Interfaces 2019, 11, 18349–18360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, K.; Mo, Y.; Zhu, L.; Yu, B.; Chen, F.; Fu, Q. Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties. Compos. Sci. Technol. 2018, 168, 28–37. [Google Scholar] [CrossRef]
- Goren, A.Y.; Recepoğlu, Y.K.; Edebali̇, O.; Sahin, C.; Genisoglu, M.; Okten, H.E. Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation. ACS Omega 2022, 7, 32640–32652. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Yu, Y.; Liu, L.; Liu, L.; Wu, Y. One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance. Electrochim. Acta 2017, 228, 553–561. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, B.; Wu, X.; Tian, Y.; Wu, K.; Yu, B.; Du, R.; Fu, Q.; Chen, F. Utilizing ammonium persulfate assisted expansion to fabricate flexible expanded graphite films with excellent thermal conductivity by introducing wrinkles. Carbon 2019, 153, 565–574. [Google Scholar] [CrossRef]
- Chung, D.; Duong, D.Q. Observation of electric polarization continuity in graphite. Mater. Chem. Phys. 2023, 297, 127357. [Google Scholar] [CrossRef]
- Ukpaka, C.P. Mathematical model to predict the characteristics of polarization in dielectric materials: The concept of piezoelectrcity and electrostriction. Chem. Int. 2019, 5, 232–240. [Google Scholar]
- Zhang, G.; Brannum, D.; Dong, D.; Tang, L.; Allahyarov, E.; Tang, S.; Kodweis, K.; Lee, J.-K.; Zhu, L. Interfacial Polarization-Induced Loss Mechanisms in Polypropylene/BaTiO3 Nanocomposite Dielectrics. Chem. Mater. 2016, 28, 4646–4660. [Google Scholar] [CrossRef]
- Quan, B.; Liang, X.; Ji, G.; Cheng, Y.; Liu, W.; Ma, J.; Zhang, Y.; Li, D.; Xu, G. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075. [Google Scholar] [CrossRef]
- Kim, M.P.; Um, D.-S.; Shin, Y.-E.; Ko, H. High-Performance Triboelectric Devices via Dielectric Polarization: A Review. Nanoscale Res. Lett. 2021, 16, 35. [Google Scholar] [CrossRef]
S1 | S2 | S1 + S2 (Sum) | |
---|---|---|---|
Dimensions (mm) | 683 × 302 × 1.656 | 680 × 300 × 1.668 | / |
Inter-electrode distance (mm) | 633 ± 0.5 | 630 ± 0.5 | 1313 ± 2 |
Resistance * (mΩ) | 14.69 ± 0.12 | 14.08 ± 0.12 | 28.77 ± 0.24 |
Resistivity (10−5 Ω.m) | 1.16 ± 0.02 | 1.12 ± 0.02 | / |
Voltage before polarity reversal (μV) | +1.139 ± 0.010 | +1.145 ± 0.005 | +2.284 ± 0.015 |
Voltage after polarity reversal (μV) | −0.961 ± 0.009 | −1.109 ± 0.007 | −2.070 ± 0.016 |
Specimens S1 + S2 Inter-Electrode Distance = 1313 ± 2 mm | Voltage (μV) | Fractional Change in Voltage Magnitude Relative to the Sum (%) | Electric Field (μV/m) | |||
---|---|---|---|---|---|---|
Before Polarity Reversal | After Polarity Reversal | Before Polarity Reversal | After Polarity Reversal | Before Polarity Reversal | After Polarity Reversal | |
Without bending in the connection * | +2.246 ±0.015 | −2.105 ±0.011 | −1.7 ±1.3 | +1.7 ±1.3 | +1.711 ±0.012 | −1.603 ±0.009 |
With bending in the connection † | +1.054 ±0.027 | −1.008 ±0.034 | −53.9 ±1.9 | −51.3 ±2.4 | +0.803 ±0.021 | −0.768 ±0.025 |
Sum of the voltages of two disconnected specimens | +2.284 ±0.015 | −2.070 ±0.016 | / | / | +1.740 ±0.012 | −1.577 ±0.012 |
Resistor Resistance (Ω) | Measured Voltage (μV) | Calculated Voltage (μV) | Current (μA) | |||
---|---|---|---|---|---|---|
Before Polarity Reversal | After Polarity Reversal | Before Polarity Reversal | After Polarity Reversal | Before Polarity Reversal | After Polarity Reversal | |
∞ * | +1.139 ±0.010 | −0.961 ±0.009 | / | / | / | / |
10.000 | +1.082 ±0.005 | −0.911 ±0.018 | +1.090 ±0.010 | −0.920 ±0.009 | +0.109 ±0.001 | −0.092 ±0.002 |
1.000 | +0.772 ±0.007 | −0.628 ±0.003 | +0.787 ±0.007 | −0.664 ±0.007 | +0.787 ±0.007 | −0.664 ±0.006 |
0.1000 | +0.210 ±0.005 | −0.164 ±0.005 | +0.208 ±0.002 | −0.176 ±0.002 | +2.080 ±0.018 | −1.760 ± 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, D.D.L. First Review of Conductive Electrets for Low-Power Electronics. J. Low Power Electron. Appl. 2023, 13, 25. https://doi.org/10.3390/jlpea13020025
Chung DDL. First Review of Conductive Electrets for Low-Power Electronics. Journal of Low Power Electronics and Applications. 2023; 13(2):25. https://doi.org/10.3390/jlpea13020025
Chicago/Turabian StyleChung, D. D. L. 2023. "First Review of Conductive Electrets for Low-Power Electronics" Journal of Low Power Electronics and Applications 13, no. 2: 25. https://doi.org/10.3390/jlpea13020025
APA StyleChung, D. D. L. (2023). First Review of Conductive Electrets for Low-Power Electronics. Journal of Low Power Electronics and Applications, 13(2), 25. https://doi.org/10.3390/jlpea13020025