Direct-Grown Helical-Shaped Tungsten-Oxide-Based Devices with Reconfigurable Selectivity for Memory Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannan, S.; Rajendran, J.; Karri, R.; Sinanoglu, O. Sneak-path testing of crossbar-based nonvolatile random access memories. IEEE Trans. Nanotechnol. 2013, 12, 413–426. [Google Scholar] [CrossRef]
- Huang, J.J.; Tseng, Y.M.; Hsu, C.W.; Hou, T.H. Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 2011, 32, 1427–1429. [Google Scholar] [CrossRef]
- Banerjee, W.; Hwang, H. Understanding of Selector-Less 1S1R Type Cu-Based CBRAM Devices by Controlling Sub-Quantum Filament. Adv. Electron. Mater. 2020, 6, 2000488. [Google Scholar] [CrossRef]
- Ambrogio, S.; Balatti, S.; Milo, V.; Carboni, R.; Wang, Z.Q.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Neuromorphic learning and recognition with one-transistor-one-resistor synapses and bistable metal oxide RRAM. IEEE Trans. Electron Devices 2016, 63, 1508–1515. [Google Scholar] [CrossRef] [Green Version]
- Cassuto, Y.; Kvatinsky, S.; Yaakobi, E. Sneak-path constraints in memristor crossbar arrays. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013. [Google Scholar]
- Chou, C.T.; Hudec, B.; Hsu, C.W.; Lai, W.L.; Chang, C.C.; Hou, T.H. Crossbar array of selector-less TaOx/TiO2 bilayer RRAM. Microelectron. Reliab. 2015, 55, 2220–2223. [Google Scholar] [CrossRef]
- Jeon, K.; Kim, J.; Ryu, J.J.; Yoo, S.-J.; Song, C.; Yang, M.K.; Seok, D.; Kim, G.H. Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 2021, 12, 2968. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chen, P.H.; Chang, T.C.; Huang, W.C.; Tan, Y.F.; Lin, Y.H.; Chen, W.C.; Lin, C.C.; Chang, Y.F.; Chen, Y.C.; et al. A comprehensive study of enhanced characteristics with localized transition in interface-type vanadium-based devices. Mater. Today Phys. 2020, 13, 100201. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Chang, Y.F.; Chung, W.M.; Chen, Y.C.; Lin, C.C.; Leu, J. SiCxNy-based resistive and threshold switching by using single precursor plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 2020, 116, 213502. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, C.C.; Chang, Y.F. Post-moore memory technology: Sneak path current (spc) phenomena on rram crossbar array and solutions. Micromachines 2021, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Cheng, S.; Xie, B.; Wei, X.; Jie, W. Co-existence of bipolar nonvolatile and volatile resistive switching based on WO3 nanowire for applications in neuromorphic computing and selective memory. Appl. Phys. Lett. 2022, 121, 093502. [Google Scholar] [CrossRef]
- Lee, H.D.; Kim, S.G.; Cho, K.; Hwang, H.; Choi, H.; Lee, J.; Lee, S.H.; Lee, H.J.; Suh, J.; Chung, S.O.; et al. Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 151–152. [Google Scholar]
- Mao, M.; Cao, Y.; Yu, S.; Chakrabarti, C. Optimizing latency, energy, and reliability of 1T1R ReRAM through appropriate voltage settings. In Proceedings of the 2015 33rd IEEE International Conference on Computer Design (ICCD), New York, NY, USA, 18–21 October 2015; pp. 359–366. [Google Scholar]
- Mehra, R.; Nibhanupudi, S.S.T.; Kulkarni, J.P. Statistical Analysis of 2T1R Gain-Cell RRAM Bitcell for Area Efficient, High-Performance, and Reliable Multi-level Cell Operation. In Proceedings of the 2022 Device Research Conference (DRC), Columbus, OH, USA, 26–29 June 2022; pp. 1–2. [Google Scholar]
- Yousefi, A.; Eslami, N.; Moaiyeri, M.H. A Reliable and Energy-Efficient Nonvolatile Ternary Memory Based on Hybrid FinFET/RRAM Technology. IEEE Access 2022, 10, 105040–105051. [Google Scholar] [CrossRef]
- Wang, L.; Ye, W.; Lai, J.; Liu, J.; Yang, J.; Si, X.; Huo, C.; Dou, C.; Xu, X.; Liu, Q.; et al. A 14nm 100Kb 2T1R Transpose RRAM with >150X resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme. In Proceedings of the 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar]
- Zhang, W.; Wang, S.; Li, Y.; Xu, X.; Dong, D.; Jiang, N.; Wang, F.; Guo, Z.; Fang, R.; Dou, C.; et al. Few-shot graph learning with robust and energy-efficient memory-augmented graph neural network (MAGNN) based on homogeneous computing-in-memory. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12–17 June 2022; pp. 224–225. [Google Scholar]
- Sarkar, S.; Behunin, R.O.; Gibbs, J.G. Shape-dependent, chiro-optical response of uv-active, nanohelix metamaterials. Nano Lett. 2019, 19, 8089–8096. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.G.; Sarkar, S.; Holterhoff, A.L.; Li, M.; Castañeda, J.; Toller, J. Engineering the Dynamics of Active Colloids by Targeted Design of Metal–Semiconductor Heterojunctions. Adv. Mater. Interfaces 2019, 6, 1801894. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Leow, W.R.; Wan, C.; Chen, G.; Zeng, Y.; Yu, J.; Liu, Y.; Cai, P.; Wang, H.; et al. Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold switch. Adv. Mater. 2018, 30, 1802516. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Belkin, D.; Savel’ev, S.E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M.; et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Chang, Y.F.; Lin, C.Y.; Wu, X.; Xu, G.; Fowler, B.; Chang, T.C.; Lee, J.C. Built-in nonlinear characteristics of low power operating one-resistor selector-less RRAM by stacking engineering. ECS Trans. 2017, 80, 923. [Google Scholar] [CrossRef]
- Korolev, D.S.; Belov, A.I.; Okulich, E.V.; Okulich, V.I.; Guseinov, D.V.; Sidorenko, K.V.; Shuisky, R.A.; Antonov, I.N.; Gryaznov, E.G.; Gorshkov, O.N.; et al. Manipulation of resistive state of silicon oxide memristor by means of current limitation during electroforming. Superlattices Microstruct. 2018, 122, 371–376. [Google Scholar] [CrossRef]
- Vaziri, S.; Datye, I.M.; Ambrosi, E.; Khan, A.I.; Kwon, H.; Wu, C.H.; Hsu, C.F.; Guy, J.; Lee, T.Y.; Wong, H.S.; et al. First Fire-free, Low-voltage (~1.2 V), and Low Off-current (~3 nA) SiOxTey Selectors. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12–17 June 2022; pp. 324–325. [Google Scholar]
- Jeon, D.S.; Dongale, T.D.; Kim, T.G. Low power Ti-doped NbO2-based selector device with high selectivity and low OFF current. J. Alloys Compd. 2021, 884, 161041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Huang, Y.; Sarkar, S.; Gibbs, J.; Lee, J. Direct-Grown Helical-Shaped Tungsten-Oxide-Based Devices with Reconfigurable Selectivity for Memory Applications. J. Low Power Electron. Appl. 2022, 12, 55. https://doi.org/10.3390/jlpea12040055
Chen Y-C, Huang Y, Sarkar S, Gibbs J, Lee J. Direct-Grown Helical-Shaped Tungsten-Oxide-Based Devices with Reconfigurable Selectivity for Memory Applications. Journal of Low Power Electronics and Applications. 2022; 12(4):55. https://doi.org/10.3390/jlpea12040055
Chicago/Turabian StyleChen, Ying-Chen, Yifu Huang, Sumant Sarkar, John Gibbs, and Jack Lee. 2022. "Direct-Grown Helical-Shaped Tungsten-Oxide-Based Devices with Reconfigurable Selectivity for Memory Applications" Journal of Low Power Electronics and Applications 12, no. 4: 55. https://doi.org/10.3390/jlpea12040055
APA StyleChen, Y. -C., Huang, Y., Sarkar, S., Gibbs, J., & Lee, J. (2022). Direct-Grown Helical-Shaped Tungsten-Oxide-Based Devices with Reconfigurable Selectivity for Memory Applications. Journal of Low Power Electronics and Applications, 12(4), 55. https://doi.org/10.3390/jlpea12040055