Pre- and Post-Disaster Allocation Strategies of Relief Items in the Presence of Resilience
Abstract
1. Introduction
2. Literature Review
2.1. Pre- and Post-Disaster Allocation Decisions of Relief Items
2.2. Resilience and Its Measurement
2.3. Summary of Recent Studies
- (i)
- Most existing studies focus on optimizing isolated decision-making problems, such as pre- or post-disaster resource allocation, with limited attention paid to integrated strategies. Furthermore, a majority of current studies adopt a two-tier network structure and concentrate on the management of a single category of relief items, which to some extent reduces the applicability of decision-making models in real-world management practices. In the study of the optimization of pre-deployment of relief items, incorporating additional levels into the supply chain network structure can provide a more realistic representation of the problem. One possible extension is to consider multiple warehouses with different capacities, such as setting up a central warehouse at a distant location and local emergency storage points near demand points. Under this setting, decisions concerning facility location, inventory management, and distribution across different levels must be coordinated, thereby improving the overall performance of the logistics system. Additionally, different types of relief items exhibit distinct characteristics and management requirements. Investigating the classification of relief items can facilitate a deeper understanding of management strategies related to procurement, storage, and distribution.
- (ii)
- Currently, cost minimization remains the most commonly used objective function in optimization models. However, an increasing number of scholars have recognized that relying solely on cost minimization as the primary objective in the context of humanitarian relief operations is insufficiently comprehensive. In recent years, resilience has garnered increasing attention from researchers and has been applied in the domains of key infrastructure, supply chain networks, and ecosystems. In the field of supply chain management, resilience is typically characterized by the degree to which system functionality deviates from a benchmark state. When extended to humanitarian supply chains, rapid supply of relief items can significantly enhance rescue efficiency, alleviate the anxiety of victims, and thereby facilitate the restoration of societal stability. Conversely, when relief items cannot be delivered immediately, prolonged delay increases the likelihood of societal instability. Furthermore, considering data availability, this paper adopts response delay time as an indicator to quantify resilience.
- (iii)
- Existing research on the pre- and post-disaster allocation of relief items primarily focuses on public health events, earthquakes, or hurricanes as case backgrounds for discussion. However, the greenhouse effect has contributed to an increase in extreme rainfall events globally, making flood disasters a significant threat to sustainable global development. Effectively pre-positioning an appropriate quantity of relief items and ensuring their efficient distribution to affected populations represent crucial strategies for minimizing economic losses and reducing human casualties. Building upon this context, this paper addresses the challenges associated with the pre-positioning and allocation of relief items in flood disaster scenarios.
3. The Pre- and Post-Disaster Allocation Model of Relief Items Concerning Resilience
3.1. Problem Description
3.2. Notations
3.3. Model 1: Cost-Oriented Model
3.4. Model 2: Cost Resilience-Oriented Model
4. Case Study
4.1. Case Study on Xiangtan During the Flood Disaster
4.2. Computational Results
- (i)
- When the severity of a disaster is relatively slight, the establishment of a large-scale emergency storage point at location 9 results in higher setup costs for Model 1 compared to Model 2. Meanwhile, the pre-positioning of 2500 units of life essentials at this location reduces the pre-positioning cost for Model 2 relative to Model 1. However, it also incurs a penalty cost of CNY 125,000 for Model 2. This outcome might be attributed to the fact that Model 2 prioritizes meeting demands across all affected areas yet fails to fully meet localized needs. These findings suggests that in a slight scenario, the cost-oriented model can better achieve the goals of cost reduction and broader coverage of relief items.
- (ii)
- When the severity of a disaster is moderate, establishment cost, pre-positioning cost, management cost, and penalty cost are identical between the two models. In terms of response delay time, Model 2 shows superior performance with a value of 0.88. However, this superiority leads to a higher transportation cost (231,744), compared to Model 1. In this case, decision makers need to evaluate the available financial budget to determine the most appropriate course of action.
- (iii)
- When the severity of a disaster is high, the total costs of Model 2 are significantly higher than those of Model 1. However, the response time delay of Model 2 is considerably lower compared to Model 1. In addition, Model 2 incurs a higher penalty cost, as it prioritizes the timeliness of relief item delivery over fully meeting the demand. This strategy can better mitigate the anxiety of victims in this context [44].
- (i)
- The results of Model 1 and Model 2 are identical in terms of the distribution scheme from central warehouse B to the emergency storage points. However, notable differences exist between the two models regarding the distribution scheme from emergency storage points to demand points, particularly under high-severity scenarios.
- (ii)
- When the severity of a disaster is high, both models choose location 4 as the transfer station and transport relief items to location 12. However, to deliver life essentials to location 12 more quickly, Model 2 chooses to establish a local emergency storage point and stores 5000 units of life essentials. Model 1 performs better in terms of demand fulfillment. For instance, locations 10 and 13 can receive larger quantities of relief items (e.g., 8000 and 6000 units, respectively). Unfortunately, this outcome requires a higher tolerance time among the affected people.
4.3. The Impact of the Initial Inventory Level of Emergency Storage Points on Results
4.4. The Impact of Victims’ Tolerance Time on Results
4.5. The Impact of Transportation Speed on Results
4.6. The Impact of Unit Penalty Cost
4.7. The Impact of Disaster Severity Probability
5. Conclusions
5.1. Main Findings
- (i)
- Model 1 demonstrates superior performance in cost control and improving the coverage of relief items. Model 2 excels in reducing the waiting time, although Model 2 may not guarantee full and timely satisfaction of all demand in disaster-affected areas.
- (ii)
- The initial inventory level of emergency storage points primarily influences post-disaster allocation decisions, with the most significant impact on transportation costs. Increasing the initial inventory can significantly reduce transportation costs, but may lead to higher inventory costs, thereby increasing the financial burden on the government. In addition, the uncertainty of disaster occurrences complicates pre-positioning decisions. Storing large quantities of unused relief items over long periods without a disaster may raise public concerns and scrutiny.
- (iii)
- When the victims’ tolerance time is extended through social support mechanisms, decision-making strategies that focus solely on economic goals may excessively prioritize cost minimization, which is unfavorable for accelerating rescue efforts and reducing the harm to victims. In contrast, Model 2 can effectively balance cost reduction with minimizing victim suffering.
- (iv)
- Transportation speed has no impact on cost control but significantly affects response delay time. Specifically, as transportation speed increases, the cost-resilience balanced model can continuously reduce response time, whereas the cost-oriented model only shows a downward trend within a time window.
- (v)
- Unit penalty cost influences both total penalty cost and transportation costs, although its effect is more pronounced within a specific threshold range.
5.2. Theoretical Contributions
5.3. Managerial Insights
5.4. Limitations and Future Directions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Dij | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 9 | 6.7 | 5.9 | 6.1 | 2 | 13 | 5.2 | 14 | 12 | 12 | 6.8 | 8.1 | 2.9 |
B | 2.8 | 2.5 | 1.3 | 0.1 | 4.2 | 5.5 | 2.2 | 11 | 8.4 | 8.9 | 9.2 | 2.7 | 6.9 |
C | 1.7 | 3.6 | 2.8 | 2.6 | 3.2 | 7.8 | 1.4 | 11 | 8 | 8.3 | 9 | 3 | 6.1 |
D | 4.6 | 1.5 | 1.8 | 2.6 | 3.9 | 7.8 | 1.4 | 7.9 | 5.3 | 5.6 | 7 | 4.5 | 6.6 |
E | 4.6 | 2.4 | 3.2 | 3.4 | 3.9 | 8.4 | 2.1 | 7.7 | 5.6 | 5.9 | 6.9 | 5.9 | 6.6 |
Appendix B
Djk | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yaowan (1) | 1.1 | 4.5 | 4 | 2.9 | 8.5 | 5.7 | 3.8 | 11 | 9.6 | 10 | 8.3 | 3.5 | 12 |
Xiangtan Railway Station (2) | 4.3 | 1.4 | 1.7 | 2.5 | 4.9 | 7.4 | 2.5 | 7.9 | 5.5 | 6.6 | 4.3 | 5 | 8.5 |
Municipal Highway Bureau (3) | 3.5 | 2.1 | 0.5 | 1.2 | 4.1 | 6.3 | 1.7 | 9.4 | 6.6 | 6.3 | 5.8 | 4 | 8.3 |
Shaoshan Road Community (4) | 3.3 | 2.4 | 1.2 | 0.5 | 4.4 | 5.9 | 1.9 | 11 | 7.7 | 7.4 | 6.5 | 3.5 | 8.5 |
Sports Center (5) | 3.8 | 3.8 | 3.6 | 4.1 | 0.5 | 13 | 2.9 | 12 | 9.8 | 9.9 | 4.3 | 7.8 | 4.9 |
Xiangtan University (6) | 7.3 | 7.7 | 6.9 | 5.4 | 13 | 0.5 | 8.1 | 12 | 8.4 | 7.9 | 11 | 5.2 | 16 |
Hexi Underground Commercial Street (7) | 2.7 | 1.2 | 2.2 | 2.2 | 3.3 | 6.7 | 1 | 9.6 | 6.2 | 7.8 | 5 | 4.1 | 7.5 |
Jiuhua Lake Park (8) | 11 | 8 | 10 | 11 | 14 | 11 | 9.4 | 3.2 | 4.2 | 4.1 | 7.9 | 13 | 20 |
Bubugao New World (9) | 9.2 | 5.4 | 7.6 | 8.3 | 13 | 8.6 | 6.8 | 2.9 | 2.4 | 1.7 | 6.4 | 9.4 | 11 |
Tianyuan Yucheng (10) | 9.5 | 5.7 | 7.9 | 8.7 | 13 | 9 | 7.1 | 3.3 | 2.7 | 1.9 | 6.7 | 9.7 | 11 |
Wulidui Community (11) | 9.4 | 7.1 | 8.5 | 9.7 | 6.2 | 14 | 8.5 | 9.9 | 8.8 | 10 | 2.2 | 12 | 5.8 |
Shaziling Community (12) | 3.5 | 4.4 | 3.9 | 2.8 | 7.3 | 4.5 | 4.1 | 13 | 11 | 10 | 9.7 | 0.5 | 12 |
Xiacheng Village (13) | 6.6 | 6.5 | 6.3 | 6.8 | 3.5 | 15 | 5.6 | 13 | 11 | 13 | 5.5 | 9.6 | 2.6 |
Appendix C
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
DP | 1, 5, 6, 7 | 1, 5, 7, 8 | 1, 5, 8, 9 | 1, 5, 9, 10 | 1, 5, 10, 11 | 1, 5, 11, 12 | 1, 5, 12, 13 | 1, 6, 7, 8 | 1, 6, 8, 9 | 1, 6, 9, 10 |
2, 2, 2, 2 | 1, 1, 1, 1 | 0.67, 0.67, 0.67, 0.67 | 0.5, 0.5, 0.5, 0.5 | 0.4, 0.4, 0.4, 0.4 | 2, 2, 1, 1 | 2, 1, 0.67, 0.5 | 1, 1, 0.67, 0.5 | 0.67, 1, 0.67, 0.5 | 0.5, 1, 0.67, 0.5 | |
0.1, 0.1, 0.1, 0.1 | 0.2, 0.2, 0.2, 0.2 | 0.3, 0.3, 0.3, 0.3 | 0.4, 0.4, 0.4, 0.4 | 0.5, 0.5, 0.5, 0.5 | 0.1, 0.1, 0.2, 0.2 | 0.1, 0.2, 0.3, 0.4 | 0.2, 0.2, 0.3, 0.4 | 0.3, 0.2, 0.3, 0.4 | 0.4, 0.2, 0.3, 0.4 | |
R1 | 1000, 1000, 1000, 1000 | 2000, 2000, 2000, 2000 | 3000, 3000, 3000, 3000 | 4000, 4000, 4000, 4000 | 5000, 5000, 5000, 5000 | 1000, 1000, 2000, 2000 | 1000, 2000, 3000, 4000 | 2000, 2000, 3000, 4000 | 3000, 2000, 3000, 4000 | 4000, 2000, 3000, 4000 |
R2 | 200, 200, 200, 200 | 400, 400, 400, 400 | 600, 600, 600, 600 | 800, 800, 800, 800 | 1000, 1000, 1000, 1000 | 200, 200, 400, 400 | 200, 400, 600, 800 | 400, 400, 600, 800 | 600, 400, 600, 800 | 800, 400, 600, 800 |
R3 | 20, 20, 20, 20 | 40, 40, 40, 40 | 60, 60, 60, 60 | 80, 80, 80, 80 | 100, 100, 100, 100 | 20, 20, 40, 40 | 20, 40, 60, 80 | 40, 40, 60, 80 | 60, 40, 60, 80 | 80, 40, 60, 80 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
DP | 1, 6, 10, 11 | 1, 6, 11, 12 | 1, 6, 12, 13 | 1, 7, 8, 9 | 1, 7, 9, 10 | 1, 7, 10, 11 | 1, 7, 11, 12 | 1, 7, 12, 13 | 1, 8, 9, 10 | 1, 8, 10, 11 |
0.4, 1, 0.67, 0.5 | 2, 0.67, 0.67, 0.5 | 2, 0.5, 0.67, 0.5 | 2, 0.4, 0.67, 0.5 | 2, 1, 0.5, 0.5 | 2, 1, 0.4, 0.5 | 2, 1, 0.67, 0.4 | 1, 0.67, 0.5, 0.4 | 0.67, 0.67, 0.5, 0.4 | 0.5, 0.67, 0.5, 0.4 | |
0.5, 0.2, 0.3, 0.4 | 0.1, 0.3, 0.3, 0.4 | 0.1, 0.4, 0.3, 0.4 | 0.1, 0.5, 0.3, 0.4 | 0.1, 0.2, 0.4, 0.4 | 0.1, 0.2, 0.5, 0.4 | 0.1, 0.2, 0.3, 0.5 | 0.2, 0.3, 0.4, 0.5 | 0.3, 0.3, 0.4, 0.5 | 0.4, 0.3, 0.4, 0.5 | |
R1 | 5000, 2000, 3000, 4000 | 1000, 3000, 3000, 4000 | 1000, 3000, 3000, 4000 | 1000, 5000, 3000, 4000 | 1000, 2000, 4000, 4000 | 1000, 2000, 5000, 4000 | 1000, 2000, 3000, 5000 | 2000, 3000, 4000, 5000 | 3000, 3000, 4000, 5000 | 4000, 3000, 4000, 5000 |
R2 | 1000, 400, 600, 800 | 200, 600, 600, 800 | 200, 800, 600, 800 | 200, 1000, 600, 800 | 200, 400, 800, 800 | 200, 400, 1000, 800 | 200, 400, 600, 1000 | 400, 600, 800, 1000 | 600, 600, 800, 1000 | 800, 600, 800, 1000 |
R3 | 100, 40, 60, 80 | 20, 60, 60, 80 | 20, 80, 60, 80 | 20, 100, 60, 80 | 20, 40, 80, 80 | 20, 40, 100, 80 | 20, 40, 60, 100 | 40, 60, 80, 100 | 60, 60, 80, 100 | 80, 60, 80, 100 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
DP | 1, 8, 11, 12 | 1, 8, 12, 13 | 1, 9, 10, 11 | 1, 9, 11, 12 | 1, 9, 12, 13 | 1, 10, 11, 12 | 1, 10, 12, 13 | 2, 3, 5, 6 | 2, 3, 5, 7 | 2, 3, 5, 8 |
0.4, 0.67, 0.5, 0.4 | 1, 0.5, 0.5, 0.4 | 1, 0.4, 0.5, 0.4 | 1, 0.67, 0.4, 0.4 | 0.67, 1, 0.5, 0.4 | 0.67, 1, 0.4, 0.4 | 0.5, 0.67, 1, 0.67 | 0.4, 0.4, 0.5, 0.67 | 0.4, 0.4, 0.67, 0.67 | 0.4, 0.4, 0.5, 0.5 | |
0.5, 0.3, 0.4, 0.5 | 0.2, 0.4, 0.4, 0.5 | 0.2, 0.5, 0.4, 0.5 | 0.2, 0.3, 0.5, 0.5 | 0.3, 0.2, 0.4, 0.5 | 0.3, 0.2, 0.5, 0.5 | 0.4, 0.3, 0.2, 0.3 | 0.5, 0.5, 0.4, 0.3 | 0.5, 0.5, 0.3, 0.3 | 0.5, 0.5, 0.4, 0.4 | |
R1 | 5000, 3000, 4000, 5000 | 2000, 4000, 4000, 5000 | 2000, 5000, 4000, 5000 | 2000, 3000, 5000, 5000 | 3000, 2000, 4000, 5000 | 3000, 2000, 5000, 5000 | 4000, 3000, 2000, 3000 | 5000, 5000, 4000, 3000 | 5000, 5000, 3000, 3000 | 5000, 5000, 4000, 4000 |
R2 | 1000, 600, 800, 1000 | 400, 800, 800, 1000 | 400, 1000, 800, 1000 | 400, 600, 1000, 1000 | 600, 400, 800, 1000 | 600, 400, 1000, 1000 | 800, 600, 400, 600 | 1000, 1000, 800, 600 | 1000, 1000, 600, 600 | 1000, 1000, 800, 800 |
R3 | 100, 60, 80, 100 | 40, 80. 80, 100 | 40, 100, 80, 100 | 40, 60, 100, 100 | 60, 40, 80, 100 | 60, 40, 100, 100 | 80, 60, 40, 60 | 100, 100, 80, 60 | 100, 100, 60, 60 | 100, 100, 80, 80 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
DP | 1, 2, 3, 4 | 2, 3, 4, 5 | 3, 4, 5, 6 | 4, 5, 6, 7 | 5, 6, 7, 8 | 6, 7, 8, 9 | 7, 8, 9, 10 | 8, 9, 10, 11 | 9, 10, 11, 12 | 10, 11, 12, 13 |
0.5, 0.5, 0.5, 0.5 | 0.4, 0.4, 0.4, 0.4 | 0.36, 0.36, 0.36, 0.36 | 0.33, 0.33, 0.33, 0.33 | 0.5, 0.4, 0.5, 0.5 | 0.5, 0.36, 0.5, 0.5 | 0.5, 0.33, 0.5, 0.5 | 0.5, 0.5, 0.4, 0.36 | 0.5, 0.5, 0.36, 0.36 | 0.5, 0.5, 0.33, 0.36 | |
0.4, 0.4, 0.4, 0.4 | 0.5, 0.5, 0.5, 0.5 | 0.55, 0.55, 0.55, 0.55 | 0.6, 0.6, 0.6, 0.6 | 0.4, 0.5, 0.4, 0.4 | 0.4, 0.55, 0.4, 0.4 | 0.4, 0.6, 0.4, 0.4 | 0.4, 0.4, 0.5, 0.55 | 0.4, 0.4, 0.55, 0.55 | 0.4, 0.4, 0.6, 0.55 | |
R1 | 4000, 4000, 4000, 4000 | 5000, 5000, 5000, 5000 | 5500, 5500, 5500, 5500 | 6000, 6000, 6000, 6000 | 4000, 5000, 4000, 4000 | 4000, 5500, 4000, 4000 | 4000, 6000, 4000, 4000 | 4000, 4000, 5000, 5500 | 4000, 4000, 5500, 5500 | 4000, 4000, 6000, 5500 |
R2 | 800, 800, 800, 800 | 1000, 1000, 1000, 1000 | 1100, 1100, 1100, 1100 | 1200, 1200, 1200, 1200 | 800, 1000, 800, 800 | 800, 1100, 800, 800 | 800, 1200, 800, 800 | 800, 800, 1000, 1100 | 800, 800, 1100, 1100 | 800, 800, 1200, 1100 |
R3 | 80, 80, 80, 80 | 100, 100, 100, 100 | 110, 110, 110, 110 | 120, 120, 120, 120 | 80, 100, 80, 80 | 80, 110, 80, 80 | 80, 120, 80, 80 | 80, 80, 100, 110 | 80, 80, 110, 110 | 80, 80, 120, 110 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
DP | 1, 2, 4, 5 | 1, 2, 5, 6 | 1, 2, 6, 7 | 1, 2, 7, 8, | 1, 2, 8, 9 | 1, 2, 9, 10 | 1, 2, 10, 11 | 1, 2, 11, 12 | 1, 2, 12, 13 | 1, 3, 4, 5 |
0.5, 0.5, 0.4, 0.33 | 0.5, 0.4, 0.36, 0.33 | 0.4, 0.36, 0.36, 0.33 | 0.5, 0.33, 0.36, 0.33 | 0.5, 0.4, 0.33, 0.33 | 0.4, 0.4, 0.36, 0.33 | 0.36, 0.4, 0.36, 0.33 | 0.33, 0.4, 0.36, 0.33 | 0.4, 0.36, 0.36, 0.33 | 0.4, 0.33, 0.36, 0.33 | |
0.4, 0.4, 0.5, 0.6 | 0.4, 0.5, 0.55, 0.6 | 0.5, 0.55, 0.55, 0.6 | 0.4, 0.6, 0.55, 0.6 | 0.4, 0.5, 0.6, 0.6 | 0.5, 0.5, 0.55, 0.6 | 0.55, 0.5, 0.55, 0.6 | 0.6, 0.5, 0.55, 0.6 | 0.5, 0.55, 0.55, 0.6 | 0.5, 0.6, 0.55, 0.6 | |
R1 | 4000, 4000, 5000, 6000 | 4000, 5000, 5500, 6000 | 5000, 5500, 5500, 6000 | 4000, 6000, 5500, 6000 | 4000, 5000, 6000, 6000 | 5000, 5000, 5500, 6000 | 5500, 5000, 5500, 6000 | 6000, 5000, 5500, 6000 | 5000, 5500, 5500, 6000 | 5000, 6000, 5500, 6000 |
R2 | 800, 800, 100, 1200 | 800, 1000, 1100, 1200 | 1000, 1100, 1100, 1200 | 800, 1200, 1100, 1200 | 800, 1000, 1200, 1200 | 1000, 1000, 1100, 1200 | 1100, 1000, 1100, 1200 | 1200, 1000, 1100, 1200 | 1000, 1100, 1100, 1200 | 1000, 1200, 1100, 1200 |
R3 | 80, 80, 100, 120 | 80, 100, 110, 120 | 100, 110, 110, 120 | 80, 120, 110, 120 | 80, 100, 120, 120 | 100, 100, 110, 120 | 110, 100, 110, 120 | 120, 100, 110, 120 | 100, 110, 110, 120 | 100, 120, 110, 120 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
DP | 1, 4, 6, 7 | 1, 3, 5, 6 | 1, 3, 6, 7 | 1, 3, 7, 8 | 1, 3, 8, 9 | 1, 3, 9, 10 | 1, 3, 10, 11 | 1, 3, 11, 12 | 1, 3, 12, 13 | 1, 4, 5, 6 |
0.4, 0.4, 0.33, 0.33 | 0.36, 0.5, 0.4, 0.33 | 0.36, 0.4, 0.4, 0.33 | 0.36, 0.36, 0.4, 0.33 | 0.36, 0.33, 0.4, 0.33 | 0.33, 0.36, 0.36, 0.36 | 0.33, 0.4, 0.4, 0.4 | 0.33, 0.5, 0.5, 0.5 | 0.33, 0.36, 0.36, 0.4 | 0.33, 0.36, 0.4, 0.5 | |
0.5, 0.5, 0.6, 0.6 | 0.55, 0.4, 0.5, 0.6 | 0.55, 0.5, 0.5, 0.6 | 0.55, 0.55, 0.5, 0.6 | 0.55, 0.6, 0.5, 0.6 | 0.6, 0.55, 0.55, 0.55 | 0.6, 0.5, 0.5, 0., 5 | 0.6, 0.4, 0.4, 0.4 | 0.6, 0.55, 0.55, 0.5 | 0.6, 0.55, 0.5, 0.4 | |
R1 | 5000, 5000, 6000, 6000 | 5500, 4000, 5000, 6000 | 5500, 5000, 5000, 6000 | 5500, 5500, 5000, 6000 | 5500, 6000, 5000, 6000 | 6000, 5500, 5500, 5500 | 6000, 5000, 5000, 5000 | 6000, 4000, 4000, 4000, | 6000, 5500, 5500, 5000 | 6000, 5500, 5000, 4000 |
R2 | 1000, 1000, 1200, 1200 | 1100, 800, 1000, 1200 | 1100, 1000, 1000, 1200 | 1100, 1100, 1000, 1200 | 1100, 1200, 1000, 1200 | 1200, 1100, 1100, 1100 | 1200, 1000, 1000, 1000 | 1200, 800, 800, 800 | 1200, 1100, 1100, 1000 | 1200, 1100, 1000, 800 |
R3 | 100, 100, 120, 120 | 110, 80, 100, 120 | 110, 100, 100, 120 | 110, 110, 100, 120 | 110, 120, 100, 120 | 120, 110, 110, 110 | 120, 100, 100, 100 | 120, 80, 80, 80 | 120, 110, 110, 100 | 120, 110, 100, 80 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
DP | 1, 2, 7, 8, 9 | 1, 2, 8, 9, 10 | 1, 2, 9, 10, 11 | 1, 2, 10, 11, 12 | 1, 2, 11, 12, 13 | 1, 3, 5, 6, 7 | 1, 3, 6, 7, 8 | 1, 3, 7, 8, 9 | 1, 3, 8, 9, 10 | 1, 3, 9, 10, 11 |
0.33, 0.33, 0.33, 0.33, 0.33 | 0.29, 0.29, 0.29, 0.29, 0.29 | 0.29, 0.33, 0.33, 0.33, 0.33 | 0.29, 0.29, 0.33, 0.33, 0.33 | 0.29, 0.29, 0.29, 0.33, 0.33 | 0.29, 0.29, 0.29, 0.29, 0.33 | 0.33, 0.29, 0.29, 0.29, 0.29 | 0.33, 0.33, 0.29, 0.29, 0.29 | 0.33, 0.33, 0.33, 0.29, 0.29 | 0.33, 0.33, 0.33, 0.33, 0.29 | |
0.6, 0.6, 0.6, 0.6, 0.6 | 0.7, 0.7, 0.7, 0.7, 0.7 | 0.7, 0.6, 0.6, 0.6, 0.6 | 0.7, 0.7, 0.6, 0.6, 0.6 | 0.7, 0.7, 0.7, 0.6, 0.6 | 0.7, 0.7, 0.7, 0.7, 0.6 | 0.6, 0.7, 0.7, 0.7, 0.7 | 0.6, 0.6, 0.7, 0.7, 0.7 | 0.6, 0.6, 0.6, 0.7, 0.7 | 0.6, 0.6, 0.6, 0.6, 0.7 | |
R1 | 6000, 6000, 6000, 6000, 6000 | 7000, 7000, 7000, 7000, 7000 | 7000, 6000, 6000, 6000, 6000 | 7000, 7000, 6000, 6000, 6000 | 7000, 7000, 7000, 6000, 6000 | 7000, 7000, 7000, 7000, 6000 | 6000, 7000, 7000, 7000, 7000 | 6000, 6000, 7000, 7000, 7000 | 6000, 6000, 6000, 7000, 7000 | 6000, 6000, 6000, 6000, 7000 |
R2 | 1200, 1200, 1200, 1200, 1200 | 1400, 1400, 1400, 1400, 1400 | 1400, 1200, 1200, 1200, 1200 | 1400, 1400, 1200, 1200, 1200 | 1400, 1400, 1400, 1200, 1200 | 1400, 1400, 1400, 1400, 1200 | 1200, 1400, 1400, 1400, 1400 | 1200, 1200, 1400, 1400, 1400 | 1200, 1200, 1200, 1400, 1400 | 1200, 1200, 1200, 1200, 1400 |
R3 | 120, 120, 120, 120, 120 | 140, 140, 140, 140, 140 | 140, 120, 120, 120, 120 | 140, 140, 120, 120, 120 | 140, 140, 140, 120, 120 | 140, 140, 140, 140, 120 | 120, 140, 140, 140, 140 | 120, 120, 140, 140, 140 | 120, 120, 120, 140, 140 | 120, 120, 120, 120, 140 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
DP | 1, 2, 4, 5, 6 | 1, 2, 5, 6, 7 | 1, 2, 6, 7, 8 | 1, 5, 6, 7, 8 | 1, 6, 7, 8, 9 | 1, 7, 8, 9, 10 | 1, 8, 9, 10, 11 | 1, 9, 10, 11, 12 | 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5 |
0.32, 0.32, 0.32, 0.32, 0.32 | 0.3, 0.3, 0.3, 0.3, 0.3 | 0.29, 0.29, 0.29, 0.29, 0.29 | 0.28, 0.28, 0.28, 0.28, 0.28 | 0.33, 0.32, 0.3, 0.29, 0.28 | 0.32, 0.32, 0.3, 0.29, 0.28 | 0.3, 0.32, 0.3, 0.29, 0.28 | 0.29, 0.32, 0.3, 0.29, 0.28 | 0.28, 0.32, 0.3, 0.29, 0.28 | 0.33, 0.3, 0.3, 0.29, 0.28 | |
0.63, 0.63, 0.63, 0.63, 0.63 | 0.66, 0.66, 0.66, 0.66, 0.66 | 0.69, 0.69, 0.69, 0.69, 0.69 | 0.72, 0.72, 0.72, 0.72, 0.72 | 0.6, 0.63, 0.66, 0.69, 0.72 | 0.63, 0.63, 0.66, 0.69, 0.72 | 0.66, 0.63, 0.66, 0.69, 0.72 | 0.69, 0.63, 0.66, 0.69, 0.72 | 0.72, 0.63, 0.66, 0.69, 0.72 | 0.6, 0.66, 0.66, 0.69, 0.72 | |
R1 | 6300, 6300, 6300, 6300, 6300 | 6600, 6600, 6600, 6600, 6600 | 6900, 6900, 6900, 6900, 6900 | 7200, 7200, 7200, 7200, 7200 | 6000, 6300, 6600, 6900, 7200 | 6300, 6300, 6600, 6900, 7200 | 6600, 6300, 6600, 6900, 7200 | 6900, 6300, 6600, 6900, 7200 | 7200, 6300, 6600, 6900, 7200 | 6000, 6600, 6600, 6900, 7200 |
R2 | 1260, 1260, 1260, 1260, 1260 | 1320, 1320, 1320, 1320, 1320 | 1380, 1380, 1380, 1380, 1380 | 1440, 1440, 1440, 1440, 1440 | 1200, 1260, 1320, 1380, 1440 | 1260, 1260, 1320, 1380, 1440 | 1320, 1260, 1320, 1380, 1440 | 1380, 1260, 1320, 1380, 1440 | 1440, 1260, 1320, 1380, 1440 | 1200, 1320, 1320, 1380, 1440 |
R3 | 126, 126, 126, 126, 126 | 132, 132, 132, 132, 132 | 138, 138, 138, 138, 138 | 144, 144, 144, 144, 144 | 120, 126, 132, 138, 144 | 126, 126, 132, 138, 144 | 132, 126, 132, 138, 144 | 138, 126, 132, 138, 144 | 144, 126, 132, 138, 144 | 120, 132, 132, 138, 144 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
DP | 2, 3, 4, 5, 6 | 3, 4, 5, 6, 7 | 4, 5, 6, 7, 8 | 5, 6, 7, 8, 9 | 6, 7, 8, 9, 10 | 7, 8, 9, 10, 11 | 8, 9, 10, 11, 12 | 9, 10, 11, 12, 13 | 1, 3, 4, 5, 6 | 1, 4, 5, 6, 7 |
0.33, 0.29, 0.3, 0.29, 0.28 | 0.28, 0.28, 0.3, 0.29, 0.28 | 0.33, 0.32, 0.29, 0.29, 0.28 | 0.33, 0.32, 0.28, 0.29, 0.28 | 0.33, 0.32, 0.3, 0.28, 0.28 | 0.33, 0.33, 0.32, 0.32, 0.3 | 0.33, 0.33, 0.32, 0.3, 0.29 | 0.33, 0.33, 0.32, 0.29, 0.28 | 0.33, 0.32, 0.32, 0.32, 0.3 | 0.33, 0.32, 0.3, 0.29, 0.3 | |
0.6, 0.69, 0.66, 0.69, 0.72 | 0.72, 0.72, 0.66, 0.69, 0.72 | 0.6, 0.63, 0.69, 0.69, 0.72 | 0.6, 0.63, 0.72, 0.69, 0.72 | 0.6, 0.63, 0.66, 0.72, 0.72 | 0.6, 0.6, 0.63, 0.63, 0.66 | 0.6, 0.6, 0.63, 0.66, 0.69 | 0.6, 0.6, 0.63, 0.69, 0.72 | 0.6, 0.63, 0.63, 0.63, 0.66 | 0.6, 0.63, 0.66, 0.69, 0.66 | |
R1 | 6000, 6900, 6600, 6900, 7200 | 7200, 7200, 6600, 6900, 7200 | 6000, 6300, 6900, 6900, 7200 | 6000, 6300, 7200, 6900, 7200 | 6000, 6300, 6600, 7200, 7200 | 6000, 6000, 6300, 6300, 6600 | 6000, 6000, 6300, 6600, 6900 | 6000, 6000, 6300, 6900, 7200 | 6000, 6300, 6300, 6300, 6600 | 6000, 6300, 6600, 6900, 6600 |
R2 | 1200, 1380, 1320, 1380, 1440 | 1440, 1440, 1320, 1380, 1440 | 1200, 1260, 1380, 1380, 1440 | 1200, 1260, 1440, 1380, 1440 | 1200, 1260, 1320, 1440, 1440 | 1200, 1200, 1260, 1260, 1320 | 1200, 1200, 1260, 1320, 1380 | 1200, 1200, 1260, 1380, 1440 | 1200, 1260, 1260, 1260, 1320 | 1200, 1260, 1320, 1380, 1320 |
R3 | 120, 138, 132, 138, 144 | 144, 144, 132, 138, 144 | 120, 126, 138, 138, 144 | 120, 126, 144, 138, 144 | 120, 126, 132, 144, 144 | 120, 120, 126, 126, 132 | 120, 120, 126, 132, 138 | 120, 120, 126, 138, 144 | 120, 126, 126, 126, 132 | 120, 126, 132, 138, 132 |
References
- Yang, W.J.; Caunhye, A.M.; Zhuo, M.L.; Wang, Q. Integrated planning of emergency supply pre-positioning and victim evacuation. Socio-Econ. Plan. Sci. 2024, 95, 101965. [Google Scholar] [CrossRef]
- Aon Corporate. Climate and Catastrophe Insight. 2025. Available online: https://www.aon.com/en/insights/reports/climate-and-catastrophe-report (accessed on 2 August 2025).
- Torabi, S.A.; Shokr, I.; Tofighi, S.; Heydari, J. Integrated relief pre-positioning and procurement planning in humanitarian supply chains. Transp. Res. Part E Logist. Transp. Rev. 2018, 113, 123–146. [Google Scholar] [CrossRef]
- Rawls, C.G.; Turnquist, M.A. Pre-positioning and dynamic delivery planning for short-term response following a natural disaster. Socio-Econ. Plan. Sci. 2012, 46, 46–54. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Liu, Z.M.; Jiang, P.; Luo, L. A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition. Socio-Econ. Plan. Sci. 2022, 82, 101279. [Google Scholar] [CrossRef]
- Mohammadi, R.; Ghomi, S.M.T.F.; Jolai, F. Prepositioning emergency earthquake response supplies: A new multi-objective particle swarm optimization algorithm. Appl. Math. Model. 2016, 40, 5183–5199. [Google Scholar] [CrossRef]
- Mitsotakis, A.; Kassaras, G. Managing Disaster in the Ionian Sea: Planning and Optimizing Logistics for Disaster Relief Operations for the Island of Kefalonia; DTIC Document: Fort Belvoir, VA, USA, 2010. [Google Scholar]
- Cao, C.J.; Liu, J.H.; Liu, W.H.; Chou, M.C.; Zhang, F.; Zhang, Y. Location and transportation joint decisions for infectious medical waste in sustainable supply chains during a pandemic: A bi-level optimization approach. Ann. Oper. Res. 2025, 1–49. [Google Scholar] [CrossRef]
- Rawls, C.G.; Turnquist, M.A. Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 2010, 44, 521–534. [Google Scholar] [CrossRef]
- Hu, S.; Dong, Z.S. Supplier selection and pre-positioning strategy in humanitarian relief. Omega 2019, 83, 287–298. [Google Scholar] [CrossRef]
- Turkes, R.; Sörensen, K.; Cuervo, D.P. A matheuristic for the stochastic facility location problem. J. Heuristics 2021, 27, 649–694. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.H.; Chan, F.T.S. AI-enhanced robust method for integrated healthcare resource pre-positioning and patient scheduling. Int. J. Prod. Res. 2025, 63, 729–757. [Google Scholar] [CrossRef]
- Desai, D.D.; Dey, J.; Satapathy, S.K.; Mishra, S.; Mohanty, S.N.; Mishra, P.; Panda, S.K. Optimal ambulance positioning for road accidents with deep embedded clustering. IEEE Access 2023, 11, 59917–59934. [Google Scholar] [CrossRef]
- Pradhananga, R.; Mutlu, F.; Pokharel, S.; Seth, D. An integrated resource allocation and distribution model for pre-disaster planning. Comput. Ind. Eng. 2016, 91, 229–238. [Google Scholar] [CrossRef]
- Mahtab, Z.; Azeem, A.; Ali, S.M.; Paul, S.K.; Fathollahi-Fard, A.M. Multi-objective robust-stochastic optimisation of relief goods distribution under uncertainty: A real-life case study. Int. J. Syst. Sci. Oper. Logist. 2022, 9, 241–262. [Google Scholar] [CrossRef]
- Cao, C.J.; Liu, Y.; Tang, O.; Gao, X. A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. Int. J. Prod. Econ. 2021, 235, 108081. [Google Scholar] [CrossRef]
- Fan, J.C.; Chang, X.L.; Misic, J.; Mišić, V.B.; Kang, H. DHL: Deep reinforcement learning-based approach for emergency supply distribution in humanitarian logistics. Peer Peer Netw. Appl. 2022, 15, 2376–2389. [Google Scholar] [CrossRef]
- Rezaei-Malek, M.; Tavakkoli-Moghaddam, R.; Cheikhrouhou, N.; Taheri-Moghaddam, A. An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 485–509. [Google Scholar] [CrossRef]
- Tofighi, S.; Torabi, S.A.; Mansouri, S.A. Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 2016, 250, 239–250. [Google Scholar] [CrossRef]
- Amani, M.A.; Sarkodie, S.A.; Sheu, J.B.; Nasiri, M.M.; Tavakkoli-Moghaddam, R. A data-driven hybrid scenario-based robust optimization method for relief logistics network design. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103931. [Google Scholar] [CrossRef]
- Ehsani, B.; Karimi, H.; Bakhshi, A.; Aghsami, A.; Rabbani, M. Designing humanitarian logistics network for managing epidemic outbreaks in disasters using Internet-of-Things. A case study: An earthquake in Salas-e-Babajani city. Comput. Ind. Eng. 2023, 175, 108821. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.Q.; Xie, Y.K.; Gou, Q.; Li, R.; Qiu, Y.; Hu, Y.; Huang, B. Assessment and Improvement of Urban Resilience to Flooding at a Subdistrict Level Using Multi-Source Geospatial Data: Jakarta as a Case Study. Remote Sens. 2022, 14, 2010. [Google Scholar] [CrossRef]
- Shiozaki, Y.; Nagamatsu, S.; Sato, K.; Bhattacharya, Y. A systematic literature review of empirical validation of disaster resilience indicators. Int. J. Disaster Risk Reduct. 2024, 111, 104681. [Google Scholar] [CrossRef]
- Ouyan, M.; Duenas-Osorio, L.; Min, X. A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 2012, 36, 23–31. [Google Scholar] [CrossRef]
- Almoghathawi, Y.; Barker, K.; Albert, L.A. Resilience-driven restoration model for interdependent infrastructure networks. Reliab. Eng. Syst. Saf. 2019, 185, 12–23. [Google Scholar] [CrossRef]
- Zobel, C.W. Representing perceived tradeoffs in defining disaster resilience. Decis. Support Syst. 2011, 50, 394–403. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Jin, J.G.; Tang, L.C.; Sun, L.J.; Lee, D.-H. Enhancing metro network resilience via localized integration with bus services. Transp. Res. Part E Logist. Transp. Rev. 2014, 63, 17–30. [Google Scholar] [CrossRef]
- Chang, S.E.; Shinozuka, M. Measuring improvements in the disaster resilience of communities. Earth Spectra 2004, 20, 739–755. [Google Scholar] [CrossRef]
- Javid, A.A.; Azad, N. Incorporating location, routing and inventory decisions in supply chain network design. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 582–597. [Google Scholar] [CrossRef]
- Park, S.; Lee, T.E.; Sung, C.S. A three-level supply chain network design model with risk-pooling and lead times. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 563–581. [Google Scholar] [CrossRef]
- Carvalho, H.; Barroso, A.P.; Machado, V.H.; Azevedo, S.; Cruz Machado, V. Supply chain redesign for resilience using simulation. Comput. Ind. Eng. 2012, 62, 329–341. [Google Scholar] [CrossRef]
- Condeixa, L.D.; Leiras, A.; Oliveira, F.; de Brito, I. Disaster relief supply pre-positioning optimization: A risk analysis via shortage mitigation. Int. J. Disaster Risk Reduct. 2017, 25, 238–247. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Wang, Y.; Ling, H.F.; Xue, Y.; Chen, S.Y. Integrated civilian–military pre-positioning of emergency supplies: A multi-objective optimization approach. Appl. Soft Comput. 2017, 58, 732–741. [Google Scholar] [CrossRef]
- Fang, Y.P.; Sansavini, G. Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience. Reliab. Eng. Syst. Saf. 2019, 185, 1–11. [Google Scholar] [CrossRef]
- Turkeš, R.; Cuervo, D.P.; Sörensen, K. Pre-positioning of emergency supplies: Does putting a price on human life help to save lives? Ann. Oper. Res. 2019, 283, 865–895. [Google Scholar] [CrossRef]
- Alkhaleel, B.A.; Liao, H.T.; Sullivan, K.M. Risk and resilience-based optimal post-disruption restoration for critical infrastructures under uncertainty. Eur. J. Oper. Res. 2022, 296, 174–202. [Google Scholar] [CrossRef]
- Zhang, G.W.; Jia, N.; Zhu, N.; He, L.; Adulyasak, Y. Humanitarian transportation network design via two-stage distributionally robust optimization. Transp. Res. Part B Methodol. 2023, 176, 102805. [Google Scholar] [CrossRef]
- Che, A.; Li, J.; Chu, F.; Chu, C. Optimizing emergency supply pre-positioning for disaster relief: A two-stage distributionally robust approach. Comput. Oper. Res. 2024, 166, 106607. [Google Scholar] [CrossRef]
- Oksuz, M.K.; Satoglu, S.I. Integrated optimization of facility location, casualty allocation and medical staff planning for post-disaster emergency response. J. Humanit. Logist. Supply Chain Manag. 2024, 14, 285–303. [Google Scholar] [CrossRef]
- Sun, P.; Zhao, D.P.; Chen, Q.X.; Yu, X.; Zhu, N. Distributionally robust optimization for pre-disaster facility location problem with 3D printing. Transp. Res. Part E Logist. Transp. Rev. 2025, 193, 103844. [Google Scholar] [CrossRef]
- Yu, X.Y.; Chen, J.; Zhu, N.; Ma, S.; Peng, B. A robust stochastic approach to relief pre-positioning for earthquake response under event-wise uncertainties. Transp. Res. Part E Logist. Transp. Rev. 2025, 198, 104054. [Google Scholar] [CrossRef]
- Hu, Z.H.; Sheu, J.B. Post-disaster debris reverse logistics management under psychological cost minimization. Transp. Res. Part B Methodol. 2013, 55, 118–141. [Google Scholar] [CrossRef]
- Cai, T.Y.; Ye, Y.S.; Yan, H. Optimizing social costs in post-pandemic humanitarian distribution models. Transp. Lett. Int. J. Transp. Res. 2025, 17, 628–638. [Google Scholar] [CrossRef]
- Celik, E.; Aydin, N.; Gumus, A.T. A stochastic location and allocation model for critical items to response large-scale emergencies: A case of Turkey. Int. J. Optim. Control Theor. Appl. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Prewitt, D.J.O. Role of Psycho-social Support Programmes following Natural Disasters. Disaster Adv. 2008, 1, 18–24. [Google Scholar]
- Rabiei, A.; Nakhaee, N.; Pourhosseini, S.S. Shortcomings in Dealing with Psychological Effects of Natural Disasters in Iran. Iran. J. Public Health 2014, 43, 1132–1138. [Google Scholar] [PubMed]
- Tzeng, G.H.; Cheng, H.J.; Huang, T.D. Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 673–686. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Nie, X.F. A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion. Socio-Econ. Plan. Sci. 2022, 79, 101119. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Aydemir-Karadag, A.; Erol, S. Finding optimal depots and routes in sudden-onset disasters: An earthquake case for Erzincan. Transp. J. 2019, 58, 168–196. [Google Scholar] [CrossRef]
- Hu, S.L.; Hu, Q.M.; Tao, S.; Dong, Z.S. A multi-stage stochastic programming approach for pre-positioning of relief supplies considering returns. Socio-Econ. Plan. Sci. 2023, 88, 101617. [Google Scholar] [CrossRef]
- Zhang, F.S.; Huang, H.; Cao, C.J.; Yang, Q. Coordination mechanism of integrative humanitarian-business partnership for relief supplies with the consideration of public engagement amidst the Coronavirus Disease 2019 pandemic. Ann. Oper. Res. 2024, 341, 1339. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, Y.; Wang, D.; Ignatius, J.; Cheng, T.; Dhamotharan, L. Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics. Eur. J. Oper. Res. 2023, 305, 1042–1062. [Google Scholar] [CrossRef]
- Bruckler, M.; Wietschel, L.; Messmann, L.; Thorenz, A.; Tuma, A. Review of metrics to assess resilience capacities and actions for supply chain resilience. Comput. Ind. Eng. 2024, 192, 110176. [Google Scholar] [CrossRef]
- Kumar, D.; Soni, G.; Rathore, A.P.S.; Kazancoglu, Y. Modelling and analysis of resilience and reliability in pharmaceutical supply chains. Comput. Ind. Eng. 2025, 200, 109194. [Google Scholar] [CrossRef]
- Cao, C.; Li, J.; Liu, J.; Liu, J.; Qiu, H.; Zhen, J. Sustainable development-oriented location-transportation integrated optimization problem regarding multi-period multi-type disaster medical waste during COVID-19 pandemic. Ann. Oper. Res. 2024, 335, 1401–1447. [Google Scholar] [CrossRef]
- Cao, C.; He, Y.; Liu, Y.; Huang, H.; Zhang, F. Blockchain technology adoption mechanism for semiconductor chip supply chains considering information disclosure under cost-sharing contract. Int. J. Prod. Econ. 2025, 282, 109496. [Google Scholar] [CrossRef]
- Mishra, B.K.; Dahal, K.; Pervez, Z. Dynamic relief items distribution model with sliding time window in the post-disaster environment. Appl. Sci. 2022, 12, 8358. [Google Scholar] [CrossRef]
References | Time | Re. Ques a | Objective b | Meas. Dis. Resi. c | Supp. Ch. Struc d | Solu. Stra. e | Dis. Typ. f | Consi. of Dis. Serv. g | Consi. of Reli. Typ. h |
---|---|---|---|---|---|---|---|---|---|
[31] | 2010 | 3 | 1 | - | 1 | 2 | - | No | No |
[32] | 2010 | 2 | 1 | - | 2 | 2 | - | No | No |
[9] | 2010 | 1 | 1 | - | 2 | 1 | 4 | Yes | Yes |
[33] | 2012 | 2 | 1, 2 | 3 | 2 | - | - | No | No |
[34] | 2017 | 3 | 1 | - | 1 | 1 | - | No | Yes |
[35] | 2017 | 1 | 1, 3 | - | 1 | 2 | - | No | Yes |
[3] | 2018 | 1 | 1 | - | 3 | 2 | 3 | No | Yes |
[10] | 2019 | 1 | 1 | - | 2 | 1 | 4 | No | No |
[36] | 2019 | - | 2 | 2 | - | 1 | - | No | No |
[37] | 2019 | 3 | 1, 3 | - | 1 | 1 | 4 | No | Yes |
[16] | 2021 | 2 | 1, 3 | - | 2 | 1 | 3 | No | No |
[11] | 2021 | 1 | 3 | - | 1 | 2 | 3, 4 | No | Yes |
[38] | 2022 | - | 2 | 2 | - | 2 | - | No | No |
[15] | 2022 | 2 | 1, 3 | - | 2 | 1 | 1 | No | Yes |
[39] | 2023 | 3 | 1 | - | 1 | 1, 2 | 3 | No | Yes |
[40] | 2024 | 3 | 1 | - | 1 | 1 | 3 | Yes | Yes |
[41] | 2024 | 2 | 3 | - | 2 | 1 | 3 | No | No |
[42] | 2025 | 3 | 1 | - | 1 | 1 | 3 | No | Yes |
[43] | 2025 | 1 | 1 | - | 1 | 1 | 3 | Yes | No |
This paper | 3 | 1, 2 | 3 | 2 | 1 | 1 | Yes | Yes |
Sets | |
---|---|
Sets of central warehouses, | |
Sets of emergency storage points, | |
Sets of demand points, | |
Sets of central warehouses types, | |
Sets of emergency storage points types, | |
Sets of relief items types, | |
Sets of disaster scenarios, | |
Parameters | |
Capacity of a type central warehouse at location | |
Capacity of a type emergency storage point at location | |
Unit pre-positioning cost of a type relief item | |
Unit management cost of a type relief item paid to the administrator of a type central warehouse at location | |
Fixed cost of establishing a type emergency storage point at location | |
Penalty cost of unmet demand of a type relief item at demand point | |
Distance between a type central warehouse at location and a type emergency storage point at location | |
Distance between a type emergency storage point at location and a demand point | |
Transportation cost for the delivery of a type relief item for unit distance | |
Probability of occurrence for scenario | |
Severity of disaster scenario at demand point | |
Quantities of a type relief item requested by demand point under scenario | |
Maximum tolerance time of victims at demand point under scenarios | |
Average transportation speed of vehicles | |
A huge positive number | |
Decision variables | |
Pre-disaster | |
1, if a type central warehouse is established at location ; 0, otherwise. | |
1, if a type emergency storage point is established at location ; 0, otherwise. | |
Quantities of a type relief item pre-stocked in a type central warehouse at location | |
Quantities of a type relief item pre-stocked in a type emergency storage point at location | |
Post-disaster | |
Quantities of a type relief item transported from a central warehouse at location to an emergency storage point at location under scenario | |
Quantities of a type relief item distributed from an emergency storage point at location to a demand point at location under scenario | |
Auxiliary variable | |
1, If the quantities of relief items pre-deployed at an emergency storage point at location can fully meet the demand at a demand point under scenario , namely ; 0, otherwise. | |
Unmet demand of a type relief item at a demand point under scenario |
Type | |||
---|---|---|---|
Life essentials | 10 | 1 | 1.5 |
Medical kits | 100 | 10 | 7.5 |
Rescue equipment | 500 | 50 | 75 |
S | S1 | S2 | S3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DP | 1 | 4 | 5 | 9 | 2 | 3 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | |
2 | 1 | 0.5 | 0.4 | 0.5 | 0.33 | 0.25 | 0.29 | 0.22 | 0.25 | 0.2 | 0.4 | 0.33 | ||
0.1 | 0.2 | 0.4 | 0.5 | 0.4 | 0.6 | 0.8 | 0.7 | 0.9 | 0.8 | 1 | 0.5 | 0.6 | ||
R1 | 1000 | 2000 | 4000 | 5000 | 4000 | 6000 | 8000 | 7000 | 9000 | 8000 | 10,000 | 5000 | 6000 | |
R2 | 200 | 400 | 800 | 1000 | 800 | 1200 | 1600 | 1400 | 1800 | 1600 | 2000 | 1000 | 1200 | |
R3 | 20 | 40 | 80 | 100 | 80 | 120 | 160 | 140 | 180 | 160 | 200 | 100 | 120 | |
R1 | 100 | 100 | 100 | 100 | 150 | 150 | 150 | 150 | 300 | 300 | 300 | 300 | 300 | |
R2 | 1000 | 1000 | 1000 | 1000 | 1500 | 1500 | 1500 | 1500 | 3000 | 3000 | 3000 | 3000 | 3000 | |
R3 | 5000 | 5000 | 5000 | 5000 | 7500 | 7500 | 7500 | 7500 | 15,000 | 15,000 | 15,000 | 15,000 | 15,000 |
M | S | Setup Cost | Pre-Positioning Cost | Management Cost | Penalty Cost | Transportation Cost | Total Costs | Response Delay Time |
---|---|---|---|---|---|---|---|---|
Model 1 | S1 | 31,000 | 576,000 | 16,200 | 0 | 45,596 | 668,796 | 108.8 |
S2 | 34,000 | 1,200,000 | 33,750 | 0 | 60,406 | 1,328,156 | 100.15 | |
S3 | 47,000 | 1,815,000 | 51,300 | 27,000 | 715,843 | 2,656,143 | 105.87 | |
Model 2 | S1 | 28,000 | 551,000 | 16,200 | 125,000 | 548,635.6 | 1,268,635.6 | 0 |
S2 | 34,000 | 1,200,000 | 33,750 | 0 | 292,150 | 1,559,900 | 0.88 | |
S3 | 57,000 | 1,813,000 | 51,300 | 147,000 | 1,067,551.8 | 3,135,851.8 | 3.23 |
ESP | RT | Distribution Scheme | |||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | ||||||
S1 | S2 | S3 | S1 | S2 | S3 | ||
4 | R1 | 1200 | 2500 | 3800 | 1200 | 2500 | 3800 |
R2 | 240 | 500 | 760 | 240 | 500 | 760 | |
R3 | 24 | 50 | 76 | 24 | 50 | 76 |
M | S | Distribution Scheme | |||||||
---|---|---|---|---|---|---|---|---|---|
M1 | S1 | ESP | 1 | 4 | 5 | 9 | |||
DP | 1 | 4 | 5 | 9 | |||||
R1 | 1000 | 2000 | 4000 | 5000 | |||||
R2 | 200 | 400 | 800 | 1000 | |||||
R3 | 20 | 40 | 80 | 100 | |||||
S2 | ESP | 2 | 4 | 6 | 7 | ||||
DP | 2 | 3 | 6 | 7 | |||||
R1 | 4000 | 6000 | 8000 | 7000 | |||||
R2 | 800 | 1200 | 1600 | 1400 | |||||
R3 | 80 | 120 | 160 | 140 | |||||
S3 | ESP | 4 | 9 | 10 | 10 | 11 | 11 | 13 | |
DP | 12 | 8 | 8 | 10 | 11 | 13 | 13 | ||
R1 | 5000 | 8100 | 0 | 8000 | 10,000 | 2320 | 3680 | ||
R2 | 1000 | 1720 | 80 | 1600 | 2000 | 0 | 1200 | ||
R3 | 100 | 180 | 0 | 160 | 200 | 0 | 120 | ||
M2 | S1 | ESP | 1 | 4 | 5 | 9 | |||
DP | 1 | 4 | 5 | 9 | |||||
R1 | 1000 | 2000 | 4000 | 2500 | |||||
R2 | 200 | 400 | 800 | 1000 | |||||
R3 | 20 | 40 | 80 | 100 | |||||
S2 | ESP | 2 | 4 | 6 | 7 | ||||
DP | 2 | 3 | 6 | 7 | |||||
R1 | 4000 | 6000 | 8000 | 7000 | |||||
R2 | 800 | 1200 | 1600 | 1400 | |||||
R3 | 80 | 120 | 160 | 140 | |||||
S3 | ESP | 4 | 9 | 9 | 10 | 11 | 12 | 13 | |
DP | 12 | 8 | 10 | 10 | 11 | 12 | 13 | ||
R1 | 0 | 8100 | 4760 | 1640 | 10,000 | 5000 | 3600 | ||
R2 | 760 | 1800 | 0 | 1600 | 2000 | 240 | 1200 | ||
R3 | 76 | 180 | 160 | 0 | 200 | 24 | 120 |
Dimension | Model | Count | |||
---|---|---|---|---|---|
Setup cost | Model 1 | 30 | 32,066.673463.44 | 2.287 | 0.030 * |
Model 2 | 30 | 31,166.673514.34 | |||
Pre-positioning cost | Model 1 | 30 | 633,900.00165,376.97 | 2.691 | 0.012 * |
Model 2 | 30 | 624,766.67164,824.81 | |||
Management cost | Model 1 | 30 | 17,820.004654.99 | - | - |
Model 2 | 30 | 17,820.004654.99 | |||
Penalty cost | Model 1 | 30 | 0.000.00 | −4.405 | 0.001 ** |
Model 2 | 30 | 64,166.6779,785.09 | |||
Transportation cost | Model 1 | 30 | 60,334.6918,810.23 | −4.587 | 0.001 ** |
Model 2 | 30 | 305,544.19306,380.95 | |||
Total costs | Model 1 | 30 | 744,188.03188,481.13 | −1.406 | 0.170 |
Model 2 | 30 | 1,539,494.823,134,143.58 | |||
Response delay time | Model 1 | 30 | 189.0161.01 | 16.964 | 0.001 ** |
Model 2 | 30 | 0.040.09 |
Dimension | Model | Count | |||
---|---|---|---|---|---|
Setup cost | Model 1 | 30 | 36,166.673514.34 | 4.199 | 0.001 ** |
Model 2 | 30 | 33,333.333707.71 | |||
Pre-positioning cost | Model 1 | 30 | 985,600.0091,537.67 | 1.441 | 0.160 |
Model 2 | 30 | 940,223.33182,404.18 | |||
Management cost | Model 1 | 30 | 27,787.502617.77 | −1.000 | 0.326 |
Model 2 | 30 | 27,937.502368.00 | |||
Penalty cost | Model 1 | 30 | 0.000.00 | −4.918 | 0.001 ** |
Model 2 | 30 | 130,800.00145,688.06 | |||
Transportation cost | Model 1 | 30 | 63,446.8119,004.28 | −6.221 | 0.001 ** |
Model 2 | 30 | 529,056.75427,457.21 | |||
Total costs | Model 1 | 30 | 1,106,434.31133,007.48 | −6.146 | 0.001 ** |
Model 2 | 30 | 1,696,210.01556,808.63 | |||
Response delay time | Model 1 | 30 | 144.4832.06 | 24.534 | 0.001 ** |
Model 2 | 30 | 0.350.27 |
Dimension | Model | Count | |||
---|---|---|---|---|---|
Setup cost | Model 1 | 30 | 45,000.0000.00 | −0.825 | 0.416 |
Model 2 | 30 | 45,633.334205.77 | |||
Pre-positioning cost | Model 1 | 30 | 1,583,200.0065,646.07 | 4.320 | 0.001 ** |
Model 2 | 30 | 1,560,993.3381,308.98 | |||
Management cost | Model 1 | 30 | 44,527.501846.30 | - | - |
Model 2 | 30 | 44,527.501846.30 | |||
Penalty cost | Model 1 | 30 | 0.000.00 | −6.984 | 0.001 ** |
Model 2 | 30 | 124,698.0097,795.03 | |||
Transportation cost | Model 1 | 30 | 31,014.218124.23 | −11.180 | 0.001 ** |
Model 2 | 30 | 452,117.81214,243.54 | |||
Total costs | Model 1 | 30 | 1,703,741.6867,206.37 | −10.354 | 0.001 ** |
Model 2 | 30 | 2,225,717.75283,292.98 | |||
Response delay time | Model 1 | 30 | 125.4715.66 | 42.729 | 0.001 ** |
Model 2 | 30 | 1.260.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Liu, Y.; Yun, H.; Cao, C.; Liu, X. Pre- and Post-Disaster Allocation Strategies of Relief Items in the Presence of Resilience. Systems 2025, 13, 704. https://doi.org/10.3390/systems13080704
Zhang F, Liu Y, Yun H, Cao C, Liu X. Pre- and Post-Disaster Allocation Strategies of Relief Items in the Presence of Resilience. Systems. 2025; 13(8):704. https://doi.org/10.3390/systems13080704
Chicago/Turabian StyleZhang, Fanshun, Yucan Liu, Hao Yun, Cejun Cao, and Xiaoqian Liu. 2025. "Pre- and Post-Disaster Allocation Strategies of Relief Items in the Presence of Resilience" Systems 13, no. 8: 704. https://doi.org/10.3390/systems13080704
APA StyleZhang, F., Liu, Y., Yun, H., Cao, C., & Liu, X. (2025). Pre- and Post-Disaster Allocation Strategies of Relief Items in the Presence of Resilience. Systems, 13(8), 704. https://doi.org/10.3390/systems13080704