Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A Scoping Review
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
- Which metrics have been proposed to quantify the resilience of socio-ecological and -technical systems?
- How do these metrics differ conceptually?
- What types of disturbances have been used to study the resilience of socio-ecological and -technical systems?
- How strictly are the concepts of engineering and ecological resilience applied to socio-ecological and socio-technical systems, respectively?
- We conduct a systematic and reproducible scoping review of resilience metrics for socio-ecological and socio-technical systems.
- We summarize a number of conceptual approaches to quantifying resilience and highlight which approaches were not represented, indicating potential research gaps.
- We describe two classes of system disturbances that are documented in case studies, but do not readily fit into known classifications of disturbances.
- We show how commonly socio-ecological systems are studied from an ecological resilience perspective and, correspondingly, how commonly socio-technical systems are studied from an engineering resilience perspective.
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
2.5. Selection of Sources of Evidence
2.6. Data Extraction
2.7. Data Items
- System type: is the system socio-ecological or socio-technical?
- Disturbance: what disturbance does the system experience?
- Basins of attraction: does the system have one or multiple basins of attraction?
- Resilience metric: what metric for resilience is used?
2.8. Synthesis of Results
3. Results
3.1. Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.3. Results of Individual Sources of Evidence
3.4. Synthesis of Results
3.4.1. Resilience Metrics
3.4.2. Conceptual Approaches to Quantifying Resilience
- Return time to previous performance level (three metrics: #2, #3, #30A)
- Total performance loss (six metrics: #13, #25, #29, #36, #38, #39)
- Combination of maximum performance loss and recovery time (two metrics: #18, #30B)
- Combination of relative performance loss and return time (one metric: #9)
- Combination of return time to previous performance level with oscillations, and amplitude of performance (one metric: #15)
- Return time to previous performance level with oscillations (one metric: #17)
- 7.
- Total time of insufficient performance (8 metrics: #5, #7, #11, #16, #22, #23A, #28, #35)
- 8.
- Total performance loss (one metric: #34)
- 9.
- Longest period of insufficient performance (three metrics: #1, #19, #23B)
- 10.
- Total time spent outside performance range (one metric: #6)
3.4.3. System Disturbances
3.4.4. Alignment between SESs and Ecological Resilience, and STSs and Engineering Resilience
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
4.3. Recommendations
4.4. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berkes, F.; Folke, C.; Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- De Bruijn, H.; Herder, P.M. System and actor perspectives on sociotechnical systems. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2009, 39, 981–992. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Filatova, T.; Polhill, J.G.; van Ewijk, S. Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches. Environ. Model. Softw. 2016, 75, 333–347. [Google Scholar] [CrossRef]
- Iwanaga, T.; Steinmann, P.; Sadoddin, A.; Robinson, D.; Snow, V.; Grimm, V.; Wang, H.H. Perspectives on confronting issues of scale in systems modeling. Socio-Environ. Syst. Model. 2022, 4, 18156. [Google Scholar] [CrossRef]
- Rapport, D.J. What Constitutes Ecosystem Health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.; Jansson, B.O.; Levin, S.; Mäler, K.G.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, art5. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Nilsson, C.; Grelsson, G. The Fragility of Ecosystems: A Review. J. Appl. Ecol. 1995, 32, 677. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object. Ecol. Soc. 2007, 12, art23. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; BurnSilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward Principles for Enhancing the Resilience of Ecosystem Services. Annu. Rev. Environ. Resour. 2012, 37, 421–448. [Google Scholar] [CrossRef]
- Desjardins, E.; Barker, G.; Lindo, Z.; Dieleman, C.; Dussault, A.C. Promoting Resilience. Q. Rev. Biol. 2015, 90, 147–165. [Google Scholar] [CrossRef] [PubMed]
- May, R.M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 1977, 269, 471–477. [Google Scholar] [CrossRef]
- Holling, C.S. Engineering resilience versus ecological resilience. Eng. Ecol. Constraints 1996, 31, 32. [Google Scholar]
- Liao, K.H. A Theory on Urban Resilience to Floods–A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, art48. [Google Scholar] [CrossRef]
- Egli, L.; Weise, H.; Radchuk, V.; Seppelt, R.; Grimm, V. Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecol. Complex. 2019, 40, 100718. [Google Scholar] [CrossRef]
- Ulanowicz, R.E.; Goerner, S.J.; Lietaer, B.; Gomez, R. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecol. Complex. 2009, 6, 27–36. [Google Scholar] [CrossRef]
- Cika, A.; Cohen, E.; Kruszewski, G.; Seet, L.; Steinmann, P.; Yin, W. Resilient Life: An Exploration of Perturbed Autopoietic Patterns in Conway’s Game of Life. In Proceedings of the 2020 Conference on Artificial Life, Online, 13–18 July 2020; pp. 656–664. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Glob. Environ. Chang. Part B Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Quinlan, A.E.; Berbés-Blázquez, M.; Haider, L.J.; Peterson, G.D. Measuring and assessing resilience: Broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 2016, 53, 677–687. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Sun, W.; Bocchini, P.; Davison, B.D. Resilience metrics and measurement methods for transportation infrastructure: The state of the art. Sustain. Resilient Infrastruct. 2020, 5, 168–199. [Google Scholar] [CrossRef]
- Lempert, R.J.; Popper, S.W.; Bankes, S.C. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis; RAND: Santa Monica, CA, USA, 2003. [Google Scholar]
- Gotts, N.M.; van Voorn, G.A.; Polhill, J.G.; Jong, E.d.; Edmonds, B.; Hofstede, G.J.; Meyer, R. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecol. Complex. 2019, 40, 100728. [Google Scholar] [CrossRef]
- Gold, D.F.; Reed, P.M.; Trindade, B.C.; Characklis, G.W. Identifying Actionable Compromises: Navigating Multi-City Robustness Conflicts to Discover Cooperative Safe Operating Spaces for Regional Water Supply Portfolios. Water Resour. Res. 2019, 55, 9024–9050. [Google Scholar] [CrossRef]
- Collins, S.L.; Carpenter, S.R.; Swinton, S.M.; Orenstein, D.E.; Childers, D.L.; Gragson, T.L.; Grimm, N.B.; Grove, J.M.; Harlan, S.L.; Kaye, J.P.; et al. An integrated conceptual framework for long-term social–ecological research. Front. Ecol. Environ. 2011, 9, 351–357. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Peters, M.D.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Ann. Intern. Med. 2009, 151, W-65. [Google Scholar] [CrossRef] [PubMed]
- Poulin, C.; Kane, M.B. Infrastructure resilience curves: Performance measures and summary metrics. Reliab. Eng. Syst. Saf. 2021, 216, 107926. [Google Scholar] [CrossRef]
- Duyx, B.; Urlings, M.J.; Swaen, G.M.; Bouter, L.M.; Zeegers, M.P. Scientific citations favor positive results: A systematic review and meta-analysis. J. Clin. Epidemiol. 2017, 88, 92–101. [Google Scholar] [CrossRef]
- Christensen-Szalanski, J.J.; Beach, L.R. The citation bias: Fad and fashion in the judgment and decision literature. Am. Psychol. 1984, 39, 75. [Google Scholar] [CrossRef]
- Holling, C.S.; Gunderson, L.H. Resilience and Adaptive Cycles; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Adu-Gyamfi, K.; Bossé, M.J.; Chandler, K. Situating Student Errors: Linguistic-to-Algebra Translation Errors. Int. J. Math. Teach. Learn. 2015, 16. [Google Scholar]
- Gaule, P.; Maystre, N. Getting cited: Does open access help? Res. Policy 2011, 40, 1332–1338. [Google Scholar] [CrossRef]
- Sandve, G.K.; Nekrutenko, A.; Taylor, J.; Hovig, E. Ten simple rules for reproducible computational research. PLoS Comput. Biol. 2013, 9, e1003285. [Google Scholar] [CrossRef]
- Jain, S.K. Statistical performance indices for a hydropower reservoir. Hydrol. Res. 2009, 40, 454–464. [Google Scholar] [CrossRef]
- Azevedo, L.; Canário-Almeida, F.; Fonseca, J.A.; Costa-Pereira, A.; Winck, J.; Hespanhol, V. How to write a scientific paper—writing the methods section. Rev. Port. Pneumol. 2011, 17, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kotz, D.; Cals, J.W. Effective writing and publishing scientific papers, part IV: Methods. J. Clin. Epidemiol. 2013, 66, 817. [Google Scholar] [CrossRef]
- Plavén-Sigray, P.; Matheson, G.J.; Schiffler, B.C.; Thompson, W.H. The readability of scientific texts is decreasing over time. eLife 2017, 6, e27725. [Google Scholar] [CrossRef]
- Hirst, R. Scientific jargon, good and bad. J. Tech. Writ. Commun. 2003, 33, 201–229. [Google Scholar] [CrossRef]
- Zaccarelli, N.; Li, B.L.; Petrosillo, I.; Zurlini, G. Order and disorder in ecological time-series: Introducing normalized spectral entropy. Ecol. Indic. 2013, 28, 22–30. [Google Scholar] [CrossRef]
- Petrosillo, I.; Valente, D.; Mulder, C.; Li, B.L.; Jones, K.B.; Zurlini, G. The resilient recurrent behavior of mediterranean semi-arid complex adaptive landscapes. Land 2021, 10, 296. [Google Scholar] [CrossRef]
- Ludwig, D.; Jones, D.D.; Holling, C.S. Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest. J. Anim. Ecol. 1978, 47, 315–332. [Google Scholar] [CrossRef]
- Gunderson, L. Ecological and Human Community Resilience in Response to Natural Disasters. Ecol. Soc. 2010, 15, 18. [Google Scholar] [CrossRef]
- Ingrisch, J.; Bahn, M. Towards a Comparable Quantification of Resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef]
- Dakos, V.; Kéfi, S. Ecological resilience: What to measure and how. Environ. Res. Lett. 2022, 17, 043003. [Google Scholar] [CrossRef]
- Zurlini, G.; Zaccarelli, N.; Petrosillo, I. Indicating retrospective resilience of multi-scale patterns of real habitats in a landscape. Ecol. Indic. 2006, 6, 184–204. [Google Scholar] [CrossRef]
- Lake, P.S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 2000, 19, 573–592. [Google Scholar] [CrossRef]
- Maruyama, H. Taxonomy and general strategies for resilience. In Urban Resilience: A Transformative Approach; Springer: Cham, Switzerland, 2016; pp. 3–21. [Google Scholar]
- Walker, B.H.; Carpenter, S.R.; Rockstrom, J.; Crépin, A.S.; Peterson, G.D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 2012, 17, 30. [Google Scholar] [CrossRef]
- Grimm, V.; Wissel, C. Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 1997, 109, 323–334. [Google Scholar] [CrossRef]
- Ivory, V.C.; Stevenson, J.R. From contesting to conversing about resilience: Kickstarting measurement in complex research environments. Nat. Hazards 2019, 97, 935–947. [Google Scholar] [CrossRef]
- Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 2016, 533, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Bergström, J.; van Winsen, R.; Henriqson, E. On the rationale of resilience in the domain of safety: A literature review. Reliab. Eng. Syst. Saf. 2015, 141, 131–141. [Google Scholar] [CrossRef]
- Zurlini, G.; Li, B.L.; Zaccarelli, N.; Petrosillo, I. Spectral entropy, ecological resilience, and adaptive capacity for understanding, evaluating, and managing ecosystem stability and change. Glob. Chang. Biol. 2015, 21, 1377–1378. [Google Scholar] [CrossRef] [PubMed]
- McPhail, C.; Maier, H.R.; Kwakkel, J.H.; Giuliani, M.; Castelletti, A.; Westra, S. Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results? Earth’s Future 2018, 6, 169–191. [Google Scholar] [CrossRef]
Element of Research Question | Element of Query |
---|---|
Resilience | TS = (resilien*) |
Metric | AND TS = (metric* OR quantif* OR indicator* OR measure*) |
Socio-ecological or socio-technical | AND WC = (Agricultural Economics & Policy OR Agricultural Engineering OR Agriculture, Multidisciplinary OR Agronomy OR Engineering, Civil OR Management OR Engineering, Environmental OR Engineering, Industrial OR Area Studies OR Engineering, Multidisciplinary OR Materials Science, Textiles OR Mathematical & Computational Biology OR Environmental Sciences OR Environmental Studies OR Mathematics, Applied OR Mathematics, Interdisciplinary Applications OR Biodiversity Conservation OR Public Administration OR Public, Environmental & Occupational Health OR Fisheries OR Regional & Urban Planning OR Forestry OR Multidisciplinary Sciences OR Geosciences, Multidisciplinary OR Social Sciences, Mathematical Methods OR Green & Sustainable Science & Technology OR Health Policy & Services OR Statistics & Probability OR Computer Science, Interdisciplinary Applications OR History & Philosophy of Science OR Computer Science, Software Engineering OR Computer Science, Theory & Methods OR Operations Research & Management Science OR Transportation OR Transportation Science & Technology OR Demography OR Urban Studies OR Development Studies OR Ecology OR Water Resources OR Economics OR Limnology |
System | AND TS = (“system” OR ecosystem OR systems) |
Screened (N = 551) | Read (N = 80) | In Synthesis (N = 41) | ||
---|---|---|---|---|
Publication year | 1990–1994 | 31 | 5 | 3 |
1995–1999 | 71 | 15 | 7 | |
2000–2004 | 107 | 19 | 11 | |
2005–2009 | 107 | 13 | 7 | |
2010–2014 | 107 | 13 | 4 | |
2015–2019 | 107 | 9 | 4 | |
Jan 2020–July 2020 | 21 | 6 | 5 | |
Research area | Arts and humanities | 0 | 0 | 0 |
Life Sci and biomed | 593 | 67 | 22 | |
Physical sciences | 154 | 34 | 19 | |
Social sciences | 95 | 13 | 4 | |
Technology | 242 | 43 | 31 |
Single Basins of Attraction | Multiple Basins of Attraction | Total | |
---|---|---|---|
Socio-technical case study | 27 | 4 | 31 |
Socio-ecological case study | 10 | 5 | 15 |
Total | 37 | 9 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmann, P.; Tobi, H.; van Voorn, G.A.K. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A Scoping Review. Systems 2024, 12, 357. https://doi.org/10.3390/systems12090357
Steinmann P, Tobi H, van Voorn GAK. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A Scoping Review. Systems. 2024; 12(9):357. https://doi.org/10.3390/systems12090357
Chicago/Turabian StyleSteinmann, Patrick, Hilde Tobi, and George A. K. van Voorn. 2024. "Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A Scoping Review" Systems 12, no. 9: 357. https://doi.org/10.3390/systems12090357
APA StyleSteinmann, P., Tobi, H., & van Voorn, G. A. K. (2024). Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A Scoping Review. Systems, 12(9), 357. https://doi.org/10.3390/systems12090357